跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/03 18:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張佑聖
研究生(外文):Yu-Sheng Chang
論文名稱:3D列印關節型拇趾外翻矯具之生物力學評估
論文名稱(外文):Biomechanical evaluation of 3D printing joint-type orthosis for the patient with hallux valgus
指導教授:陳振昇陳振昇引用關係
指導教授(外文):Chen-Sheng Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:71
中文關鍵詞:拇趾外翻矯具關節活動度步態分析3D列印
外文關鍵詞:hallux valgusorthosisrange of motiongait analysis3D printing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:1
背景:拇趾外翻是下肢常見的足部變形疾病,且時常發生於女性以及老年人身上。通常會伴隨著足部疼痛、步態異常以及平衡不良增加老年人跌倒的風險。近年來,市場上出現許多針對拇趾外翻所設計的商品,但存在著一些缺點,例如:產品價格、拇趾外翻矯正效果以及影響行走時足部推進。3D列印技術是一項加法製造技術,已經運用在許多的醫學領域。因此本研究目的在於透過3D列印技術開發拇趾外翻矯具,並且評估穿戴矯具之運動學表現。
方法:本研究招募了17位擁有拇趾外翻的個案,並請每一位受試者分別在裸足以及穿著3D列印矯具情況下各行走5次。使用動作分析來量測靜態站立以及動態行走下拇趾外翻角度變化。
結果:結果顯示穿著3D列印矯具靜態站立以及動態行走中拇趾外翻角度分別下降了14度以及6度。而在穿著矯具動態行走中和裸足相比,第一蹠趾關節背屈角度被限制了14度。
結論:本研究顯示穿著3D列印矯具無論是靜態站立或是動態行走,可以有效地矯正拇趾外翻角度。
Background:Hallux valgus (HV) is a foot deformity and common found in female and elderly. It often accompanied by foot pain, impaired gait patterns, poor balance, and falls in elderly. In recent years, many commercial orthoses for HV in the market are developed, but they have some disadvantages, such as the expensive, correction effect of HV and influence on gait. The three-dimensions (3D) printing technique, also known as additive manufacturing, has been used in various medical fields. This study aimed to develop a new 3D printing orthosis for HV and evaluate the kinematics of wearing HV orthosis using the motion analysis.
Method:This study recruited 17 subjects with HV and asked to walk 5 times in two different conditions including with and without orthosis. The subjects were measured in terms of HV angle in static standing and dynamic walking using Motion Analysis System.
Results:The results showed that the HV angle in static and dynamic were respectively reduced about 14 and 6 degrees for the patients with 3D printing orthoses. In dynamic walking the extension of 1st metatarsophalangeal joint (1st MTP) was restricted about 14 degree while wearing 3D printing orthosis.
Conclusion:The 3D printing orthosis effectively corrected the HV angle in static standing and dynamic walking.
目錄
第一章 緒論 1
1-1 前言 1
1-2 足部解剖構造 2
1-2-1 骨骼構造 2
1-2-2 肌肉構造 3
1-3 拇趾外翻介紹 4
1-3-1 拇趾外翻流行病學及評估方式 4
1-3-2 拇趾外翻臨床症狀與生物力學研究 6
1-4 拇趾外翻介入方式 16
1-4-1 手術治療 16
1-4-2 物理治療 17
1-4-3 輔具介入 18
1-5 3D列印相關研究 23
1-6 研究動機及目的 27
第二章 材料與方法 28
2-1 3D列印拇趾外翻矯具開發設計與製造階段 29
2-1-1 設計理念及開發流程 29
2-1-2 足部模型以及矯具設計建立 30
2-1-3 3D列印機製造 31
2-2 臨床實驗階段 34
2-2-1 研究對象 34
2-2-2 實驗流程 35
2-2-3 測試方法與資料收集 36
2-3 統計分析 42
第三章 結果 43
3-1 靜態站立拇趾外翻矯正效果 43
3-2 動態行走拇趾外翻矯正效果 44
3-3 地面反作用力結果 47
3-4 舒適度結果 48
第四章 討論 49
4-1 靜態站立拇趾外翻矯正效果之探討 49
4-2 動態站立拇趾外翻矯正效果之探討 51
4-3 地面反作用力之探討 55
4-4 舒適度之探討 56
4-5 關節型3D列印拇趾外翻矯具成本之探討 57
4-6 產品開發及臨床實驗階段之研究限制 59
4-7 未來研究方向 61
第五章 結論 64
附錄 68

圖目錄
圖1-1足部骨骼解剖圖1 2
圖1-2足部肌肉解剖圖1 3
圖1-3拇趾外翻 5
圖1-4(a)X光影像診斷(b)量角器量測5 5
圖1-5拇趾外翻好發疼痛常見位置 12
圖1-6大拇趾足底壓力比較 12
圖1-7足部區域以及壓力分佈 13
圖1-8步態行走時拇趾外翻組和健康組比較,實線為健康組虛線為拇趾外翻組 15
圖1-9(a)正常人與拇趾外翻足底壓力(b)正常人與拇趾外翻者von Mises分佈 15
圖1-10手術治療圖 16
圖1-11肌內效貼扎 17
圖1-12腳趾分離運動 17
圖1-13客製化鞋墊結合拇趾分離器 19
圖1-14客製化鞋墊 19
圖1-15三種不同長度鞋墊 19
圖1-16矽膠型拇趾外翻矯具 21
圖1-17關節型拇趾外翻矯具常見斷裂處 21
圖1-18硬材型拇趾外翻矯具 22
圖1-19襪套式拇趾外翻矯具 22
圖1-20拇趾分離器矯具設計 25
圖1-21拇趾外翻矯具設計 25
圖1-22足底筋膜炎矯具設計 26
圖1-23 3D列印足踝矯具製造(a)取得人體模型(b)在修模軟體進型編修(c)模擬編修後成品(d)匯入切片軟體以3D列印機造之成品 26
圖2-1 實驗流程圖 28
圖2-2 槓桿力學示意圖 29
圖2-3掃瞄器掃瞄足部模型 30
圖2-4 (a)大拇趾分成三等份,中間設計趾套(b)編修後矯具 31
圖2-5列印參數設定 32
圖2-6切片匯出的*gx檔以及預估時間 33
圖2-7 3D列印機「Finder」 33
圖2-8列印後成品 33
圖2-9腳長量測範圍 35
圖2-10 靜態量測方式 (a)裸足下量測(b)穿著3D列印矯具下量測 36
圖2-11 下肢貼上反光球進行動態行走 38
圖2-12光球貼點 38
圖2-13動態行走下外展及內收角度β計算方式 39
圖2-14動態行走下背屈以及蹠屈角度α計算方式 39
圖2-15 測力板X定義為前後方向,Y定義為左右方向 40
圖2-16 地面反作用力之Fz1及Fz2示意圖 40
圖2-17 舒適度量表 41
圖3-1靜態站立矯正效果 43
圖3-2動態行走下角度變化(-外展/+內收) 45
圖3-3動態行走下最大外展角度 45
圖3-4動態行走下角度變化(-蹠曲/+背屈) 46
圖3-5動態行走下最大背屈角度 46
圖3-6矯具不適處 48
圖4-1陳學者等人之研究動態角度最大值之外展角度變化 53
圖4-2矯具差異(a)無關節矯具(b)關節型矯具 53
圖4-3行走時蹠屈與背屈角度差異(a)無關節矯具(b)關節型矯具 54
圖4-4腳掌推進期第一蹠骨背側以及第一二趾間摩擦 56
圖4-5矯具加入泡棉減少異物感提升整體舒適性 56
圖4-6改良式關節設計 62
圖4-7合併足弓支撐關節型拇趾外翻矯具 63

表目錄
表1-1無拇趾外翻組與拇趾外翻組退化性膝關節比例 12
表1-2動態行走中角度變化 13
表1-3術後角度差異 13
表1-4術後足壓差異 14
表1-5步態行走時角度變化 14
表2-1受試者基本資料 34
表4-1過去文獻比較 50
表4-2拇趾外翻組和健康組運動學比較 53
表4-3本研究開發之矯具與現有產品之比較 58
1. Netter FH. Atlas of Human Anatomy, Professional Edition E-Book: including NetterReference. com Access with Full Downloadable Image Bank. Elsevier Health Sciences; 2014.
2. Munteanu SE, Menz HB, Wark JD, et al. Hallux valgus, by nature or nurture? A twin study. Arthritis care & research. 2017;69(9):1421-1428.
3. Nishimura A, Ito N, Nakazora S, Kato K, Ogura T, Sudo A. Does hallux valgus impair physical function? BMC musculoskeletal disorders. 2018;19(1):174.
4. Golightly YM, Hannan MT, Dufour AB, Renner JB, Jordan JM. Factors Associated With Hallux Valgus in a Community‐Based Cross‐Sectional Study of Adults With and Without Osteoarthritis. Arthritis care & research. 2015;67(6):791-798.
5. Janssen DM, Sanders AP, Guldemond NA, Hermus J, Walenkamp GH, Van Rhijn LW. A comparison of hallux valgus angles assessed with computerised plantar pressure measurements, clinical examination and radiography in patients with diabetes. Journal of foot and ankle research. 2014;7(1):33.
6. Doty JF, Alvarez RG, Ervin TB, Heard A, Gilbreath J, Richardson NS. Biomechanical evaluation of custom foot orthoses for hallux valgus deformity. The Journal of Foot and Ankle Surgery. 2015;54(5):852-855.
7. López DL, González LC, Iglesias MEL, et al. Quality of life impact related to foot health in a sample of older people with hallux valgus. Aging and disease. 2016;7(1):45.
8. Incel NA, Genc H, Erdem H, Yorgancioglu Z. Muscle imbalance in hallux valgus: an electromyographic study. American journal of physical medicine & rehabilitation. 2003;82(5):345-349.
9. Yoshimoto Y, Oyama Y, Tanaka M, Sakamoto A. Toe functions have little effect on dynamic balance ability in elderly people. Journal of physical therapy science. 2017;29(1):158-162.
10. Hida T, Okuda R, Yasuda T, Jotoku T, Shima H, Neo M. Comparison of plantar pressure distribution in patients with hallux valgus and healthy matched controls. Journal of Orthopaedic Science. 2017;22(6):1054-1059.
11. Deschamps K, Birch I, Desloovere K, Matricali GA. The impact of hallux valgus on foot kinematics: a cross-sectional, comparative study. Gait & posture. 2010;32(1):102-106.
12. Moerenhout K, Chopra S, Crevoisier X. Outcome of the modified Lapidus procedure for hallux valgus deformity during the first year following surgery: A prospective clinical and gait analysis study. Clinical Biomechanics. 2019;61:205-210.
13. Klugarova J, Janura M, Svoboda Z, Sos Z, Stergiou N, Klugar M. Hallux valgus surgery affects kinematic parameters during gait. Clinical Biomechanics. 2016;40:20-26.
14. Chopra S, Moerenhout K, Crevoisier X. Characterization of gait in female patients with moderate to severe hallux valgus deformity. Clinical Biomechanics. 2015;30(6):629-635.
15. Ballas R, Edouard P, Philippot R, Farizon F, Delangle F, Peyrot N. Ground-reactive forces after hallux valgus surgery: comparison of Scarf osteotomy and arthrodesis of the first metatarsophalangeal joint. The bone & joint journal. 2016;98(5):641-646.
16. Galois L, Girard D, Martinet N, Delagoutte J, Mainard D. Optoelectronic gait analysis after metatarsophalangeal arthrodesis of the hallux: fifteen cases. Revue de chirurgie orthopedique et reparatrice de l'appareil moteur. 2006;92(1):52-59.
17. Zhang Y, Awrejcewicz J, Szymanowska O, et al. Effects of severe hallux valgus on metatarsal stress and the metatarsophalangeal loading during balanced standing: A finite element analysis. Computers in biology and medicine. 2018;97:1-7.
18. Lee M, Walsh J, Smith MM, Ling J, Wines A, Lam P. Hallux valgus correction comparing percutaneous chevron/akin (PECA) and open scarf/akin osteotomies. Foot & ankle international. 2017;38(8):838-846.
19. Mann RA, Rudicel S, Graves S. Repair of hallux valgus with a distal soft-tissue procedure and proximal metatarsal osteotomy. A long-term follow-up. The Journal of bone and joint surgery American volume. 1992;74(1):124-129.
20. Masala S, Fiori R, Calabria E, et al. Management of pain on hallux valgus with percutaneous intra‐articular Pulse‐Dose Radiofrequency. International journal of rheumatic diseases. 2017;20(1):46-52.
21. Karabicak GO, Bek N, Tiftikci U. Short-term effects of kinesiotaping on pain and joint alignment in conservative treatment of hallux valgus. Journal of manipulative and physiological therapeutics. 2015;38(8):564-571.
22. Kim M-H, Yi C-H, Weon J-H, Cynn H-S, Jung D-Y, Kwon O-Y. Effect of toe-spread-out exercise on hallux valgus angle and cross-sectional area of abductor hallucis muscle in subjects with hallux valgus. Journal of physical therapy science. 2015;27(4):1019-1022.
23. Bayar B, Erel S, ŞİMŞEK İE, SÜMER E, Bayar K. The effects of taping and foot exercises on patients with hallux valgus: a preliminary study. Turkish Journal of Medical Sciences. 2011;41(3):403-409.
24. Tang SF, Chen CP, Pan J-L, Chen J-L, Leong C-P, Chu N-K. The effects of a new foot-toe orthosis in treating painful hallux valgus. Archives of physical medicine and rehabilitation. 2002;83(12):1792-1795.
25. Reina M, Lafuente G, Munuera PV. Effect of custom-made foot orthoses in female hallux valgus after one-year follow up. Prosthetics and orthotics international. 2013;37(2):113-119.
26. Tehraninasr A, Saeedi H, Forogh B, Bahramizadeh M, Keyhani MR. Effects of insole with toe-separator and night splint on patients with painful hallux valgus: a comparative study. Prosthetics and orthotics international. 2008;32(1):79-83.
27. 吉田隆紀, 谷埜予士次, 鈴木俊明, 増田研一. 外反母趾用の機能的靴下による介入効果の検証. 理学療法科学. 2016;31(6):857-863.
28. 陳振昇, 簡睦容. 3D列印輔具書. 2017.
29. Cha YH, Kim SJ, Lee KH, et al. Designing Personalized Toe Spreaders for Hallux Valgus with Three-Dimensional Scanning and Printing. Journal of Biomedical Engineering and Biosciences (JBEB). 2018;5(1):1-6.
30. 陳宥羽. 拇趾外翻患者穿戴3D列印矯具在行走下之評估. 2018.
31. Xu R, Wang Z, Ma T, Ren Z, Jin H. Effect of 3D Printing Individualized Ankle-Foot Orthosis on Plantar Biomechanics and Pain in Patients with Plantar Fasciitis: A Randomized Controlled Trial. Medical science monitor: international medical journal of experimental and clinical research. 2019;25:1392.
32. Leardini A, Benedetti MG, Berti L, Bettinelli D, Nativo R, Giannini S. Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait & posture. 2007;25(3):453-462.
33. Mortka K, Lisiński P, Wiertel-Krawczuk A. The study of surface electromyography used for the assessment of abductor hallucis muscle activity in patients with hallux valgus. Physiotherapy theory and practice. 2018;34(11):846-851.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top