跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 22:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳允寧
研究生(外文):Yun-Ning Chen
論文名稱:TRPM8 在大鼠初代培養三叉神經細胞釋放 CGRP 的角色與可能機制初探
論文名稱(外文):Pilot Study on the Role of TRPM8 and Possible Mechanism in CGRP Release from Primary Cultured Neurons of Trigeminal Ganglia of the Rat
指導教授:嚴錦城嚴錦城引用關係陳世彬陳世彬引用關係
指導教授(外文):Jiin-Cherng YenShih-Pin Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:51
中文關鍵詞:偏頭痛三叉神經節降鈣素基因相關肽初代培養神經細胞
外文關鍵詞:MigraineTrigeminal ganglionCGRPPrimary Cultured NeuronsTRPM8
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
偏頭痛(Migraine)為一種神經血管方面的疾病,發作時通常伴隨著嚴重搏動性的疼痛,其病生理機轉目前仍然未有定論。近來,Genome-wide association (GWAS)研究顯示Transient receptor-potential Melastatin (TRPM8)通道可能參與在偏頭痛的病生理機制中。然而,與TRPM8相關之偏頭痛分子機制仍然不明。現今普遍認為三叉神經系統(Trigeminovascular system)的活化伴隨著Calcitonin gene-related peptide (CGRP)從三叉神經節(Trigeminal ganglion, TG)中被釋放在偏頭痛中扮演著重要的角色。研究亦發現,抑制Calmodulin-dependent protein kinase II (CaMKII)會使從三叉神經細胞中釋放出來的CGRP減少。因此,我們假設TRPM8可能是透過Ca2+ / CaM / CaMKII的路徑促進三叉神經細胞中CGRP的釋放。
本研究利用剛出生的仔鼠建立初代培養三叉神經細胞 (Primary cultured TG neurons)作為實驗材料。我們首先發現TRPM8確實會在TG neurons中表現,且其中約有43.9 %的細胞與CGRP共存,而不表現於其他非神經細胞。其次,酵素免疫分析法(Enzyme-linked immunosorbent assay, ELISA)的結果顯示,給予已知能促進TG中CGRP釋放的KCl及TRPM8的活化劑Icilin皆能使CGRP從TG neurons釋放量增加。然而,即時聚合酶連鎖反應 (qPCR) 顯示,給予10 mM的Icilin卻會降低細胞中CGRP的合成量。另外,給予CaMKII的抑制劑KN-93 則會降低Icilin引發的CGRP釋放量。最後,細胞在沒有鈣離子的情況下,並不會被Icilin所誘發而促進CGRP的釋放,顯示此路徑為鈣離子依賴的反應。由以上研究結果可知,TRPM8可能在三叉神經節中扮演調節CGRP釋放的角色。
Migraine is a disabling neurovascular disease, commonly characterized by severe throbbing pain and pulsing sensation, while its underlying pathophysiology remains to be debated. Recent genome-wide association studies have suggested a role for transient receptor potential melastatin 8 (TRPM8) channel in migraine pathophysiology. However, the molecular mechanisms contributed to TRPM8-associated migraine pathophysiology remain unclear. Release of CGRP from trigeminal gnaglia (TG) following activation of trigeminovascular system has been considered to play a critical role in migraine pathophysiology. In addition, blockade of calmodulin-dependent protein kinase II (CaMKII) is known to reduce capsaicin-induced CGRP release from TG neurons. Thus, we hypothesized that TRPM8 may promote CGRP release from TG neurons via activation of Ca2+/CaM/CaM-dependent kinase II pathway.
The present study was carried out in primary cultured TG neurons of the neonatal rat. We firstly found that TRPM8 is expressed in TG neurons and approximately 43.9 % of TRPM8-positive cells coexisted with CGRP. There are no co-localization of TRPM8 with Non-neuron cells. Result from Enzyme-linked immunosorbet assay (ELISA) suggested that both well-known stimulator KCl and TRPM8 agonist Icilin are able to increase CGRP release from TG neurons. However, results from qPCR indicated that 10 M Icilin tends to decrease intracellular CGRP synthesis. In addition, our results also showed that inhibition of CaMKII by KN-93 block CGRP release under TRPM8 activation. Also, the release of CGRP from TG neurons attributing by Icilin is significantly decreased under calcium-free condition, which indicated it is a calcium-dependent pathway. Our findings from this study reveal that TRPM8 may play a mediating role in CGRP release in TG.
致謝 2
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
縮寫對照表 vii
第一章 研究背景 1
1.1 偏頭痛的病生理機轉 1
1.2 Calcitonin gene-related peptide (CGRP)在偏頭痛的病生理角色 2
1.3 Transient receptor-potential melastatin 8 (TRPM8)與偏頭痛的關聯性 4
1.4 TRPM8調控CGRP釋放的可能性 5
第二章 研究動機與目的 7
第三章 材料與方法 8
3.1實驗動物 8
3.2實驗材料 8
3.3實驗方法 9
3.3.1 三叉神經細胞株之建立 9
3.3.2 SRB (Sulforhodamine B colorimetric) assay 10
3.3.3 蛋白質定量及分析 10
3.3.4 組織學實驗 12
3.3.5 CGRP 酵素免疫分析測定 12
3.3.6 即時定量聚合酶連鎖反應(Real-time polymerase chain reaction, Real-time PCR) 13
3.4 統計分析 14
3.5 研究設計 14
3.5.1 實驗流程 14
3.5.2 實驗分組 14
第四章 結果 16
4.1 三叉神經細胞株的建立 16
4.1.1 製作初代培養三叉神經節細胞動物年齡之選擇 16
4.1.2 神經細胞在初代培養三叉神經節細胞中的分布 16
4.1.3 CGRP在三叉神經節神經細胞中的分布與數量 16
4.1.4 初代三叉神經節細胞釋放CGRP之能力 17
4.2 TRPM8的表現 17
4.2.1 TRPM8在初代培養三叉神經節細胞之表現 17
4.2.2 TRPM8與CGRP在三叉神經節細胞中之表現 17
4.3 活化三叉神經節的TRPM8促進胞內CGRP的釋放 18
4.3.1 TRPM8作用劑濃度對三叉神經節細胞存活率的影響 18
4.3.2 TRPM8活化對三叉神經細胞胞內鈣離子濃度變化的影響 18
4.3.3 TRPM8 活化對三叉神經節細胞CGRP釋放量的影響 18
4.4 胞外鈣離子在TRPM8促進三叉神經節細胞CGRP釋放的角色 19
4.5 CaMKII在TRPM8促進三叉神經節細胞CGRP釋放中扮演的角色 19
4.5.1 TRPM8活化誘發三叉神經節細胞中CaMKII之活化 20
4.5.2 抑制CaMKII可減緩TRPM8促進三叉神經節細胞CGRP的釋放 20
4.6 TRPM8作用劑減少三叉神經節細胞中CGRP的表現量 20
第五章 討論 22
第六章 結論 26
參考文獻 27
附圖 35

圖 1初代大鼠三叉神經節細胞型態 36
圖 2 初代大鼠三叉神經節細胞之神經元比例 37
圖 3 初代大鼠三叉神經節細胞之細胞種類 38
圖 4 初代大鼠三叉神經節細胞之神經細胞中CGRP之分布情形 39
圖 5 初代大鼠三叉神經節細胞CGRP釋放能力之確認 40
圖 6 初代大鼠三叉神經節細胞中TRPM8的表現情形 41
圖 7 初代大鼠三叉神經節TRPM8與CGRP的表現情形 42
圖 8 TRPM8作用劑對細胞存活率的影響 43
圖 9 TRPM8作用劑對細胞內鈣離子濃度的影響 44
圖 10 TRPM8作用劑對三叉神經節細胞釋放CGRP之影響 45
圖 11胞外鈣離子在TRPM8作用劑引發CGRP釋放量之角色 46
圖 12 TRPM8活化對三叉神經節細胞中磷酸化CaMKII蛋白表現量之影響 47
圖 13 CaMKII在TRPM8活化對三叉神經細胞釋放CGRP之角色 48
圖 14 TRPM8作用劑對大鼠三叉神經節合成CGRP之影響 49

表格 1本研究使用之primer序列 50
表格 2本研究使用之抗體 51
Abe J., Hosokawa H., Okazawa M., Kandachi M., Sawada Y., Yamanaka K., Matsumura K., Kobayashi S., (2005) TRPM8 protein localization in trigeminal ganglion and taste papillae. Brain research. Molecular brain research 136,91-98.
Amara S.G., Jonas V., Rosenfeld M.G., Ong E.S., Evans R.M., (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298,240-244.
Anderson M.E., Brown J.H., Bers D.M., (2011) CaMKII in myocardial hypertrophy and heart failure. Journal of molecular and cellular cardiology 51,468-473.
Anttila V. et al., (2013) Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nature genetics 45,912-917.
Asuthkar S., Demirkhanyan L., Sun X., Elustondo P.A., Krishnan V., Baskaran P., Velpula K.K., Thyagarajan B., Pavlov E.V., Zakharian E., (2015) The TRPM8 protein is a testosterone receptor: II. Functional evidence for an ionotropic effect of testosterone on TRPM8. The Journal of biological chemistry 290,2670-2688.
Borhani Haghighi A., Motazedian S., Rezaii R., Mohammadi F., Salarian L., Pourmokhtari M., Khodaei S., Vossoughi M., Miri R., (2010) Cutaneous application of menthol 10% solution as an abortive treatment of migraine without aura: a randomised, double-blind, placebo-controlled, crossed-over study. Int J Clin Pract 64,451-456.
Cady R.K., Vause C.V., Ho T.W., Bigal M.E., Durham P.L., (2009) Elevated saliva calcitonin gene-related peptide levels during acute migraine predict therapeutic response to rizatriptan. Headache 49,1258-1266.
Chasman D.I., Anttila V., Buring J.E., Ridker P.M., Schürks M., Kurth T., (2014) Selectivity in genetic association with sub-classified migraine in women. PLoS genetics 10,e1004366.
Chasman D.I. et al., (2011) Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nature genetics 43,695-698.
Colburn R.W., Lubin M.L., Stone D.J., Jr., Wang Y., Lawrence D., D'Andrea M.R., Brandt M.R., Liu Y., Flores C.M., Qin N., (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54,379-386.
De Corato A., Lisi L., Capuano A., Tringali G., Tramutola A., Navarra P., Dello Russo C., (2011) Trigeminal satellite cells express functional calcitonin gene-related peptide receptors, whose activation enhances interleukin-1beta pro-inflammatory effects. J Neuroimmunol 237,39-46.
de Vries B. et al. Migraine without aura: genome-wide association analysis identifies several novel susceptibility: J Headache Pain. 2013;14(Suppl 1):P18. doi: 10.1186/1129-2377-14-S1-P18. Epub 2013 Feb 21.
Demarque M., Represa A., Becq H., Khalilov I., Ben-Ari Y., Aniksztejn L., (2002) Paracrine intercellular communication by a Ca2+- and SNARE-independent release of GABA and glutamate prior to synapse formation. Neuron 36,1051-1061.
Diener H.C., Limmroth V., (2001) Advances in pharmacological treatment of migraine. Expert opinion on investigational drugs 10,1831-1845.
Durham P.L., (2006) Calcitonin gene-related peptide (CGRP) and migraine. Headache 46 Suppl 1,S3-8.
Durham P.L., Russo A.F., (2003) Stimulation of the calcitonin gene-related peptide enhancer by mitogen-activated protein kinases and repression by an antimigraine drug in trigeminal ganglia neurons. J Neurosci 23,807-815.
Durham P.L., Garrett F.G., (2010) Development of functional units within trigeminal ganglia correlates with increased expression of proteins involved in neuron-glia interactions. Neuron glia biology 6,171-181.
Edvinsson L. (1985) Functional role of perivascular peptides in the control of cerebral circulation.
Edvinsson L., Haanes K.A., Warfvinge K., Krause D.N., (2018) CGRP as the target of new migraine therapies - successful translation from bench to clinic. Nat Rev Neurol 14,338-350.
Glaser R., Dimitrakakis C., Trimble N., Martin V., (2012) Testosterone pellet implants and migraine headaches: a pilot study. Maturitas 71,385-388.
Goadsby P.J., Edvinsson L., Ekman R., (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 28,183-187.
Hansen J.M., Hauge A.W., Olesen J., Ashina M., (2010) Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura. Cephalalgia 30,1179-1186.
Hegyi B., Bers D.M., Bossuyt J., (2019) CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. Journal of molecular and cellular cardiology 127,246-259.
Hewitt D.J., Aurora S.K., Dodick D.W., Goadsby P.J., Ge Y.J., Bachman R., Taraborelli D., Fan X., Assaid C., Lines C., Ho T.W., (2011) Randomized controlled trial of the CGRP receptor antagonist MK-3207 in the acute treatment of migraine. Cephalalgia 31,712-722.
Huang D., Li S., Dhaka A., Story G.M., Cao Y.Q., (2012) Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura. Molecular pain 8,66.
Ichikawa H., Gouty S., Regalia J., Helke C.J., Sugimoto T., (2004) Ca2+/calmodulin-dependent protein kinase II in the rat cranial sensory ganglia. Brain research 1005,36-43.
Ishikawa M., Iwamoto T., Nakamura T., Doyle A., Fukumoto S., Yamada Y., (2011) Pannexin 3 functions as an ER Ca(2+) channel, hemichannel, and gap junction to promote osteoblast differentiation. The Journal of cell biology 193,1257-1274.
Iyengar S., Ossipov M.H., Johnson K.W., (2017) The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 158,543-559.
Kim Y.S., Park J.H., Choi S.J., Bae J.Y., Ahn D.K., McKemy D.D., Bae Y.C., (2014) Central connectivity of transient receptor potential melastatin 8-expressing axons in the brain stem and spinal dorsal horn. PloS one 9,e94080.
Klumpp D., Frank S.C., Klumpp L., Sezgin E.C., Eckert M., Edalat L., Bastmeyer M., Zips D., Ruth P., Huber S.M., (2017) TRPM8 is required for survival and radioresistance of glioblastoma cells. Oncotarget 8,95896-95913.
Knowlton W.M., Bifolck-Fisher A., Bautista D.M., McKemy D.D., (2010) TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain 150,340-350.
Knowlton W.M., Daniels R.L., Palkar R., McCoy D.D., McKemy D.D., (2011) Pharmacological blockade of TRPM8 ion channels alters cold and cold pain responses in mice. PloS one 6,e25894.
Kobayashi K., Fukuoka T., Obata K., Yamanaka H., Dai Y., Tokunaga A., Noguchi K., (2005) Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol 493,596-606.
Lashinger E.S., Steiginga M.S., Hieble J.P., Leon L.A., Gardner S.D., Nagilla R., Davenport E.A., Hoffman B.E., Laping N.J., Su X., (2008) AMTB, a TRPM8 channel blocker: evidence in rats for activity in overactive bladder and painful bladder syndrome. American journal of physiology. Renal physiology 295,F803-810.
Liang R., Liu X., Wei L., Wang W., Zheng P., Yan X., Zhao Y., Liu L., Cao X., (2012) The modulation of the excitability of primary sensory neurons by Ca(2)(+)-CaM-CaMKII pathway. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 33,1083-1093.
Lippoldt E.K., Elmes R.R., McCoy D.D., Knowlton W.M., McKemy D.D., (2013) Artemin, a glial cell line-derived neurotrophic factor family member, induces TRPM8-dependent cold pain. J Neurosci 33,12543-12552.
Madrid R., Pertusa M., (2014) Intimacies and physiological role of the polymodal cold-sensitive ion channel TRPM8. Curr Top Membr 74,293-324.
Meents J.E., Hoffmann J., Chaplan S.R., Neeb L., Schuh-Hofer S., Wickenden A., Reuter U., (2015) Two TRPV1 receptor antagonists are effective in two different experimental models of migraine. The journal of headache and pain 16,57.
Milner P.M., (1958) Note on a possible correspondence between the scotomas of migraine and spreading depression of Leao. Electroencephalogr Clin Neurophysiol 10,705.
Monks D.A., Vanston C.M., Watson N.V., (1999) Direct androgenic regulation of calcitonin gene-related peptide expression in motoneurons of rats with mosaic androgen insensitivity. J Neurosci 19,5597-5601.
Noseda R., Burstein R., (2013) Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain 154 Suppl 1,S44-53.
Olesen J., Diener H.C., Husstedt I.W., Goadsby P.J., Hall D., Meier U., Pollentier S., Lesko L.M., (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. The New England journal of medicine 350,1104-1110.
Pietrobon D., Moskowitz M.A., (2014) Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci 15,379-393.
Price T.J., Jeske N.A., Flores C.M., Hargreaves K.M., (2005) Pharmacological interactions between calcium/calmodulin-dependent kinase II alpha and TRPV1 receptors in rat trigeminal sensory neurons. Neuroscience letters 389,94-98.
Prince P.B., Rapoport A.M., Sheftell F.D., Tepper S.J., Bigal M.E., (2004) The effect of weather on headache. Headache 44,596-602.
Purkiss J., Welch M., Doward S., Foster K., (2000) Capsaicin-stimulated release of substance P from cultured dorsal root ganglion neurons: involvement of two distinct mechanisms. Biochemical pharmacology 59,1403-1406.
Quallo T., Vastani N., Horridge E., Gentry C., Parra A., Moss S., Viana F., Belmonte C., Andersson D.A., Bevan S., (2015) TRPM8 is a neuronal osmosensor that regulates eye blinking in mice. Nature communications 6,7150.
Ramachandran R., Hyun E., Zhao L., Lapointe T.K., Chapman K., Hirota C.L., Ghosh S., McKemy D.D., Vergnolle N., Beck P.L., Altier C., Hollenberg M.D., (2013) TRPM8 activation attenuates inflammatory responses in mouse models of colitis. Proceedings of the National Academy of Sciences of the United States of America 110,7476-7481.
Rosenfeld M.G., Mermod J.J., Amara S.G., Swanson L.W., Sawchenko P.E., Rivier J., Vale W.W., Evans R.M., (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304,129-135.
Russell F.A., King R., Smillie S.J., Kodji X., Brain S.D., (2014) Calcitonin gene-related peptide: physiology and pathophysiology. Physiological reviews 94,1099-1142.
Sarria I., Ling J., Zhu M.X., Gu J.G., (2011) TRPM8 acute desensitization is mediated by calmodulin and requires PIP(2): distinction from tachyphylaxis. J Neurophysiol 106,3056-3066.
Takashima Y., Daniels R.L., Knowlton W., Teng J., Liman E.R., McKemy D.D., (2007) Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. J Neurosci 27,14147-14157.
Tang Z., Kim A., Masuch T., Park K., Weng H., Wetzel C., Dong X., (2013) Pirt functions as an endogenous regulator of TRPM8. Nature communications 4,2179.
Yang Y., Chen Q., Jia S., He L., Wang A., Li D., Li Y., Li X., (2018) Involvement of TRPV1 in the expression and release of calcitonin gene-related peptide induced by rutaecarpine. Molecular medicine reports 17,5168-5174.
Zhao H. et al., (2016) Gene-based pleiotropy across migraine with aura and migraine without aura patient groups. Cephalalgia 36,648-657.
Zhou Y., Long H., Ye N., Liao L., Yang X., Jian F., Wang Y., Lai W., (2016) The effect of capsaicin on expression patterns of CGRP in trigeminal ganglion and trigeminal nucleus caudalis following experimental tooth movement in rats. Journal of applied oral science : revista FOB 24,597-606.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top