|
1. de Crom, S.C., et al., Enterovirus and parechovirus infection in children: a brief overview. Eur J Pediatr, 2016. 175(8): p. 1023-9. 2. Nikonov, O.S., et al., Enteroviruses: Classification, Diseases They Cause, and Approaches to Development of Antiviral Drugs. Biochemistry (Mosc), 2017. 82(13): p. 1615-1631. 3. Wang, S.M. and C.C. Liu, Enterovirus 71: epidemiology, pathogenesis and management. Expert Rev Anti Infect Ther, 2009. 7(6): p. 735-42. 4. Cabrerizo, M., et al., Molecular epidemiology of enterovirus 71, coxsackievirus A16 and A6 associated with hand, foot and mouth disease in Spain. Clin Microbiol Infect, 2014. 20(3): p. O150-6. 5. Teoh, H.L., et al., Clinical Characteristics and Functional Motor Outcomes of Enterovirus 71 Neurological Disease in Children. JAMA Neurol, 2016. 73(3): p. 300-7. 6. Weng, K.F., et al., Neural pathogenesis of enterovirus 71 infection. Microbes Infect, 2010. 12(7): p. 505-10. 7. Lee, M.S. and L.Y. Chang, Development of enterovirus 71 vaccines. Expert Rev Vaccines, 2010. 9(2): p. 149-56. 8. Lin, T.Y., et al., Enterovirus 71 outbreaks, Taiwan: occurrence and recognition. Emerg Infect Dis, 2003. 9(3): p. 291-3. 9. McMinn, P.C., An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev, 2002. 26(1): p. 91-107. 10. Lee, B.Y., et al., Forecasting the economic value of an Enterovirus 71 (EV71) vaccine. Vaccine, 2010. 28(49): p. 7731-6. 11. Brown, B.A., et al., Molecular epidemiology and evolution of enterovirus 71 strains isolated from 1970 to 1998. J Virol, 1999. 73(12): p. 9969-75. 12. Chang, P.C., S.C. Chen, and K.T. Chen, The Current Status of the Disease Caused by Enterovirus 71 Infections: Epidemiology, Pathogenesis, Molecular Epidemiology, and Vaccine Development. Int J Environ Res Public Health, 2016. 13(9). 13. Yang, F., et al., Enterovirus 71 Outbreak in the People's Republic of China in 2008. Journal of Clinical Microbiology, 2009. 47(7): p. 2351-2352. 14. Khanh, T.H., et al., Enterovirus 71-associated hand, foot, and mouth disease, Southern Vietnam, 2011. Emerg Infect Dis, 2012. 18(12): p. 2002-5. 15. Sabanathan, S., et al., Enterovirus 71 related severe hand, foot and mouth disease outbreaks in South-East Asia: current situation and ongoing challenges. J Epidemiol Community Health, 2014. 68(6): p. 500-2. 16. Tong, C.W. and J.M. Bible, Global epidemiology of Enterovirus 71. Future Virology, 2009. 4(5): p. 501-510. 17. Cifuente, J.O., et al., Structures of the procapsid and mature virion of enterovirus 71 strain 1095. J Virol, 2013. 87(13): p. 7637-45. 18. Solomon, T., et al., Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis, 2010. 10(11): p. 778-90. 19. Shi, M., et al., Expression of enterovirus 71 capsid protein VP1 in Escherichia coli and its clinical application. Braz J Microbiol, 2013. 44(4): p. 1215-22. 20. Noisumdaeng, P., et al., Complete genome analysis demonstrates multiple introductions of enterovirus 71 and coxsackievirus A16 recombinant strains into Thailand during the past decade. Emerg Microbes Infect, 2018. 7(1): p. 214. 21. Chan, Y.F., I.C. Sam, and S. AbuBakar, Phylogenetic designation of enterovirus 71 genotypes and subgenotypes using complete genome sequences. Infect Genet Evol, 2010. 10(3): p. 404-12. 22. Hung, C.T., et al., Additive Promotion of Viral Internal Ribosome Entry Site-Mediated Translation by Far Upstream Element-Binding Protein 1 and an Enterovirus 71-Induced Cleavage Product. PLoS Pathog, 2016. 12(10): p. e1005959. 23. Wang, H. and Y. Li, Recent Progress on Functional Genomics Research of Enterovirus 71. Virol Sin, 2019. 34(1): p. 9-21. 24. van der Linden, L., K.C. Wolthers, and F.J. van Kuppeveld, Replication and Inhibitors of Enteroviruses and Parechoviruses. Viruses, 2015. 7(8): p. 4529-62. 25. Baggen, J., et al., The life cycle of non-polio enteroviruses and how to target it. Nat Rev Microbiol, 2018. 16(6): p. 368-381. 26. van der Schaar, H.M., et al., A novel, broad-spectrum inhibitor of enterovirus replication that targets host cell factor phosphatidylinositol 4-kinase IIIbeta. Antimicrob Agents Chemother, 2013. 57(10): p. 4971-81. 27. Hung, H.C., et al., Inhibition of enterovirus 71 replication and the viral 3D polymerase by aurintricarboxylic acid. J Antimicrob Chemother, 2010. 65(4): p. 676-83. 28. Shih, S.-R., V. Stollar, and M.-L. Li, Host Factors in Enterovirus 71 Replication. Journal of Virology, 2011. 85(19): p. 9658-9666. 29. Tolbert, M., et al., HnRNP A1 Alters the Structure of a Conserved Enterovirus IRES Domain to Stimulate Viral Translation. J Mol Biol, 2017. 429(19): p. 2841-2858. 30. Thompson, S.R. and P. Sarnow, Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. Virology, 2003. 315(1): p. 259-66. 31. Kieft, J.S., Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci, 2008. 33(6): p. 274-83. 32. Bouchard, M.J., L.-H. Wang, and R.J. Schneider, Calcium Signaling by HBx Protein in Hepatitis B Virus DNA Replication. Science, 2001. 294(5550): p. 2376-2378. 33. McClain, S.L., et al., Hepatitis B Virus Replication Is Associated with an HBx-Dependent Mitochondrion-Regulated Increase in Cytosolic Calcium Levels. Journal of Virology, 2007. 81(21): p. 12061-12065. 34. Waris, G., et al., Hepatitis C Virus (HCV) Constitutively Activates STAT-3 via Oxidative Stress: Role of STAT-3 in HCV Replication. Journal of Virology, 2005. 79(3): p. 1569-1580. 35. van Kuppeveld, F.J., et al., Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. Embo j, 1997. 16(12): p. 3519-32. 36. Brisac, C., et al., Calcium flux between the endoplasmic reticulum and mitochondrion contributes to poliovirus-induced apoptosis. J Virol, 2010. 84(23): p. 12226-35. 37. Huang, Y. and K.K. Wang, The calpain family and human disease. Trends Mol Med, 2001. 7(8): p. 355-62. 38. Li, M., et al., Coxsackievirus B3-induced calpain activation facilitates the progeny virus replication via a likely mechanism related with both autophagy enhancement and apoptosis inhibition in the early phase of infection: an in vitro study in H9c2 cells. Virus Res, 2014. 179: p. 177-86. 39. Baudry, M. and X. Bi, Calpain-1 and Calpain-2: The Yin and Yang of Synaptic Plasticity and Neurodegeneration. Trends Neurosci, 2016. 39(4): p. 235-245. 40. Momeni, H.R., Role of calpain in apoptosis. Cell J, 2011. 13(2): p. 65-72. 41. Goll, D.E., et al., The calpain system. Physiol Rev, 2003. 83(3): p. 731-801. 42. Suzuki, K., et al., Structure, activation, and biology of calpain. Diabetes, 2004. 53 Suppl 1: p. S12-8. 43. Gafni, J. and L.M. Ellerby, Calpain activation in Huntington's disease. J Neurosci, 2002. 22(12): p. 4842-9. 44. Nixon, R.A., et al., Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer's disease. Ann N Y Acad Sci, 1994. 747: p. 77-91. 45. Battaglia, F., et al., Calpain inhibitors, a treatment for Alzheimer's disease: position paper. J Mol Neurosci, 2003. 20(3): p. 357-62. 46. Chami, M., B. Oules, and P. Paterlini-Brechot, Cytobiological consequences of calcium-signaling alterations induced by human viral proteins. Biochim Biophys Acta, 2006. 1763(11): p. 1344-62. 47. Zhou, Y., T.K. Frey, and J.J. Yang, Viral calciomics: interplays between Ca2+ and virus. Cell Calcium, 2009. 46(1): p. 1-17. 48. Vig, M., et al., CRACM1 Is a Plasma Membrane Protein Essential for Store-Operated Ca2+ Entry. Science, 2006. 312(5777): p. 1220-1223. 49. Glitsch, M.D., D. Bakowski, and A.B. Parekh, Store-operated Ca2+ entry depends on mitochondrial Ca2+ uptake. Embo j, 2002. 21(24): p. 6744-54. 50. Ong, H.L., et al., Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem, 2007. 282(12): p. 9105-16. 51. Feske, S., ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunological Reviews, 2009. 231(1): p. 189-209. 52. Luik, R.M., et al., The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER–plasma membrane junctions. The Journal of Cell Biology, 2006. 174(6): p. 815-825. 53. Lu, J.R., et al., Calcium flux and calpain-mediated activation of the apoptosis-inducing factor contribute to enterovirus 71-induced apoptosis. J Gen Virol, 2013. 94(Pt 7): p. 1477-85. 54. Jin, Y., et al., Antiviral and Inflammatory Cellular Signaling Associated with Enterovirus 71 Infection. Viruses, 2018. 10(4). 55. Li, J., et al., Enterovirus 71 3C Promotes Apoptosis through Cleavage of PinX1, a Telomere Binding Protein. Journal of Virology, 2017. 91(2): p. e02016-16. 56. Polster, B.M., et al., Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem, 2005. 280(8): p. 6447-54. 57. Wang, B., et al., MEK1-ERKs signal cascade is required for the replication of Enterovirus 71 (EV71). Antiviral Res, 2012. 93(1): p. 110-7. 58. McCain, J., The MAPK (ERK) Pathway: Investigational Combinations for the Treatment Of BRAF-Mutated Metastatic Melanoma. P t, 2013. 38(2): p. 96-108. 59. Shi, W., et al., MEK/ERK signaling pathway is required for enterovirus 71 replication in immature dendritic cells. Virol J, 2014. 11: p. 227. 60. Upla, P., et al., Calpain 1 and 2 are required for RNA replication of echovirus 1. J Virol, 2008. 82(3): p. 1581-90. 61. Yin, X.-g., et al., Clinical and epidemiological characteristics of adult hand, foot, and mouth disease in northern Zhejiang, China, May 2008 – November 2013. BMC Infectious Diseases, 2014. 14(1): p. 251. 62. Yip, C.C., et al., Genetic characterization of EV71 isolates from 2004 to 2010 reveals predominance and persistent circulation of the newly proposed genotype D and recent emergence of a distinct lineage of subgenotype C2 in Hong Kong. Virology Journal, 2013. 10(1): p. 222. 63. Chua, K.B. and A.R. Kasri, Hand foot and mouth disease due to enterovirus 71 in Malaysia. Virol Sin, 2011. 26(4): p. 221-8. 64. Yee, P.T.I., et al., Development of live attenuated Enterovirus 71 vaccine strains that confer protection against lethal challenge in mice. Sci Rep, 2019. 9(1): p. 4805. 65. Huang, L.M., et al., Immunogenicity, safety, cross-reaction, and immune persistence of an inactivated enterovirus A71 vaccine in children aged from two months to 11 years in Taiwan. Vaccine, 2019. 37(13): p. 1827-1835. 66. Zhang, H., et al., Activation of PI3K/Akt pathway limits JNK-mediated apoptosis during EV71 infection. Virus Res, 2014. 192: p. 74-84. 67. Baudry, M., M.M. Chou, and X. Bi, Targeting calpain in synaptic plasticity. Expert Opin Ther Targets, 2013. 17(5): p. 579-92. 68. Kuhn, M., et al., STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res, 2008. 36(Database issue): p. D684-8. 69. Zhu, M., et al., Both ERK1 and ERK2 are required for enterovirus 71 (EV71) efficient replication. Viruses, 2015. 7(3): p. 1344-56. 70. Liu, X., et al., Varicella-Zoster Virus ORF12 Protein Triggers Phosphorylation of ERK1/2 and Inhibits Apoptosis. Journal of Virology, 2012. 86(6): p. 3143-3151. 71. Sreekanth, G.P., et al., Role of ERK1/2 signaling in dengue virus-induced liver injury. Virus Res, 2014. 188: p. 15-26. 72. Zhang, F., et al., Hepatitis B virus X protein upregulates expression of calpain small subunit 1 via nuclear factor-kappaB/p65 in hepatoma cells. J Med Virol, 2010. 82(6): p. 920-8. 73. Dionisio, N., et al., Hepatitis C virus NS5A and core proteins induce oxidative stress-mediated calcium signalling alterations in hepatocytes. J Hepatol, 2009. 50(5): p. 872-82. 74. Simonin, Y., et al., Calpain activation by hepatitis C virus proteins inhibits the extrinsic apoptotic signaling pathway. Hepatology, 2009. 50(5): p. 1370-9. 75. Howe, C.L., et al., Neuroprotection mediated by inhibition of calpain during acute viral encephalitis. Sci Rep, 2016. 6: p. 28699. 76. Luo, H., et al., Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. J Virol, 2002. 76(7): p. 3365-73. 77. Perkins, D., et al., The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) blocks apoptosis in hippocampal neurons, involving activation of the MEK/MAPK survival pathway. J Virol, 2002. 76(3): p. 1435-49. 78. Marzia, M., et al., Calpain is required for normal osteoclast function and is down-regulated by calcitonin. J Biol Chem, 2006. 281(14): p. 9745-54. 79. Ray, S.K., E.L. Hogan, and N.L. Banik, Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Brain Res Rev, 2003. 42(2): p. 169-85. 80. Saatman, K.E., J. Creed, and R. Raghupathi, Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics, 2010. 7(1): p. 31-42. 81. Northington, F.J., R. Chavez-Valdez, and L.J. Martin, Neuronal cell death in neonatal hypoxia-ischemia. Ann Neurol, 2011. 69(5): p. 743-58. 82. Simmons, G., et al., Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion. Virology, 2011. 413(2): p. 265-74. 83. Gnirss, K., et al., Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression. Virology, 2012. 424(1): p. 3-10. 84. Belouzard, S., et al., Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012. 4(6): p. 1011-33. 85. Schornberg, K.L., et al., Alpha5beta1-integrin controls ebolavirus entry by regulating endosomal cathepsins. Proc Natl Acad Sci U S A, 2009. 106(19): p. 8003-8. 86. Schornberg, K., et al., Role of Endosomal Cathepsins in Entry Mediated by the Ebola Virus Glycoprotein. Journal of Virology, 2006. 80(8): p. 4174-4178. 87. Ono, Y., T.C. Saido, and H. Sorimachi, Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov, 2016. 15(12): p. 854-876. 88. Veeranna, et al., Calpain mediates calcium-induced activation of the erk1,2 MAPK pathway and cytoskeletal phosphorylation in neurons: relevance to Alzheimer's disease. Am J Pathol, 2004. 165(3): p. 795-805.
|