(44.192.10.166) 您好!臺灣時間:2021/03/06 04:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:侯祥琳
研究生(外文):Shiang-Lin Hou
論文名稱:探討隨機共振電刺激對健康成年人本體感覺的效果
論文名稱(外文):Effects of Stochastic Resonance Electrical Stimulation on proprioception in healthy adults
指導教授:蔚順華蔚順華引用關係
指導教授(外文):Shun-Hwa Wei
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:67
中文關鍵詞:電刺激隨機共振電刺激本體感覺
外文關鍵詞:electrical stimulusStochastic Resonance Electrical Stimulationproprioception
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
研究背景
隨機共振刺激的應用已被證實可以改善下肢執行本體覺任務時的
動作表現。然而,我們不知道隨機共振刺激對於上肢的應用,應用的
電刺激強度也沒有一致的結果。本文將以健康人為受試者, 探討隨機
共振電刺激是否能提升本體感覺及神經肌肉控制。 本研究同時探討隨
機共振電刺激的最佳強度(0%感覺強度電刺激、70%感覺強度電
刺激、90%感覺強度電刺激以及100%感覺強度電刺激),以及電
刺激當下或是一個三十分鐘電刺激療程後的動作能力表現, 做為未來
臨床介入的參考。
研究目的
本篇研究主要目的是探討不同隨機共振電刺激強度(0%、70
%、90%以及100%) 對健康成年人腕部的關節及力量本體感覺,
以及對神經肌肉控制的立即和電刺激三十分鐘後的延遲效應。
神經肌肉控制會以握力維持的動作任務表現, 以及以腦波-肌電圖
同調性做為測試方法。
研究方法
本研究招募 14 位健康人,研究分成兩天進行。 第一天進行本體覺
測試以及決定隨機共振電刺激的最佳強度,決定最佳強度後進行隨機ix
共振電刺激前以及電刺激當下,以中強度力量(30%最大自主收縮)執行
握力計維持 30 秒,同時紀錄腦波訊號及表面肌電訊號。第二天受試者
會接受單一次 30 分鐘的隨機共振電刺激,在電刺激介入前及介入後以
中強度力量(30%最大自主收縮)執行握力計維持 30 秒,同時紀錄腦波
訊號及表面肌電訊號並以共調性方式呈現。
結果
力量本體感覺在 70% 感覺程度電刺激時有最小的力量誤差值;關
節角度本體感覺在 100% 感覺程度電刺激有最小的力量誤差值;共調
性方面, 在未電刺激、電刺激當下與電刺激三十分鐘後皮質肌肉共調
性不論是在 β 或是 γ 頻帶的尖峰值與面積值皆沒有顯著的上升或下
降。
討論與結論
本研究證實了隨機共振電刺激確實能改善本體覺測試。動作表現的
進步,在排除學習效應、周邊肌肉組織改變等原因後,可能是因為隨
機共振電刺激提升了大腦皮質興奮性,進而導致動作控制較電刺激前
為佳。
英文摘要
Background: The application of mechanical and electrical noise
stimulation has been shown to improve the proprioception task in lower
limbs. However, little did we know the application of stimulation to the
upper limbs. Besides, there is no consistent result in the stimulation
intensity. Method: We applied four different levels of stochastic resonance
(no-stimulation, 70%, 90%, and 100% of their sensory threshold ST) on
median nerve. The proprioception tests consist of a force task and a join
position task. In the force task, subjects maintained steady grip force at
30% maximal voluntary contraction (MVC) for 1s and repeat 5 time
without visual feedback. In the join angle task, subjects reproduce 30
degree of wrist extension with eye closed, and repeat 5 time for each trial.
The stimulation intensity of the best performance in proprioception test was
the optimal stimulation (OS). Next, Subjects perform a steady hold
30%MVC task for 30 seconds and simultaneously collect EEG and EMG
tested before, during, and after 30-min stochastic resonance stimulation.
Results: 70% ST has the best force task performance; 100%ST has the best
join position task performance. CMC show no significant result in both
beta and gamma band. The power spectrum of EEG decreases 17% in
channel FC1 at the gamma band during the stimulation but show little
change in beta band. After 30minutes stimulation it increase 25% in
channel C3 at the gamma band but show little change in beta band.
Our preliminary results indicate that stochastic resonance stimulation
improves sensorimotor function and it induces brain plasticity, which can
be detected using EEG and EMG.
中文摘要........................................................................................................i
英文摘要......................................................................................................iii
圖目錄........................................................................................................viii
表目錄...........................................................................................................x
中、英文重要字彙對照表..........................................................................xi
第一章 緒論.................................................................................................1
第一節 研究背景與動機......................................................................1
第二節 研究目的..................................................................................4
第三節 研究假設..................................................................................4
第四節 重要性......................................................................................4
第二章 文獻回顧.........................................................................................6
第一節 神經肌肉電刺激對中樞的影響..............................................6
第二節 隨機共振電刺激......................................................................9
2.2.1 定義........................................................................................9
2.2.2 已知成效................................................................................9
第三節 感覺動作系統與大腦皮質共調性........................................ 11
2.3.1 感覺動作系統...................................................................... 11
2.3.1.1 本體感覺........................................................................... 11
2.3.1.2 肌肉感覺受器................................................................... 11
2.3.1.3 關節感覺受器...................................................................12
2.3.1.4 皮膚感覺受器...................................................................12
2.3.2 大腦皮質肌肉共調性..........................................................13
第三章 研究方法.......................................................................................15
第一節 研究設計................................................................................15
第二節 研究對象................................................................................15
第三節 實驗流程................................................................................16
第四節 測試方法與資料收集............................................................17
3.4.1 抓握力量覺..........................................................................18
3.4.2 腕關節位置覺......................................................................20
3.4.3 共調性..................................................................................21
第五節 資料處理................................................................................23
3.5.1 位置覺與力量覺資料分析..................................................23
3.5.2 維持三十秒鐘力量穩定度與準確度計算..........................23
3.5.3 共調性計算..........................................................................24
第六節 統計分析................................................................................26
第四章 結果...............................................................................................27
4.1 受試者基本資料............................................................................27
4.2 不同強度下動作能力表現............................................................28
4.2.1 抓握力量覺表現..................................................................28
4.2.2 關節角度覺表現..................................................................28
4.3 以最佳強度分析............................................................................29
4.3.1 抓握力量與關節角度覺表現..............................................29
4.3.2 維持三十秒抓握力量覺表現..............................................29
4.3.3 維持三十秒抓握穩定度表現..............................................31
4.3.4 共調性分析..........................................................................32
4.3.5 腦波頻譜分析......................................................................33
第五章 討論.............................................................................................36
5.1 受試者............................................................................................36
5.2 不同強度電刺激的影響................................................................36
5.3 最佳強度電刺激下........................................................................37
5.3.1 電療當下的動作表現..........................................................37
5.3.2 維持三十秒的抓握力量表現..............................................37
5.3.3 共調性與頻譜分析..............................................................38
5.3.4 研究限制與未來研究之建議..............................................39
第六章 結論...............................................................................................41
參考文獻.....................................................................................................42
附錄.............................................................................................................47
1 受試者同意書...................................................................................47
圖目錄
圖 1-1 周邊電刺激誘發中樞神經系統可塑性示意圖 ................2
圖 1-2 隨機共振電刺激與傳統電刺激波型比較 .....................4
圖 3-1 實驗流程圖.......................................................................15
圖 3-2 實驗示意圖.....................................................................157
圖 3-3 抓握力量測試圖...............................................................19
圖 3-4 握力計...............................................................................20
圖 3-5 關節角度實驗圖...............................................................21
圖 3-6 關節角度計黏貼位置.......................................................21
圖 3-7 力量維持三十秒...............................................................23
圖 4-1 不同隨機共振電刺激強度下肌肉力量本體感覺之表現
................................................................................................28
圖 4-2 不同隨機共振電刺激強度下腕關節本體感覺之表現 ..29
圖 4-3 電療當下受試者動作表現...............................................30
圖 4-4 電療三十分鐘後受試者動作表現...................................31
圖 4-5 電療當下受試者動作穩定度表現...................................32
圖 4-6 電療三十分鐘後受試者動作表現...................................32
圖 4-7 無電療與電療當下 Beta 頻帶各頻道狀態.....................34
圖 4-8 無電療與電療當下 Gamma 頻帶各頻道狀態................34
圖 4-9 無電療與電療三十分鐘後 Beta 頻帶各頻道狀態.........35
圖 4-10 無電療與電療三十分鐘後 Gamma 頻帶各頻道狀態..35
表目錄
表 1 受試者基本資料..................................................................27
表 2 抓握力量與關節角度覺表現..............................................29
表 3 電療前與電療當下的皮質肌肉共調性..............................33
表 4 電療前與電療三十分鐘後皮質肌肉共調性......................33
參考文獻
1. Susan B O'Sullivan TJS, George Fulk. Physical Rehabilitation. 2014.
2. 行政院衛生署. 106 年死因統計結果分析. In: 行政院, ed. 行政院 106.
3. Pollock A, Baer G, Campbell P, et al. Physical rehabilitation approaches for the
recovery of function and mobility following stroke. The Cochrane database of
systematic reviews. 2014(4).
4. Mang C, Clair J, Collins DJEbr. Neuromuscular electrical stimulation has a
global effect on corticospinal excitability for leg muscles and a focused effect
for hand muscles. Exp Brain Res. 2011;209(3):355-363.
5. Shin HK, Cho SH, Jeon H-s, et al. Cortical effect and functional recovery by the
electromyography-triggered neuromuscular stimulation in chronic stroke
patients. Neurosci Lett. 2008;442(3):174-179.
6. Lai M-I, Pan L-L, Tsai M-W, Shih Y-F, Wei S-H, Chou L-WJTisr. Investigating
the effects of peripheral electrical stimulation on corticomuscular functional
connectivity stroke survivors. Top Stroke Rehabil. 2016;23(3):154-162.
7. Iliopoulos F, Nierhaus T, Villringer AJJon. Electrical noise modulates perception
of electrical pulses in humans: sensation enhancement via stochastic resonance.
J Neuroeng Rehabil. 2013;111(6):1238-1248.
8. Enders LR, Hur P, Johnson MJ, Seo NJJJon, rehabilitation. Remote vibrotactile
noise improves light touch sensation in stroke survivors’ fingertips via stochastic
resonance. J Neuroeng Rehabil. 2013;10(1):105.
9. Priplata AA, Patritti BL, Niemi JB, et al. Noise‐enhanced balance control in
patients with diabetes and patients with stroke. Ann Neurol. 2006;59(1):4-12.
10. Trenado C, Mendez-Balbuena I, Manjarrez E, et al. Enhanced corticomuscular
coherence by external stochastic noise. Front Hum Neurosci. 2014;8:325.
11. Schabrun SM, Ridding MC, Galea MP, Hodges PW, Chipchase LSJPO. Primary
sensory and motor cortex excitability are co-modulated in response to peripheral
electrical nerve stimulation. PLoS One. 2012;7(12):e51298.
12. Huang M, Davis L, Aine C, et al. MEG response to median nerve stimulation
correlates with recovery of sensory and motor function after stroke. Clin
Neurophysiol. 2004;115(4):820-833.
13. Sakamoto T, Porter LL, Asanuma HJBr. Long-lasting potentiation of synaptic
potentials in the motor cortex produced by stimulation of the sensory cortex in
the cat: a basis of motor learning. Brain Res. 1987;413(2):360-364.
14. Sakamoto T, Arissian K, Asanuma HJBr. Functional role of the sensory cortex in
learning motor skills in cats. Brain Res. 1989;503(2):258-264.55
15. Charlton CS, Ridding MC, Thompson PD, Miles TSJJotns. Prolonged peripheral
nerve stimulation induces persistent changes in excitability of human motor
cortex. J Neurol Sci. 2003;208(1-2):79-85.
16. Khaslavskaia S, Ladouceur M, Sinkjaer TJEbr. Increase in tibialis anterior motor
cortex excitability following repetitive electrical stimulation of the common
peroneal nerve. Exp Brain Res. 2002;145(3):309-315.
17. Kaelin‐Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LGJTJop.
Modulation of human corticomotor excitability by somatosensory input. J
Physiol. 2002;540(2):623-633.
18. Wu CW-H, van Gelderen P, Hanakawa T, Yaseen Z, Cohen LGJN. Enduring
representational plasticity after somatosensory stimulation. Neuroimage.
2005;27(4):872-884.
19. Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey LL, Lojovich JM, Carey
JRJEBR. Electrical stimulation driving functional improvements and cortical
changes in subjects with stroke. Exp Brain Res. 2004;154(4):450-460.
20. Ridding M, Brouwer B, Miles T, Pitcher J, Thompson PJEBR. Changes in
muscle responses to stimulation of the motor cortex induced by peripheral nerve
stimulation in human subjects. Exp Brain Res. 2000;131(1):135-143.
21. Lagerquist O, Mang CS, Collins DFJEbr. Changes in spinal but not cortical
excitability following combined electrical stimulation of the tibial nerve and
voluntary plantar-flexion. Exp Brain Res. 2012;222(1-2):41-53.
22. Chou L-W, Sung W-H, Luo H-J, Tsai M-W, Pan L-L, Li Y-CJ 物. The Effects of
Peripheral Electrical Stimulation on the Plastic Change in the Central Nervous
System: Literature Review for Stimulation Parameters. 物理治療 43 卷 1 期
2018;43(1):10-23.
23. Mang C, Lagerquist O, Collins DJEbr. Changes in corticospinal excitability
evoked by common peroneal nerve stimulation depend on stimulation frequency.
Exp Brain Res. 2010;203(1):11-20.
24. Conforto AB, Cohen LG, Dos Santos RL, Scaff M, Marie SKNJJon. Effects of
somatosensory stimulation on motor function in chronic cortico-subcortical
strokes. J Neurol Sci. 2007;254(3):333-339.
25. Andrews RK, Schabrun SM, Ridding MC, et al. The effect of electrical
stimulation on corticospinal excitability is dependent on application duration: a
same subject pre-post test design. J Neuroeng Rehabil. 2013;10(1):51.
26. Bergquist A, Clair J, Lagerquist O, Mang C, Okuma Y, Collins DJEjoap.
Neuromuscular electrical stimulation: implications of the electrically evoked
sensory volley. Eur J Appl Physiol. 2011;111(10):2409.
27. Lagerquist O, Collins DFJM, nerve. Stimulus pulse‐width influences H‐reflex56
recruitment but not Hmax/Mmax ratio. Muscle Nerve. 2008;37(4):483-489.
28. Onorato I, D'Alessandro G, Di Castro MA, et al. Noise enhances action potential
generation in mouse sensory neurons via stochastic resonance. PLoS One.
2016;11(8):e0160950.
29. Martínez L, Pérez T, Mirasso CR, Manjarrez EJJon. Stochastic resonance in the
motor system: effects of noise on the monosynaptic reflex pathway of the cat
spinal cord. J Neurophysiol. 2007;97(6):4007-4016.
30. Fallon JB, Morgan DLJJon. Fully tuneable stochastic resonance in cutaneous
receptors. J Neurophysiol. 2005;94(2):928-933.
31. Fallon JB, Carr RW, Morgan DLJJon. Stochastic resonance in muscle receptors.
J Neurophysiol. 2004;91(6):2429-2436.
32. Collins JJ, Priplata AA, Gravelle DC, et al. Noise-enhanced human sensorimotor
function. IEEE Eng Med Biol Mag. 2003;22(2):76-83.
33. Lipsitz LA, Lough M, Niemi J, et al. A shoe insole delivering subsensory
vibratory noise improves balance and gait in healthy elderly people. Archives of
physical medicine and rehabilitation. 2015;96(3):432-439.
34. Gravelle DC, Laughton CA, Dhruv NT, et al. Noise-enhanced balance control in
older adults. Neuroreport. 2002;13(15):1853-1856.
35. Galica AM, Kang HG, Priplata AA, et al. Subsensory vibrations to the feet
reduce gait variability in elderly fallers. Gait Posture. 2009;30(3):383-387.
36. Nobusako S, Osumi M, Matsuo A, et al. Stochastic resonance improves
visuomotor temporal integration in healthy young adults. PloS one.
2018;13(12):e0209382.
37. Seo NJ, Kosmopoulos ML, Enders LR, Hur PJFihn. Effect of remote sensory
noise on hand function post stroke. Frontiers in human neuroscience.
2014;8:934.
38. Stein J, Hughes R, D'andrea S, et al. Stochastic resonance stimulation for upper
limb rehabilitation poststroke. Am J Phys Med Rehabil. 2010;89(9):697-705.
39. Riemann BL, Lephart SMJJoat. The sensorimotor system, part II: the role of
proprioception in motor control and functional joint stability. Journal of athletic
training. 2002;37(1):80.
40. Riemann BL, Lephart SMJJoat. The sensorimotor system, part I: the physiologic
basis of functional joint stability. Journal of athletic training. 2002;37(1):71.
41. Schoffelen J-M, Oostenveld R, Fries PJS. Neuronal coherence as a mechanism
of effective corticospinal interaction. Science. 2005;308(5718):111-113.
42. Schnitzler A, Gross JJNrn. Normal and pathological oscillatory communication
in the brain. Nat Rev Neurosci. 2005;6(4):285.
43. Gallet C, Julien CJBSP, Control. The significance threshold for coherence when57
using the Welch's periodogram method: effect of overlapping segments.
Biomedical Signal Processing and Control. 2011;6(4):405-409.
44. Krause V, Wach C, Südmeyer M, Ferrea S, Schnitzler A, Pollok BJFihn.
Cortico-muscular coupling and motor performance are modulated by 20 Hz
transcranial alternating current stimulation (tACS) in Parkinson’s disease.
Frontiers in human neuroscience. 2014;7:928.
45. Kristeva R, Patino L, Omlor WJN. Beta-range cortical motor spectral power and
corticomuscular coherence as a mechanism for effective corticospinal interaction
during steady-state motor output. Neuroimage. 2007;36(3):785-792.
46. Kilner JM, Baker SN, Salenius S, Hari R, Lemon RNJJoN. Human cortical
muscle coherence is directly related to specific motor parameters. J Neurosci.
2000;20(23):8838-8845.
47. Omlor W, Patino L, Hepp-Reymond M-C, Kristeva RJN. Gamma-range
corticomuscular coherence during dynamic force output. Neuroimage.
2007;34(3):1191-1198.
48. Larsen LH, Zibrandtsen IC, Wienecke T, et al. Corticomuscular coherence in the
acute and subacute phase after stroke. Clin Neurophysiol.
2017;128(11):2217-2226.
49. Rossiter HE, Eaves C, Davis E, et al. Changes in the location of
cortico-muscular coherence following stroke. Neuroimage Clin. 2013;2:50-55.
50. Fang Y, Daly JJ, Sun J, et al. Functional corticomuscular connection during
reaching is weakened following stroke. Clin Neurophysiol.
2009;120(5):994-1002.
51. Braun C, Staudt M, Schmitt C, Preissl H, Birbaumer N, Gerloff CJEJoN.
Crossed cortico‐spinal motor control after capsular stroke. Eur J Neurosci.
2007;25(9):2935-2945.
52. Mima T, Toma K, Koshy B, Hallett MJS. Coherence between cortical and
muscular activities after subcortical stroke. Stroke. 2001;32(11):2597-2601.
53. Belardinelli P, Laer L, Ortiz E, Braun C, Gharabaghi AJNC. Plasticity of
premotor cortico-muscular coherence in severely impaired stroke patients with
hand paralysis. Neuroimage Clin. 2017;14:726-733.
54. Severini G, Delahunt EJG, posture. Effect of noise stimulation below and above
sensory threshold on postural sway during a mildly challenging balance task.
Gait Posture. 2018;63:27-32.
55. Ladda AM, Pfannmoeller JP, Kalisch T, et al. Effects of combining 2 weeks of
passive sensory stimulation with active hand motor training in healthy adults.
PLoS One. 2014;9(1):e84402.
56. Celnik P, Hummel F, Harris-Love M, Wolk R, Cohen LGJAopm, rehabilitation.58
Somatosensory stimulation enhances the effects of training functional hand tasks
in patients with chronic stroke. Arch Phys Med Rehabil. 2007;88(11):1369-1376.
57. Pérez M, Lucia A, Rivero J-L, et al. Effects of transcutaneous short-term
electrical stimulation on M. vastus lateralis characteristics of healthy young men.
Pflugers Arch. 2002;443(5-6):866-874.
58. Rochester L, Barron M, Chandler C, Sutton R, Miller S, Johnson MJSC.
Influence of electrical stimulation of the tibialis anterior muscle in paraplegic
subjects. 2. Morphological and histochemical properties. Paraplegia.
1995;33(9):514.
59. Lattari E, Velasques B, Paes F, et al. Corticomuscular coherence behavior in fine
motor control of force: a critical review. Rev Neurol. 2010;51(10):610-623.
60. Brown P, Salenius S, Rothwell JC, Hari RJJon. Cortical correlate of the Piper
rhythm in humans. J Neurophysiol. 1998;80(6):2911-2917.
61. Omlor W, Patino L, Hepp-Reymond MC, Kristeva R. Gamma-range
corticomuscular coherence during dynamic force output. NeuroImage.
2007;34(3):1191-1198.
電子全文 電子全文(網際網路公開日期:20240828)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔