|
參考文獻 1. Susan B O'Sullivan TJS, George Fulk. Physical Rehabilitation. 2014. 2. 行政院衛生署. 106 年死因統計結果分析. In: 行政院, ed. 行政院 106. 3. Pollock A, Baer G, Campbell P, et al. Physical rehabilitation approaches for the recovery of function and mobility following stroke. The Cochrane database of systematic reviews. 2014(4). 4. Mang C, Clair J, Collins DJEbr. Neuromuscular electrical stimulation has a global effect on corticospinal excitability for leg muscles and a focused effect for hand muscles. Exp Brain Res. 2011;209(3):355-363. 5. Shin HK, Cho SH, Jeon H-s, et al. Cortical effect and functional recovery by the electromyography-triggered neuromuscular stimulation in chronic stroke patients. Neurosci Lett. 2008;442(3):174-179. 6. Lai M-I, Pan L-L, Tsai M-W, Shih Y-F, Wei S-H, Chou L-WJTisr. Investigating the effects of peripheral electrical stimulation on corticomuscular functional connectivity stroke survivors. Top Stroke Rehabil. 2016;23(3):154-162. 7. Iliopoulos F, Nierhaus T, Villringer AJJon. Electrical noise modulates perception of electrical pulses in humans: sensation enhancement via stochastic resonance. J Neuroeng Rehabil. 2013;111(6):1238-1248. 8. Enders LR, Hur P, Johnson MJ, Seo NJJJon, rehabilitation. Remote vibrotactile noise improves light touch sensation in stroke survivors’ fingertips via stochastic resonance. J Neuroeng Rehabil. 2013;10(1):105. 9. Priplata AA, Patritti BL, Niemi JB, et al. Noise‐enhanced balance control in patients with diabetes and patients with stroke. Ann Neurol. 2006;59(1):4-12. 10. Trenado C, Mendez-Balbuena I, Manjarrez E, et al. Enhanced corticomuscular coherence by external stochastic noise. Front Hum Neurosci. 2014;8:325. 11. Schabrun SM, Ridding MC, Galea MP, Hodges PW, Chipchase LSJPO. Primary sensory and motor cortex excitability are co-modulated in response to peripheral electrical nerve stimulation. PLoS One. 2012;7(12):e51298. 12. Huang M, Davis L, Aine C, et al. MEG response to median nerve stimulation correlates with recovery of sensory and motor function after stroke. Clin Neurophysiol. 2004;115(4):820-833. 13. Sakamoto T, Porter LL, Asanuma HJBr. Long-lasting potentiation of synaptic potentials in the motor cortex produced by stimulation of the sensory cortex in the cat: a basis of motor learning. Brain Res. 1987;413(2):360-364. 14. Sakamoto T, Arissian K, Asanuma HJBr. Functional role of the sensory cortex in learning motor skills in cats. Brain Res. 1989;503(2):258-264.55 15. Charlton CS, Ridding MC, Thompson PD, Miles TSJJotns. Prolonged peripheral nerve stimulation induces persistent changes in excitability of human motor cortex. J Neurol Sci. 2003;208(1-2):79-85. 16. Khaslavskaia S, Ladouceur M, Sinkjaer TJEbr. Increase in tibialis anterior motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve. Exp Brain Res. 2002;145(3):309-315. 17. Kaelin‐Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LGJTJop. Modulation of human corticomotor excitability by somatosensory input. J Physiol. 2002;540(2):623-633. 18. Wu CW-H, van Gelderen P, Hanakawa T, Yaseen Z, Cohen LGJN. Enduring representational plasticity after somatosensory stimulation. Neuroimage. 2005;27(4):872-884. 19. Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey LL, Lojovich JM, Carey JRJEBR. Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Exp Brain Res. 2004;154(4):450-460. 20. Ridding M, Brouwer B, Miles T, Pitcher J, Thompson PJEBR. Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res. 2000;131(1):135-143. 21. Lagerquist O, Mang CS, Collins DFJEbr. Changes in spinal but not cortical excitability following combined electrical stimulation of the tibial nerve and voluntary plantar-flexion. Exp Brain Res. 2012;222(1-2):41-53. 22. Chou L-W, Sung W-H, Luo H-J, Tsai M-W, Pan L-L, Li Y-CJ 物. The Effects of Peripheral Electrical Stimulation on the Plastic Change in the Central Nervous System: Literature Review for Stimulation Parameters. 物理治療 43 卷 1 期 2018;43(1):10-23. 23. Mang C, Lagerquist O, Collins DJEbr. Changes in corticospinal excitability evoked by common peroneal nerve stimulation depend on stimulation frequency. Exp Brain Res. 2010;203(1):11-20. 24. Conforto AB, Cohen LG, Dos Santos RL, Scaff M, Marie SKNJJon. Effects of somatosensory stimulation on motor function in chronic cortico-subcortical strokes. J Neurol Sci. 2007;254(3):333-339. 25. Andrews RK, Schabrun SM, Ridding MC, et al. The effect of electrical stimulation on corticospinal excitability is dependent on application duration: a same subject pre-post test design. J Neuroeng Rehabil. 2013;10(1):51. 26. Bergquist A, Clair J, Lagerquist O, Mang C, Okuma Y, Collins DJEjoap. Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley. Eur J Appl Physiol. 2011;111(10):2409. 27. Lagerquist O, Collins DFJM, nerve. Stimulus pulse‐width influences H‐reflex56 recruitment but not Hmax/Mmax ratio. Muscle Nerve. 2008;37(4):483-489. 28. Onorato I, D'Alessandro G, Di Castro MA, et al. Noise enhances action potential generation in mouse sensory neurons via stochastic resonance. PLoS One. 2016;11(8):e0160950. 29. Martínez L, Pérez T, Mirasso CR, Manjarrez EJJon. Stochastic resonance in the motor system: effects of noise on the monosynaptic reflex pathway of the cat spinal cord. J Neurophysiol. 2007;97(6):4007-4016. 30. Fallon JB, Morgan DLJJon. Fully tuneable stochastic resonance in cutaneous receptors. J Neurophysiol. 2005;94(2):928-933. 31. Fallon JB, Carr RW, Morgan DLJJon. Stochastic resonance in muscle receptors. J Neurophysiol. 2004;91(6):2429-2436. 32. Collins JJ, Priplata AA, Gravelle DC, et al. Noise-enhanced human sensorimotor function. IEEE Eng Med Biol Mag. 2003;22(2):76-83. 33. Lipsitz LA, Lough M, Niemi J, et al. A shoe insole delivering subsensory vibratory noise improves balance and gait in healthy elderly people. Archives of physical medicine and rehabilitation. 2015;96(3):432-439. 34. Gravelle DC, Laughton CA, Dhruv NT, et al. Noise-enhanced balance control in older adults. Neuroreport. 2002;13(15):1853-1856. 35. Galica AM, Kang HG, Priplata AA, et al. Subsensory vibrations to the feet reduce gait variability in elderly fallers. Gait Posture. 2009;30(3):383-387. 36. Nobusako S, Osumi M, Matsuo A, et al. Stochastic resonance improves visuomotor temporal integration in healthy young adults. PloS one. 2018;13(12):e0209382. 37. Seo NJ, Kosmopoulos ML, Enders LR, Hur PJFihn. Effect of remote sensory noise on hand function post stroke. Frontiers in human neuroscience. 2014;8:934. 38. Stein J, Hughes R, D'andrea S, et al. Stochastic resonance stimulation for upper limb rehabilitation poststroke. Am J Phys Med Rehabil. 2010;89(9):697-705. 39. Riemann BL, Lephart SMJJoat. The sensorimotor system, part II: the role of proprioception in motor control and functional joint stability. Journal of athletic training. 2002;37(1):80. 40. Riemann BL, Lephart SMJJoat. The sensorimotor system, part I: the physiologic basis of functional joint stability. Journal of athletic training. 2002;37(1):71. 41. Schoffelen J-M, Oostenveld R, Fries PJS. Neuronal coherence as a mechanism of effective corticospinal interaction. Science. 2005;308(5718):111-113. 42. Schnitzler A, Gross JJNrn. Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci. 2005;6(4):285. 43. Gallet C, Julien CJBSP, Control. The significance threshold for coherence when57 using the Welch's periodogram method: effect of overlapping segments. Biomedical Signal Processing and Control. 2011;6(4):405-409. 44. Krause V, Wach C, Südmeyer M, Ferrea S, Schnitzler A, Pollok BJFihn. Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease. Frontiers in human neuroscience. 2014;7:928. 45. Kristeva R, Patino L, Omlor WJN. Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output. Neuroimage. 2007;36(3):785-792. 46. Kilner JM, Baker SN, Salenius S, Hari R, Lemon RNJJoN. Human cortical muscle coherence is directly related to specific motor parameters. J Neurosci. 2000;20(23):8838-8845. 47. Omlor W, Patino L, Hepp-Reymond M-C, Kristeva RJN. Gamma-range corticomuscular coherence during dynamic force output. Neuroimage. 2007;34(3):1191-1198. 48. Larsen LH, Zibrandtsen IC, Wienecke T, et al. Corticomuscular coherence in the acute and subacute phase after stroke. Clin Neurophysiol. 2017;128(11):2217-2226. 49. Rossiter HE, Eaves C, Davis E, et al. Changes in the location of cortico-muscular coherence following stroke. Neuroimage Clin. 2013;2:50-55. 50. Fang Y, Daly JJ, Sun J, et al. Functional corticomuscular connection during reaching is weakened following stroke. Clin Neurophysiol. 2009;120(5):994-1002. 51. Braun C, Staudt M, Schmitt C, Preissl H, Birbaumer N, Gerloff CJEJoN. Crossed cortico‐spinal motor control after capsular stroke. Eur J Neurosci. 2007;25(9):2935-2945. 52. Mima T, Toma K, Koshy B, Hallett MJS. Coherence between cortical and muscular activities after subcortical stroke. Stroke. 2001;32(11):2597-2601. 53. Belardinelli P, Laer L, Ortiz E, Braun C, Gharabaghi AJNC. Plasticity of premotor cortico-muscular coherence in severely impaired stroke patients with hand paralysis. Neuroimage Clin. 2017;14:726-733. 54. Severini G, Delahunt EJG, posture. Effect of noise stimulation below and above sensory threshold on postural sway during a mildly challenging balance task. Gait Posture. 2018;63:27-32. 55. Ladda AM, Pfannmoeller JP, Kalisch T, et al. Effects of combining 2 weeks of passive sensory stimulation with active hand motor training in healthy adults. PLoS One. 2014;9(1):e84402. 56. Celnik P, Hummel F, Harris-Love M, Wolk R, Cohen LGJAopm, rehabilitation.58 Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Arch Phys Med Rehabil. 2007;88(11):1369-1376. 57. Pérez M, Lucia A, Rivero J-L, et al. Effects of transcutaneous short-term electrical stimulation on M. vastus lateralis characteristics of healthy young men. Pflugers Arch. 2002;443(5-6):866-874. 58. Rochester L, Barron M, Chandler C, Sutton R, Miller S, Johnson MJSC. Influence of electrical stimulation of the tibialis anterior muscle in paraplegic subjects. 2. Morphological and histochemical properties. Paraplegia. 1995;33(9):514. 59. Lattari E, Velasques B, Paes F, et al. Corticomuscular coherence behavior in fine motor control of force: a critical review. Rev Neurol. 2010;51(10):610-623. 60. Brown P, Salenius S, Rothwell JC, Hari RJJon. Cortical correlate of the Piper rhythm in humans. J Neurophysiol. 1998;80(6):2911-2917. 61. Omlor W, Patino L, Hepp-Reymond MC, Kristeva R. Gamma-range corticomuscular coherence during dynamic force output. NeuroImage. 2007;34(3):1191-1198.
|