跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) GMT+8:2024/09/18 10:53
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

 
twitterline
Author:張祐豪
Author (Eng.):Yu-Hao Chang
Title:神經 HSF-1 非自主調控腸道 DAF-16 活性與線蟲個體壽命的分子機制
Title (Eng.):Cell-nonautonomous regulation of intestinal DAF-16 activities and longevity by neuronal HSF-1
Advisor:金翠庭金翠庭 author reflink
advisor (eng):Tsui-Ting Ching
degree:Master
Institution:國立陽明大學
Department:生物藥學研究所
Narrow Field:生命科學學門
Detailed Field:生物科技學類
Types of papers:Academic thesis/ dissertation
Publication Year:2019
Graduated Academic Year:107
language:Chinese
number of pages:103
keyword (chi):細胞非自主調控
keyword (eng):Cell-nonautonomousHSF-1DAF-16
Ncl record status:
  • Cited Cited :0
  • HitsHits:130
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:0
  • gshot_favorites title msgFav:0
動物對抗環境及生理壓力的能力與能否長壽有很大的關係,The Insulin/IGF-1-like signaling(IIS)pathway是目前已知動物對抗壓力和延長壽命相關的重要機制。線蟲中IIS訊息傳遞途徑可以負調控DAF-16/FOXO轉錄因子的活性,當IIS的訊息變弱時,會引發DAF-16/FOXO活化入核並延長壽命。
IIS另一個重要的下游因子是熱休克轉錄因子HSF-1, HSF-1可以調控壽命以及參與熱休克反應。先前研究已知HSF-1過度表現時會延長線蟲壽命,而當RNAi knockdown時則壽命縮短,且和DAF-16一樣,在IIS途徑中是需要HSF-1的活化才能促使壽命延長。先前研究指出,只需在神經中過度表現HSF-1就足以達到壽命延長,而過程中需要活化腸道中的DAF-16,代表著神經細胞中的HSF-1可能以非細胞自我調控(Cell-nonautonomous Regulation)的方式影響腸道中的DAF-16。而我們實驗室也證實當在神經過度表現HSF-1時,的確會造成腸道的DAF-16進核並且活性上升。我們接下來希望能進一步了解這個現象是需要所有的神經參與,或是只需要特定的神經細胞中的HSF-1活化即可造成腸道DAF-16進核,進而使線蟲壽命延長。
為了尋找哪一類神經HSF-1參與調控腸道DAF-16,我們建構出特定神經過度表現HSF-1的線蟲,觀察是否影響線蟲壽命與腸道DAF-16的進出核。我們發現,神經HSF-1 RNAi knockdown時,不會影響線蟲壽命。然而,當Cholinergic神經過度表現HSF-1時,足以延長線蟲壽命,但不會造成腸道DAF-16的進核。此外,需要分泌神經傳導物質與神經肽的神經HSF-1共同參與下,才能造成腸道DAF-16的進核。因此,調控腸道DAF-16的進核與壽命的機制為兩條獨立的路徑。未來會進一步探討調控腸道DAF-16的神經是哪些並且是如何溝通。
Tissue-tissue communications are integral to organismal aging, orchestrating a body-wide aging process. The insulin/IGF-1-like signaling pathway (IIS) is known to have a conserved role in aging. IIS negatively regulates the activity of the FOXO transcription factor DAF-16 and the expression of its downstream target genes. In particular, DAF-16/FOXO activity in the intestinal cells is required for the lifespan extension of the IIS pathway mutants.
Heat shock factor 1 (HSF1) is an evolutionarily highly conserved transcription factor that could prevent cellular degeneration and increase thermal tolerance by regulating the expression of the heat shock responsive genes. HSF-1 is also a master regulator in aging process. It is known that HSF-1 and DAF-16/FOXO work together to enhance lifespan extension in response to reduced DAF-2 insulin-like signaling. Previous studies have also indicated that neural hsf-1 functions cell non-autonomously to regulate longevity via activation of intestinal daf-16. However, the molecular mechanisms by which neuronal HSF-1 modulates intestinal DAF-16 are mostly unclear.
Here, we further identified the key neurons that mediate the crosstalk between neural HSF-1 and intestinal DAF-16 in the regulation of longevity and stress responses. First, we confirmed that nuclear translocation of intestinal DAF-16 is activated in response to neural HSF-1 overexpression, and eventually extends lifespan and increases the ability of stress resistance. Moreover, we found that knockdown hsf-1 in neurons does not shorten the longevity phenotypes. However, cholinergic neural overexpression of HSF-1 is sufficient to promote longevity and also requires the activities of DAF-16, whereas it does not trigger nuclear translocation of intestinal DAF-16. In addition, it needs more than two kinds of neurons overexpressing HSF-1 to activate the nuclear translocation of intestinal DAF-16. Thus, nuclear translocation of intestinal DAF-16 and age regulation are separate pathways. Further investigation is needed to research which neurons communicate with DAF-16 in the intestine.
目 錄
摘要……………………………………………………………….......................……….i
ABSTRACT……...……………………………………………………........................ii
目錄…………………………………………………………………….........................iv
圖目錄………………………………………………………………......................…….v
表目錄………………………………………………………………......................…...ix
縮寫列表…………………………………………………………......................………x
緒論………………………………………………………….....................….…………..1
材料方法……………………………………………………......................……………4
實驗結果………………………………………………………….....................……..13
討論……………………………………………………………….....................……...27
圖表…………………………………………………………….....................………...32
附表……………………………………………………….....................……………...94
參考文獻…………………………………………………………….....................…..99
附錄…………………………………………………………...................…………...103

圖 目 錄
Figure 1-1. rgef-1p::hsf-1::sl2::mCherry ; daf-16::gfp 突變株的螢光
照相結果......................................................................32
Figure 1-2. 神經過度表現HSF-1會促使腸道DAF-16進核…….....…….33
Figure 1-3. 神經過度表現HSF-1會活化DAF-16的活性……………..…..34
Figure 1-4. 神經過度表現HSF-1足以延長線蟲壽命…………….…….…..35
Figure 1-5. 神經過度表現HSF-1在基因插入特定染色體處理
(Integration)後仍可以延長線蟲壽命…..…………....……..36
Figure 1-6. 神經過度表現HSF-1增加線蟲的壓力抵抗能力………...…..37
Figure 2-1. unc-25p::hsf-1::sl2::YFP; daf-16::gfp 突變株表現的神經
細胞分佈.....................................................................38
Figure 2-2. unc-25p::hsf-1::sl2::YFP; daf-16::gfp 突變株的螢光照相
結果……......................................................................39
Figure 2-3. GABAergic神經過度表現HSF-1不會造成腸道DAF-16進
核...............................................................................40
Figure 2-4. unc-25p::hsf-1::sl2::YFP; daf-16::gfp突變株的腸道DAF-
16核質比定量結果……………………………..............…….......41
Figure 2-5. GABAergic神經過度表現HSF-1不會影響線蟲壽命….…..42
Figure 3-1. eat-4p::hsf-1::sl2::mCherry; daf-16::gfp 突變株表現的神
經細胞分佈…...…………………………………..........………….….43
Figure 3-2. eat-4p::hsf-1::sl2::mCherry; daf-16::gfp 突變株的螢光
照相結果.....................................................................44
Figure 3-3. Glutamatergic神經過度表現HSF-1不會造成腸道DAF-16
進核….....................................................................….45
Figure 3-4. eat-4p::hsf-1::sl2::mCherry; daf-16::gfp突變株的腸道
DAF-16核質比定量結果…………………………….....…………..46
Figure 3-5. Glutamatergic神經過度表現HSF-1不會影響線蟲壽命...47
Figure 4-1. tph-1p::hsf-1::sl2::mCherry; daf-16::gfp 突變株表現的神
經細胞分佈……………..………………………………........…...…...48
Figure 4-2. tph-1p::hsf-1::sl2::mCherry; daf-16::gfp 突變株的螢光
照相結果…...................................................................49
Figure 4-3. Serotonergic神經過度表現HSF-1不會造成腸道DAF-16進
核…….......................................................................…50
Figure 4-4. tph-1p::hsf-1::sl2::mCherry; daf-16::gfp突變株的腸道
DAF-16核質比定量結果………………………………….…...……51
Figure 4-5. Serotonergic神經過度表現HSF-1不會影響線蟲壽命.....52
Figure 5-1. tdc-1p::hsf-1::sl2::mCherry; daf-16::gfp 突變株表現的神
經細胞分佈…………………………….....……..........………………53
Figure 5-2. tdc-1p::hsf-1::sl2::mCherry; daf-16::gfp 突變株的螢光照
相結果.........................................................................54
Figure 5-3. Tyraminergic/ Octopaminergic神經過度表現HSF-1不會
造成腸道DAF-16進核………………………………………….......55
Figure 5-4. tdc-1p::hsf-1::sl2::mCherry; daf-16::gfp突變株的腸道
DAF-16核質比定量結果…………………………...…........…….56
Figure 5-5. Tyraminergic/ Octopaminergic神經過度表現HSF-1不會
影響線蟲壽命……….............……….....…………………………..57
Figure 6-1. dat-1p::hsf-1::sl2::mCherry; daf-16::gfp 突變株表現的神
經細胞分佈……………………………………................……...….58
Figure 6-2. dat-1p::hsf-1::sl2::mCherry; daf-16::gfp 突變株的螢光照
相結果….....................................................................59
Figure 6-3. Dopaminergic神經過度表現HSF-1不會造成腸道DAF-16
進核…......................................................................…60
Figure 6-4. dat-1p::hsf-1::sl2::mCherry; daf-16::gfp突變株的腸道
DAF-16核質比定量結果……………………....…………………..61
Figure 6-5. Dopaminergic神經過度表現HSF-1不會延長線蟲壽命….62
Figure 7-1. unc-17p::hsf-1::sl2::mCherry; daf-16::gfp 突變株表現的
神經細胞分佈……………………………………………….....………..63
Figure 7-2. Cholinergic神經過度表現HSF-1不會造成腸道DAF-16進
核……..........................................................................64
Figure 7-3. unc-17p::hsf-1::sl2::mCherry; daf-16::gfp突變株的腸道
DAF-16核質比定量結果……………………………………………..65
Figure 7-4. Cholinergic神經過度表現HSF-1不會影響線蟲的壓力抵抗
能力….........................................................................66
Figure 7-5. Cholinergic神經過度表現HSF-1會延長線蟲壽命….....….67
Figure 7-6. acr-2p::hsf-1::sl2::CFP; daf-16::gfp 突變株表現的神經細
胞分佈…......................................................................68
Figure 7-7. acr-2p::hsf-1::sl2::CFP; daf-16::gfp 突變株能有效表現
CFP的基因片段…….........………………………………………..…69
Figure 7-8. acr-2p::hsf-1::sl2::CFP; daf-16::gfp 突變株的螢光照相結
果…….......................................................................….70
Figure 7-9. Cholinergic神經過度表現HSF-1(acr-2p::hsf-1 O.E.)不
會造成腸道DAF-16進核………………………………………..……71
Figure 7-10. acr-2p::hsf-1::sl2::CFP; daf-16::gfp突變株的腸道DAF-
16核質比定量結果……………………………………………….….72
Figure 7-11. Cholinergic神經過度表現HSF-1(acr-2p::hsf-1 O.E.)足
以延長線蟲壽命..……………………………………….…………....73
Figure 8. 神經過度表現HSF-1需要DAF-16來延長線蟲壽命….…………74
Figure 9. Cholinergic神經過度表現HSF-1足以延長線蟲壽命並且需要
DAF-16的活化…………………………………………………………....75
Figure 10-1. unc-17p::hsf-1 O.E.; eat-4p::hsf-1 O.E.; tph-1p::hsf-1
O.E.; tdc-1p::hsf-1 O.E.; dat-1p::hsf-1 O.E.; unc-
25p::hsf-1 O.E.; daf-16::gfp 突變株表現的神經細胞分
佈……………........................………………………………………76
Figure 10-2. 分泌神經傳導物質的神經中過度表現HSF-1會造成腸道
DAF-16明顯進核…..…………………………………………………77
Figure 11-1. 神經增強hsf-1 RNAi knockdown會縮短線蟲壽命……....78
Figure 11-2. hsf-1 RNAi能有效降低hsf-1 mRNA的表現量…………..…79
Figure 12. GABAergic神經hsf-1 knockdown不會影響線蟲壽命…....80
Figure 13. Glutamatergic神經hsf-1 knockdown不會影響線蟲壽命..81
Figure 14. Dopaminergic神經hsf-1 knockdown不會影響線蟲壽命..82
Figure 15. Cholinergic神經hsf-1 knockdown不會影響線蟲壽命…...83
Figure 16-1. Serotonergic 神經RNAi knockdown突變株表現的神經細
胞分佈.......................................................................84
Figure 16-2. Serotonergic神經hsf-1 knockdown不會影響線蟲壽
命..............................................................................85
Figure 17-1. Tyraminergic/ Octopaminergic 神經RNAi knockdown突
變株表現的神經細胞分佈………………..............…………....86
Figure 17-2. Tyraminergic/ Octopaminergic神經hsf-1 knockdown不
會影響線蟲壽命………….....……………………………………....87
Figure 18-1. 神經RNAi knockdown 突變株給予rab-3 RNAi後的照相結
果…...........................................................................88
Figure 18-2. 神經RNAi knockdown突變株具有RNAi knockdown的效
果……........................................................................89
Figure 18-3. 神經hsf-1 RNAi knockdown不會影響線蟲壽命…………90
Figure 19. 調控腸道DAF-16進核與長壽的機制為兩條獨立的路徑.…..91
Figure 20. 神經增強RNAi knockdown突變株會影響肌肉組織的功
能.................................................................................92
Figure 21. 腸道hsf-1 RNAi knockdown會縮短線蟲壽命…………...…..93

表 目 錄
Table 1. 神經細胞分類與相對應的特定神經啟動子………….…..…........94
Table 2. 過度表現HSF-1於氧化壓力及壽命分析的實驗記錄……........95
Table 3. HSF-1、DAF-16 Knockdown於壽命分析的實驗記錄…....…97
1. Lithgow, G.J. and G.A. Walker, Stress resistance as a determinate of C. elegans lifespan. Mechanisms of ageing and development, 2002. 123(7): p. 765-771.
2. Kenyon, C., et al., A C. elegans mutant that lives twice as long as wild type. Nature, 1993. 366(6454): p. 461.
3. Bluher, M., B.B. Kahn, and C.R. Kahn, Extended longevity in mice lacking the insulin receptor in adipose tissue. Science, 2003. 299(5606): p. 572-574.
4. Tatar, M., et al., A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science, 2001. 292(5514): p. 107-110.
5. Suh, Y., et al., Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proceedings of the National Academy of Sciences, 2008. 105(9): p. 3438-3442.
6. Kimura, K.D., et al., daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science, 1997. 277(5328): p. 942-946.
7. Pierce, S.B., et al., Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes & development, 2001. 15(6): p. 672-686.
8. Malone, E.A., T. Inoue, and J.H. Thomas, Genetic Analysis of the Roles of daf28 and age-1 in Regulating Caenorhabditis elegans Dauer Formation. Genetics, 1996. 143(3): p. 1193-1205.
9. Carter, C.S., M.M. Ramsey, and W.E. Sonntag, A critical analysis of the role of growth hormone and IGF-1 in aging and lifespan. TRENDS in Genetics, 2002. 18(6): p. 295-301.
10. Paradis, S. and G. Ruvkun, Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes & development, 1998. 12(16): p. 2488-2498.
11. Apfeld, J. and C. Kenyon, Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell, 1998. 95(2): p. 199-210.
12. Murphy, C.T., et al., Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature, 2003. 424(6946): p. 277.
13. Kenyon, C.J., The genetics of ageing. Nature, 2010. 464(7288): p. 504.
14. Libina, N., J.R. Berman, and C. Kenyon, Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell, 2003. 115(4): p. 489-502.
15. Hartl, F.U., Molecular chaperones in cellular protein folding. Nature, 1996. 381(6583): p. 571.
16. Jolly, C. and R.I. Morimoto, Role of the heat shock response and molecular chaperones in oncogenesis and cell death. Journal of the National Cancer Institute, 2000. 92(19): p. 1564-1572.
17. Garigan, D., et al., Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics, 2002. 161(3): p. 1101-1112.
18. Pirkkala, L., P. Nykanen, and L. Sistonen, Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. The FASEB Journal, 2001. 15(7): p. 1118-1131.
19. Prahlad, V., T. Cornelius, and R.I. Morimoto, Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science, 2008. 320(5877): p. 811-814.
20. Finkel, T. and N.J. Holbrook, Oxidants, oxidative stress and the biology of ageing. Nature, 2000. 408(6809): p. 239.
21. Hsu, A.-L., C.T. Murphy, and C. Kenyon, Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science, 2003. 300(5622): p. 1142-1145.
22. Douglas, P.M., et al., Heterotypic signals from neural HSF-1 separate thermotolerance from longevity. Cell reports, 2015. 12(7): p. 1196-1204.
23. Baird, N.A., et al., HSF-1–mediated cytoskeletal integrity determines thermotolerance and life span. Science, 2014. 346(6207): p. 360-363.
24. Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p. 71-94.
25. Chiang, W.-C., et al., HSF-1 regulators DDL-1/2 link insulin-like signaling to heat-shock responses and modulation of longevity. Cell, 2012. 148(1-2): p. 322-334.
26. Lascano, R., et al., Paraquat: an oxidative stress inducer, in Herbicides-Properties, Synthesis and Control of Weeds. 2012, InTech.
27. Serrano-Saiz, E., et al., A neurotransmitter atlas of the Caenorhabditis elegans male nervous system reveals sexually dimorphic neurotransmitter usage. Genetics, 2017. 206(3): p. 1251-1269.
28. Ruvinsky, I. and G. Ruvkun, Functional tests of enhancer conservation between distantly related species. Development, 2003. 130(21): p. 5133-5142.
29. Serrano-Saiz, E., et al., Modular control of glutamatergic neuronal identity in C. elegans by distinct homeodomain proteins. Cell, 2013. 155(3): p. 659-673.
30. Chang, A.J., et al., A distributed chemosensory circuit for oxygen preference in C. elegans. PLoS biology, 2006. 4(9): p. e274.
31. Sze, J.Y., et al., The C. elegans POU-domain transcription factor UNC-86 regulates the tph-1 tryptophan hydroxylase gene and neurite outgrowth in specific serotonergic neurons. Development, 2002. 129(16): p. 3901-3911.
32. Pirri, J.K., D. Rayes, and M.J. Alkema, A change in the ion selectivity of ligand-gated ion channels provides a mechanism to switch behavior. PLoS biology, 2015. 13(9): p. e1002238.
33. Doitsidou, M., et al., A Caenorhabditis elegans Zinc Finger Transcription Factor, ztf-6, Required for the Specification of a Dopamine Neuron-Producing Lineage. G3: Genes, Genomes, Genetics, 2018. 8(1): p. 17-26.
34. Bessa, C., P. Maciel, and A.J. Rodrigues, Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders. Molecular neurobiology, 2013. 48(3): p. 465-489.
35. Jospin, M., et al., A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans. PLoS biology, 2009. 7(12): p. e1000265.
36. Pereira, L., et al., A cellular and regulatory map of the cholinergic nervous system of C. elegans. Elife, 2015. 4: p. e12432.
37. Firnhaber, C. and M. Hammarlund, Neuron-specific feeding RNAi in C. elegans and its use in a screen for essential genes required for GABA neuron function. PLoS genetics, 2013. 9(11): p. e1003921.
38. Akay, A., P. Sarkies, and E.A. Miska, E. coli OxyS non-coding RNA does not trigger RNAi in C. elegans. Scientific reports, 2015. 5: p. 9597.
39. Tabara, H., et al., The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell, 1999. 99(2): p. 123-132.
40. Nonet, M.L., et al., Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. Journal of Neuroscience, 1997. 17(21): p. 8061-8073.
41. Henderson, S.T. and T.E. Johnson, daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Current Biology, 2001. 11(24): p. 1975-1980.
42. Kondo, M., et al., The p38 signal transduction pathway participates in the oxidative stress-mediated translocation of DAF-16 to Caenorhabditis elegans nuclei. Mechanisms of ageing and development, 2005. 126(6-7): p. 642-647.
43. Kondo, M., et al., Effect of oxidative stress on translocation of DAF-16 in oxygen-sensitive mutants, mev-1 and gas-1 of Caenorhabditis elegans. Mechanisms of ageing and development, 2005. 126(6-7): p. 637-641.
44. Sun, X., W.-D. Chen, and Y.-D. Wang, DAF-16/FOXO transcription factor in aging and longevity. Frontiers in pharmacology, 2017. 8: p. 548.
45. Chen, A.T.Y., et al., Effects of C aenorhabditis elegans sgk‐1 mutations on lifespan, stress resistance, and DAF‐16/F ox O regulation. Aging cell, 2013. 12(5): p. 932-940.
46. Wang, Y. and H.A. Tissenbaum, Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mechanisms of ageing and development, 2006. 127(1): p. 48-56.
47. Takahashi, Y., et al., Asymmetric arginine dimethylation determines life span in C. elegans by regulating forkhead transcription factor DAF-16. Cell metabolism, 2011. 13(5): p. 505-516.
48. Bansal, A., et al., Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan. Longevity & healthspan, 2014. 3(1): p. 5.
49. Tatum, M.C., et al., Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase. Current Biology, 2015. 25(2): p. 163-174.
50. Berendzen, K.M., et al., Neuroendocrine coordination of mitochondrial stress signaling and proteostasis. Cell, 2016. 166(6): p. 1553-1563. e10.
Link to school's url:Link url
Link record message
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
None related journal articles
 
1. SAM-dependent Methylation in the Regulation of HLH-30/TFEB Activity
2. The Relationships among Workplace Negative Acts and Career Persistence, Intent to Stay of Newly Employed Nurses
3. The role of YTHDF3, a RNA m6A modification reader, in EGFR-TKIs resistance of lung adenocarcinoma
4. Characterization of Kinesin-1 on regulating focal adhesions and mitochondria for muscle regeneration
5. Identification of Serum Oxylipins Associated with Development of Coronary Artery Disease – A Nested Case-Control Study
6. The lived experience of hospice palliative homecare Nurses
7. Investigate the Effects of Microbiota Modulation via Prebiotic and Synbiotic on Alzheimer’s Disease Mouse Model
8. Accurately Track Indoor Position in Medical Institutions by Machine Learning
9. Difference in the Pathological Mechanisms of Intermittent Hypoxia-Induced Cognitive Impairments in Normotensive and Hypertensive Rat Strains
10. Inhibition of soluble epoxide hydrolase regulates microglia polarization and improves neurological outcomes in a rat model of ischemic stroke
11. The Role of Autonomic Nervous System in Insomnia Subtypes
12. Effects of Environmental Factors on Circadian Blood Pressure Profile, Cardiovascular Autonomic Function and Sleep Pattern in Spontaneously Hypertensive Rats
13. Evaluate the radiation enhancement effect of nanoparticles in cell using Monte Carlo simulation
14. Prognostic significance of computed tomography-based body composition analysis in patients with locally advanced cervical cancer
15. Functional and structural components of the rodent salience network
 
system icon system icon