跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 07:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:區健康
研究生(外文):Kin-Hong Ao
論文名稱:研究宿主細胞鈣蛋白酶提升腸病毒71型複製的機制
論文名稱(外文):Mechanistic study of enterovirus 71 replication promoted by host cell calpains
指導教授:龔思豪
指導教授(外文):Szu-Hao Kung
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學生物技術暨檢驗學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:53
中文關鍵詞:鈣蛋白酶腸病毒71型複製
外文關鍵詞:CalpainErkenterovirusrelpication
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
腸病毒 (EV)由脊髓灰質炎病毒 (poliovirus),柯薩奇病毒 (Coxsackievirus),伊科病毒 (Echovirus)和鼻病毒 (Rhinovirus)屬於小核糖核酸病毒科的物種組成。其中,EV71被認為是與輕微的手足口病和幼兒嚴重神經系統表現相關的最致病的病原體之一。宿主細胞鈣 (Ca2+)信號越來越被認為在包括腸道病毒在內的一系列病毒的病毒複製中起重要作用。事實上,一些EV物種的研究表明,EV感染導致細胞內Ca2 +升高是病毒複製所必需的。而在EV71感染隨後的Ca2+升高與鈣蛋白酶-1和-2的活化有關,它們都屬於哺乳動物中普遍表達的Ca2 +依賴性非溶酶體半胱氨酸蛋白酶家族。研究表明,鈣蛋白酶參與柯薩奇病毒B3和伊科病毒1型複製中的病毒基因組複製和病毒蛋白質合成,並且鈣蛋白酶在病毒複製的晚期介導EV71所誘導的細胞凋亡。然而,鈣蛋白酶是否參與EV71複製的早期階段並且其潛在機制尚不清楚。因此,在本研究中,我們研究了鈣蛋白酶在EV71複製週期中的作用機制。結果顯示,在EV71感染期間,當處理鈣蛋白酶-1 / -2抑製劑MDL28170或鈣蛋白酶1/2 shRNA沉默時,病毒蛋白和病毒基因組以劑量依賴性方式降低。通過抑製劑或基因沉默,II-血影蛋白裂解反映著鈣蛋白酶活性的減少,表明鈣蛋白酶確實介導EV71的複制。為了研究鈣蛋白酶與EV71複製有關的潛在途徑,我們使用生物信息軟件來希望解決這個問題。在預測的目標中,細胞外調節的激酶ERK 1/2最有可能出現,因為它們與EV71感染細胞的促進存活狀態有關。由此,我們發現透過鈣蛋白酶抑製劑MDL28170或鈣蛋白酶-1 / -2基因沉默可導致EV71感染引起的ERK 1/2磷酸化降低。總之,我們發現了一種可能與鈣蛋白酶介導的EV71複製相關的新機制。 該結果有助於理解鈣蛋白酶介導的EV71複製的分子機制,並且可以作為開發具有相似複製機制的腸道病毒71型和其他病毒的廣效型治療的基礎。
Enteroviruses (EVs) consist of poliovirus, coxsackievirus, echovirus, and rhinovirus species that belong to the family Picornaviridae. Among them, EV71 is considered as one of the most virulent pathogens associated with mild hand, foot, and mouth disease and severe neurological manifestations in young children. Host cell calcium (Ca2+) signals are increasingly recognized to play important roles in viral replication for a range of viruses including enteroviruses. Indeed, studies from some EV species showed that EV infections resulted in an elevation in intracellular Ca2+ that is absolutely required for virus replication. The consequent Ca2+ elevation upon an EV71 infection is associated with activation of calpain-1 and -2, both belong to the family of Ca2+-dependent, non-lysosomal cysteine proteases expressed ubiquitously in mammals. Studies have shown that calpains are involved in the viral genome replication and viral protein synthesis in coxsackievirus B3 and echovirus 1 replication, and that calpains mediate EV71-induced apoptosis in the late stage of viral replication. However, whether calpains are involved in the earlier stage of EV71 replication and the underlying mechanism is not well understood. So in this study we have explored the mechanism of calpain in the replication cycle of EV71. The results showed that the viral protein and viral genome decreased in a dose-dependent manner upon the treatment of a calpain-1/-2 inhibitor MDL28170 or calpain 1/2 shRNA silencing during EV71 infections. Calpain activities reflected by the cleavage of αII-spectrin were reduced by the inhibitor or the knockdown, indicating that calpains are indeed to mediate the replication of EV71. To investigate the potential pathway that calpains are implicated in EV71 replication, we used the bioinformatic analysis to hopefully resolve the question. Among the predicted targets, extracellular regulated kinases ERK 1/2 emerged as the most likely ones as they have been implicated in the pro-survival state of EV71-infected cells. Indeed, we further showed that the virus-induced ERK1/2 phosphorylation was reduced significantly by calpain inhibitor MDL28170 or calpain-1/-2 knockdown, indicating that calpains may up-regulate EV71 replication through ERK1/2 phosphorylation. Taken together, we have uncovered a novel mechanism that may correlate calpain-mediated EV71 replication. This result contributed to understanding of molecular mechanism underlying calpain-mediated EV71 replication, and may serve as a basis for development of the broad-spectrum treatment of enterovirus 71 and other viruses with similar replication mechanism.
摘要 ii
Abstract iii
目錄 iv
第一章 緒論 1
第一節 腸病毒概論 1
第二節 腸病毒71型的臨床病徵和流行病學 1
第三節 腸病毒的基因體結構 2
第四節 腸病毒的複製週期 3
第五節 病毒對於鈣離子濃度的調控 4
第六節 鈣蛋白酶與腸病毒造成細胞死亡的關係 5
第七節 鈣蛋白酶與腸病毒的關係 7
第八節 研究緣由與目的 8
第二章 材料與方法 9
第一節 實驗材料 9
壹、細胞與病毒 (Cell line and Virus) 9
貳、試劑、藥品與溶液 (Reagent, Drugs and Solution) 9
參、試劑套組與酵素 (Kits and Enzymes) 12
肆、引子 (primer) 13
伍、質體 (Plasmids) 14
陸、抗體 (Antibodies) 14
第二節 實驗方法 15
一、細胞株的培養與操作 15
二、病毒的培養與定量 16
三、細胞存活率試驗 (MTS Cell Proliferation Colorimetric Assay) 17
四、質體DNA轉染 18
五、Lentivirus 濃縮 18
六、shRNA stable knockdown 18
七、即時定量聚合酶連鎖反應 (Real-time PCR, qPCR) 20
八、西方墨點法 (Western blot) 22
第三章 實驗結果 25
第一節 鈣蛋白酶的抑制劑可以抑制腸病毒71型的病毒蛋白 25
第二節 剔除鈣蛋白酶會抑制腸病毒71型的複製 26
第三節 使用Search Tool for Interactions of Chemicals (STITCH)預測鈣蛋白酶1和2跟腸病毒71型複製的相關蛋白 27
第四節 鈣蛋白酶抑制劑能降低ERK1/2磷酸化且有劑量依頼性的效果 28
第五節 鈣蛋白酶參與腸病毒71型所誘導ERK1/2的磷酸化路徑 29
第四章 討論 30
第五章 圖表 34
第六章 參考文獻 43
第七章 附錄 49
附錄一、腸病毒屬之分類[1] 49
附錄二、腸病毒之結構[18] 50
附錄三、腸病毒之基因體[20] 50
附錄四、腸病毒71型在感染期間提升細胞內鈣離子濃度 51
附錄五、使用細胞內鈣離子螯合劑抑制腸病毒71型的複製 51
附錄六、鈣蛋白酶結構[40] 52
附錄七、鈣池調控鈣離子流入之機制[47] 52
附錄八、鈣蛋白酶活性下降抑制腸病毒71型病毒複製之路徑 53
1. de Crom, S.C., et al., Enterovirus and parechovirus infection in children: a brief overview. Eur J Pediatr, 2016. 175(8): p. 1023-9.
2. Nikonov, O.S., et al., Enteroviruses: Classification, Diseases They Cause, and Approaches to Development of Antiviral Drugs. Biochemistry (Mosc), 2017. 82(13): p. 1615-1631.
3. Wang, S.M. and C.C. Liu, Enterovirus 71: epidemiology, pathogenesis and management. Expert Rev Anti Infect Ther, 2009. 7(6): p. 735-42.
4. Cabrerizo, M., et al., Molecular epidemiology of enterovirus 71, coxsackievirus A16 and A6 associated with hand, foot and mouth disease in Spain. Clin Microbiol Infect, 2014. 20(3): p. O150-6.
5. Teoh, H.L., et al., Clinical Characteristics and Functional Motor Outcomes of Enterovirus 71 Neurological Disease in Children. JAMA Neurol, 2016. 73(3): p. 300-7.
6. Weng, K.F., et al., Neural pathogenesis of enterovirus 71 infection. Microbes Infect, 2010. 12(7): p. 505-10.
7. Lee, M.S. and L.Y. Chang, Development of enterovirus 71 vaccines. Expert Rev Vaccines, 2010. 9(2): p. 149-56.
8. Lin, T.Y., et al., Enterovirus 71 outbreaks, Taiwan: occurrence and recognition. Emerg Infect Dis, 2003. 9(3): p. 291-3.
9. McMinn, P.C., An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev, 2002. 26(1): p. 91-107.
10. Lee, B.Y., et al., Forecasting the economic value of an Enterovirus 71 (EV71) vaccine. Vaccine, 2010. 28(49): p. 7731-6.
11. Brown, B.A., et al., Molecular epidemiology and evolution of enterovirus 71 strains isolated from 1970 to 1998. J Virol, 1999. 73(12): p. 9969-75.
12. Chang, P.C., S.C. Chen, and K.T. Chen, The Current Status of the Disease Caused by Enterovirus 71 Infections: Epidemiology, Pathogenesis, Molecular Epidemiology, and Vaccine Development. Int J Environ Res Public Health, 2016. 13(9).
13. Yang, F., et al., Enterovirus 71 Outbreak in the People's Republic of China in 2008. Journal of Clinical Microbiology, 2009. 47(7): p. 2351-2352.
14. Khanh, T.H., et al., Enterovirus 71-associated hand, foot, and mouth disease, Southern Vietnam, 2011. Emerg Infect Dis, 2012. 18(12): p. 2002-5.
15. Sabanathan, S., et al., Enterovirus 71 related severe hand, foot and mouth disease outbreaks in South-East Asia: current situation and ongoing challenges. J Epidemiol Community Health, 2014. 68(6): p. 500-2.
16. Tong, C.W. and J.M. Bible, Global epidemiology of Enterovirus 71. Future Virology, 2009. 4(5): p. 501-510.
17. Cifuente, J.O., et al., Structures of the procapsid and mature virion of enterovirus 71 strain 1095. J Virol, 2013. 87(13): p. 7637-45.
18. Solomon, T., et al., Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis, 2010. 10(11): p. 778-90.
19. Shi, M., et al., Expression of enterovirus 71 capsid protein VP1 in Escherichia coli and its clinical application. Braz J Microbiol, 2013. 44(4): p. 1215-22.
20. Noisumdaeng, P., et al., Complete genome analysis demonstrates multiple introductions of enterovirus 71 and coxsackievirus A16 recombinant strains into Thailand during the past decade. Emerg Microbes Infect, 2018. 7(1): p. 214.
21. Chan, Y.F., I.C. Sam, and S. AbuBakar, Phylogenetic designation of enterovirus 71 genotypes and subgenotypes using complete genome sequences. Infect Genet Evol, 2010. 10(3): p. 404-12.
22. Hung, C.T., et al., Additive Promotion of Viral Internal Ribosome Entry Site-Mediated Translation by Far Upstream Element-Binding Protein 1 and an Enterovirus 71-Induced Cleavage Product. PLoS Pathog, 2016. 12(10): p. e1005959.
23. Wang, H. and Y. Li, Recent Progress on Functional Genomics Research of Enterovirus 71. Virol Sin, 2019. 34(1): p. 9-21.
24. van der Linden, L., K.C. Wolthers, and F.J. van Kuppeveld, Replication and Inhibitors of Enteroviruses and Parechoviruses. Viruses, 2015. 7(8): p. 4529-62.
25. Baggen, J., et al., The life cycle of non-polio enteroviruses and how to target it. Nat Rev Microbiol, 2018. 16(6): p. 368-381.
26. van der Schaar, H.M., et al., A novel, broad-spectrum inhibitor of enterovirus replication that targets host cell factor phosphatidylinositol 4-kinase IIIbeta. Antimicrob Agents Chemother, 2013. 57(10): p. 4971-81.
27. Hung, H.C., et al., Inhibition of enterovirus 71 replication and the viral 3D polymerase by aurintricarboxylic acid. J Antimicrob Chemother, 2010. 65(4): p. 676-83.
28. Shih, S.-R., V. Stollar, and M.-L. Li, Host Factors in Enterovirus 71 Replication. Journal of Virology, 2011. 85(19): p. 9658-9666.
29. Tolbert, M., et al., HnRNP A1 Alters the Structure of a Conserved Enterovirus IRES Domain to Stimulate Viral Translation. J Mol Biol, 2017. 429(19): p. 2841-2858.
30. Thompson, S.R. and P. Sarnow, Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. Virology, 2003. 315(1): p. 259-66.
31. Kieft, J.S., Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci, 2008. 33(6): p. 274-83.
32. Bouchard, M.J., L.-H. Wang, and R.J. Schneider, Calcium Signaling by HBx Protein in Hepatitis B Virus DNA Replication. Science, 2001. 294(5550): p. 2376-2378.
33. McClain, S.L., et al., Hepatitis B Virus Replication Is Associated with an HBx-Dependent Mitochondrion-Regulated Increase in Cytosolic Calcium Levels. Journal of Virology, 2007. 81(21): p. 12061-12065.
34. Waris, G., et al., Hepatitis C Virus (HCV) Constitutively Activates STAT-3 via Oxidative Stress: Role of STAT-3 in HCV Replication. Journal of Virology, 2005. 79(3): p. 1569-1580.
35. van Kuppeveld, F.J., et al., Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. Embo j, 1997. 16(12): p. 3519-32.
36. Brisac, C., et al., Calcium flux between the endoplasmic reticulum and mitochondrion contributes to poliovirus-induced apoptosis. J Virol, 2010. 84(23): p. 12226-35.
37. Huang, Y. and K.K. Wang, The calpain family and human disease. Trends Mol Med, 2001. 7(8): p. 355-62.
38. Li, M., et al., Coxsackievirus B3-induced calpain activation facilitates the progeny virus replication via a likely mechanism related with both autophagy enhancement and apoptosis inhibition in the early phase of infection: an in vitro study in H9c2 cells. Virus Res, 2014. 179: p. 177-86.
39. Baudry, M. and X. Bi, Calpain-1 and Calpain-2: The Yin and Yang of Synaptic Plasticity and Neurodegeneration. Trends Neurosci, 2016. 39(4): p. 235-245.
40. Momeni, H.R., Role of calpain in apoptosis. Cell J, 2011. 13(2): p. 65-72.
41. Goll, D.E., et al., The calpain system. Physiol Rev, 2003. 83(3): p. 731-801.
42. Suzuki, K., et al., Structure, activation, and biology of calpain. Diabetes, 2004. 53 Suppl 1: p. S12-8.
43. Gafni, J. and L.M. Ellerby, Calpain activation in Huntington's disease. J Neurosci, 2002. 22(12): p. 4842-9.
44. Nixon, R.A., et al., Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer's disease. Ann N Y Acad Sci, 1994. 747: p. 77-91.
45. Battaglia, F., et al., Calpain inhibitors, a treatment for Alzheimer's disease: position paper. J Mol Neurosci, 2003. 20(3): p. 357-62.
46. Chami, M., B. Oules, and P. Paterlini-Brechot, Cytobiological consequences of calcium-signaling alterations induced by human viral proteins. Biochim Biophys Acta, 2006. 1763(11): p. 1344-62.
47. Zhou, Y., T.K. Frey, and J.J. Yang, Viral calciomics: interplays between Ca2+ and virus. Cell Calcium, 2009. 46(1): p. 1-17.
48. Vig, M., et al., CRACM1 Is a Plasma Membrane Protein Essential for Store-Operated Ca2+ Entry. Science, 2006. 312(5777): p. 1220-1223.
49. Glitsch, M.D., D. Bakowski, and A.B. Parekh, Store-operated Ca2+ entry depends on mitochondrial Ca2+ uptake. Embo j, 2002. 21(24): p. 6744-54.
50. Ong, H.L., et al., Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem, 2007. 282(12): p. 9105-16.
51. Feske, S., ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunological Reviews, 2009. 231(1): p. 189-209.
52. Luik, R.M., et al., The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER–plasma membrane junctions. The Journal of Cell Biology, 2006. 174(6): p. 815-825.
53. Lu, J.R., et al., Calcium flux and calpain-mediated activation of the apoptosis-inducing factor contribute to enterovirus 71-induced apoptosis. J Gen Virol, 2013. 94(Pt 7): p. 1477-85.
54. Jin, Y., et al., Antiviral and Inflammatory Cellular Signaling Associated with Enterovirus 71 Infection. Viruses, 2018. 10(4).
55. Li, J., et al., Enterovirus 71 3C Promotes Apoptosis through Cleavage of PinX1, a Telomere Binding Protein. Journal of Virology, 2017. 91(2): p. e02016-16.
56. Polster, B.M., et al., Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem, 2005. 280(8): p. 6447-54.
57. Wang, B., et al., MEK1-ERKs signal cascade is required for the replication of Enterovirus 71 (EV71). Antiviral Res, 2012. 93(1): p. 110-7.
58. McCain, J., The MAPK (ERK) Pathway: Investigational Combinations for the Treatment Of BRAF-Mutated Metastatic Melanoma. P t, 2013. 38(2): p. 96-108.
59. Shi, W., et al., MEK/ERK signaling pathway is required for enterovirus 71 replication in immature dendritic cells. Virol J, 2014. 11: p. 227.
60. Upla, P., et al., Calpain 1 and 2 are required for RNA replication of echovirus 1. J Virol, 2008. 82(3): p. 1581-90.
61. Yin, X.-g., et al., Clinical and epidemiological characteristics of adult hand, foot, and mouth disease in northern Zhejiang, China, May 2008 – November 2013. BMC Infectious Diseases, 2014. 14(1): p. 251.
62. Yip, C.C., et al., Genetic characterization of EV71 isolates from 2004 to 2010 reveals predominance and persistent circulation of the newly proposed genotype D and recent emergence of a distinct lineage of subgenotype C2 in Hong Kong. Virology Journal, 2013. 10(1): p. 222.
63. Chua, K.B. and A.R. Kasri, Hand foot and mouth disease due to enterovirus 71 in Malaysia. Virol Sin, 2011. 26(4): p. 221-8.
64. Yee, P.T.I., et al., Development of live attenuated Enterovirus 71 vaccine strains that confer protection against lethal challenge in mice. Sci Rep, 2019. 9(1): p. 4805.
65. Huang, L.M., et al., Immunogenicity, safety, cross-reaction, and immune persistence of an inactivated enterovirus A71 vaccine in children aged from two months to 11 years in Taiwan. Vaccine, 2019. 37(13): p. 1827-1835.
66. Zhang, H., et al., Activation of PI3K/Akt pathway limits JNK-mediated apoptosis during EV71 infection. Virus Res, 2014. 192: p. 74-84.
67. Baudry, M., M.M. Chou, and X. Bi, Targeting calpain in synaptic plasticity. Expert Opin Ther Targets, 2013. 17(5): p. 579-92.
68. Kuhn, M., et al., STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res, 2008. 36(Database issue): p. D684-8.
69. Zhu, M., et al., Both ERK1 and ERK2 are required for enterovirus 71 (EV71) efficient replication. Viruses, 2015. 7(3): p. 1344-56.
70. Liu, X., et al., Varicella-Zoster Virus ORF12 Protein Triggers Phosphorylation of ERK1/2 and Inhibits Apoptosis. Journal of Virology, 2012. 86(6): p. 3143-3151.
71. Sreekanth, G.P., et al., Role of ERK1/2 signaling in dengue virus-induced liver injury. Virus Res, 2014. 188: p. 15-26.
72. Zhang, F., et al., Hepatitis B virus X protein upregulates expression of calpain small subunit 1 via nuclear factor-kappaB/p65 in hepatoma cells. J Med Virol, 2010. 82(6): p. 920-8.
73. Dionisio, N., et al., Hepatitis C virus NS5A and core proteins induce oxidative stress-mediated calcium signalling alterations in hepatocytes. J Hepatol, 2009. 50(5): p. 872-82.
74. Simonin, Y., et al., Calpain activation by hepatitis C virus proteins inhibits the extrinsic apoptotic signaling pathway. Hepatology, 2009. 50(5): p. 1370-9.
75. Howe, C.L., et al., Neuroprotection mediated by inhibition of calpain during acute viral encephalitis. Sci Rep, 2016. 6: p. 28699.
76. Luo, H., et al., Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. J Virol, 2002. 76(7): p. 3365-73.
77. Perkins, D., et al., The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) blocks apoptosis in hippocampal neurons, involving activation of the MEK/MAPK survival pathway. J Virol, 2002. 76(3): p. 1435-49.
78. Marzia, M., et al., Calpain is required for normal osteoclast function and is down-regulated by calcitonin. J Biol Chem, 2006. 281(14): p. 9745-54.
79. Ray, S.K., E.L. Hogan, and N.L. Banik, Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Brain Res Rev, 2003. 42(2): p. 169-85.
80. Saatman, K.E., J. Creed, and R. Raghupathi, Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics, 2010. 7(1): p. 31-42.
81. Northington, F.J., R. Chavez-Valdez, and L.J. Martin, Neuronal cell death in neonatal hypoxia-ischemia. Ann Neurol, 2011. 69(5): p. 743-58.
82. Simmons, G., et al., Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion. Virology, 2011. 413(2): p. 265-74.
83. Gnirss, K., et al., Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression. Virology, 2012. 424(1): p. 3-10.
84. Belouzard, S., et al., Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012. 4(6): p. 1011-33.
85. Schornberg, K.L., et al., Alpha5beta1-integrin controls ebolavirus entry by regulating endosomal cathepsins. Proc Natl Acad Sci U S A, 2009. 106(19): p. 8003-8.
86. Schornberg, K., et al., Role of Endosomal Cathepsins in Entry Mediated by the Ebola Virus Glycoprotein. Journal of Virology, 2006. 80(8): p. 4174-4178.
87. Ono, Y., T.C. Saido, and H. Sorimachi, Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov, 2016. 15(12): p. 854-876.
88. Veeranna, et al., Calpain mediates calcium-induced activation of the erk1,2 MAPK pathway and cytoskeletal phosphorylation in neurons: relevance to Alzheimer's disease. Am J Pathol, 2004. 165(3): p. 795-805.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top