|
1. Lithgow, G.J. and G.A. Walker, Stress resistance as a determinate of C. elegans lifespan. Mechanisms of ageing and development, 2002. 123(7): p. 765-771. 2. Kenyon, C., et al., A C. elegans mutant that lives twice as long as wild type. Nature, 1993. 366(6454): p. 461. 3. Bluher, M., B.B. Kahn, and C.R. Kahn, Extended longevity in mice lacking the insulin receptor in adipose tissue. Science, 2003. 299(5606): p. 572-574. 4. Tatar, M., et al., A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science, 2001. 292(5514): p. 107-110. 5. Suh, Y., et al., Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proceedings of the National Academy of Sciences, 2008. 105(9): p. 3438-3442. 6. Kimura, K.D., et al., daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science, 1997. 277(5328): p. 942-946. 7. Pierce, S.B., et al., Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes & development, 2001. 15(6): p. 672-686. 8. Malone, E.A., T. Inoue, and J.H. Thomas, Genetic Analysis of the Roles of daf28 and age-1 in Regulating Caenorhabditis elegans Dauer Formation. Genetics, 1996. 143(3): p. 1193-1205. 9. Carter, C.S., M.M. Ramsey, and W.E. Sonntag, A critical analysis of the role of growth hormone and IGF-1 in aging and lifespan. TRENDS in Genetics, 2002. 18(6): p. 295-301. 10. Paradis, S. and G. Ruvkun, Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes & development, 1998. 12(16): p. 2488-2498. 11. Apfeld, J. and C. Kenyon, Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell, 1998. 95(2): p. 199-210. 12. Murphy, C.T., et al., Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature, 2003. 424(6946): p. 277. 13. Kenyon, C.J., The genetics of ageing. Nature, 2010. 464(7288): p. 504. 14. Libina, N., J.R. Berman, and C. Kenyon, Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell, 2003. 115(4): p. 489-502. 15. Hartl, F.U., Molecular chaperones in cellular protein folding. Nature, 1996. 381(6583): p. 571. 16. Jolly, C. and R.I. Morimoto, Role of the heat shock response and molecular chaperones in oncogenesis and cell death. Journal of the National Cancer Institute, 2000. 92(19): p. 1564-1572. 17. Garigan, D., et al., Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics, 2002. 161(3): p. 1101-1112. 18. Pirkkala, L., P. Nykanen, and L. Sistonen, Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. The FASEB Journal, 2001. 15(7): p. 1118-1131. 19. Prahlad, V., T. Cornelius, and R.I. Morimoto, Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science, 2008. 320(5877): p. 811-814. 20. Finkel, T. and N.J. Holbrook, Oxidants, oxidative stress and the biology of ageing. Nature, 2000. 408(6809): p. 239. 21. Hsu, A.-L., C.T. Murphy, and C. Kenyon, Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science, 2003. 300(5622): p. 1142-1145. 22. Douglas, P.M., et al., Heterotypic signals from neural HSF-1 separate thermotolerance from longevity. Cell reports, 2015. 12(7): p. 1196-1204. 23. Baird, N.A., et al., HSF-1–mediated cytoskeletal integrity determines thermotolerance and life span. Science, 2014. 346(6207): p. 360-363. 24. Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p. 71-94. 25. Chiang, W.-C., et al., HSF-1 regulators DDL-1/2 link insulin-like signaling to heat-shock responses and modulation of longevity. Cell, 2012. 148(1-2): p. 322-334. 26. Lascano, R., et al., Paraquat: an oxidative stress inducer, in Herbicides-Properties, Synthesis and Control of Weeds. 2012, InTech. 27. Serrano-Saiz, E., et al., A neurotransmitter atlas of the Caenorhabditis elegans male nervous system reveals sexually dimorphic neurotransmitter usage. Genetics, 2017. 206(3): p. 1251-1269. 28. Ruvinsky, I. and G. Ruvkun, Functional tests of enhancer conservation between distantly related species. Development, 2003. 130(21): p. 5133-5142. 29. Serrano-Saiz, E., et al., Modular control of glutamatergic neuronal identity in C. elegans by distinct homeodomain proteins. Cell, 2013. 155(3): p. 659-673. 30. Chang, A.J., et al., A distributed chemosensory circuit for oxygen preference in C. elegans. PLoS biology, 2006. 4(9): p. e274. 31. Sze, J.Y., et al., The C. elegans POU-domain transcription factor UNC-86 regulates the tph-1 tryptophan hydroxylase gene and neurite outgrowth in specific serotonergic neurons. Development, 2002. 129(16): p. 3901-3911. 32. Pirri, J.K., D. Rayes, and M.J. Alkema, A change in the ion selectivity of ligand-gated ion channels provides a mechanism to switch behavior. PLoS biology, 2015. 13(9): p. e1002238. 33. Doitsidou, M., et al., A Caenorhabditis elegans Zinc Finger Transcription Factor, ztf-6, Required for the Specification of a Dopamine Neuron-Producing Lineage. G3: Genes, Genomes, Genetics, 2018. 8(1): p. 17-26. 34. Bessa, C., P. Maciel, and A.J. Rodrigues, Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders. Molecular neurobiology, 2013. 48(3): p. 465-489. 35. Jospin, M., et al., A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans. PLoS biology, 2009. 7(12): p. e1000265. 36. Pereira, L., et al., A cellular and regulatory map of the cholinergic nervous system of C. elegans. Elife, 2015. 4: p. e12432. 37. Firnhaber, C. and M. Hammarlund, Neuron-specific feeding RNAi in C. elegans and its use in a screen for essential genes required for GABA neuron function. PLoS genetics, 2013. 9(11): p. e1003921. 38. Akay, A., P. Sarkies, and E.A. Miska, E. coli OxyS non-coding RNA does not trigger RNAi in C. elegans. Scientific reports, 2015. 5: p. 9597. 39. Tabara, H., et al., The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell, 1999. 99(2): p. 123-132. 40. Nonet, M.L., et al., Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. Journal of Neuroscience, 1997. 17(21): p. 8061-8073. 41. Henderson, S.T. and T.E. Johnson, daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Current Biology, 2001. 11(24): p. 1975-1980. 42. Kondo, M., et al., The p38 signal transduction pathway participates in the oxidative stress-mediated translocation of DAF-16 to Caenorhabditis elegans nuclei. Mechanisms of ageing and development, 2005. 126(6-7): p. 642-647. 43. Kondo, M., et al., Effect of oxidative stress on translocation of DAF-16 in oxygen-sensitive mutants, mev-1 and gas-1 of Caenorhabditis elegans. Mechanisms of ageing and development, 2005. 126(6-7): p. 637-641. 44. Sun, X., W.-D. Chen, and Y.-D. Wang, DAF-16/FOXO transcription factor in aging and longevity. Frontiers in pharmacology, 2017. 8: p. 548. 45. Chen, A.T.Y., et al., Effects of C aenorhabditis elegans sgk‐1 mutations on lifespan, stress resistance, and DAF‐16/F ox O regulation. Aging cell, 2013. 12(5): p. 932-940. 46. Wang, Y. and H.A. Tissenbaum, Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mechanisms of ageing and development, 2006. 127(1): p. 48-56. 47. Takahashi, Y., et al., Asymmetric arginine dimethylation determines life span in C. elegans by regulating forkhead transcription factor DAF-16. Cell metabolism, 2011. 13(5): p. 505-516. 48. Bansal, A., et al., Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan. Longevity & healthspan, 2014. 3(1): p. 5. 49. Tatum, M.C., et al., Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase. Current Biology, 2015. 25(2): p. 163-174. 50. Berendzen, K.M., et al., Neuroendocrine coordination of mitochondrial stress signaling and proteostasis. Cell, 2016. 166(6): p. 1553-1563. e10.
|