|
六、參考文獻 1. Masui, T., et al., Snail-induced epithelial-mesenchymal transition promotes cancer stem cell-like phenotype in head and neck cancer cells. Int J Oncol, 2014. 44(3): p. 693-9. 2. Vokes, E.E., et al., Head and neck cancer. N Engl J Med, 1993. 328(3): p. 184-94. 3. Keitel, U., C. Scheel, and M. Dobbelstein, Overcoming EMT-driven therapeutic resistance by BH3 mimetics. Oncoscience, 2014. 1(11): p. 706-8. 4. Fidler, I.J., Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res, 1978. 38(9): p. 2651-60. 5. Scheel, C. and R.A. Weinberg, Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol, 2012. 22(5-6): p. 396-403. 6. Joosse, S.A., T.M. Gorges, and K. Pantel, Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol Med, 2015. 7(1): p. 1-11. 7. Langley, R.R. and I.J. Fidler, The seed and soil hypothesis revisited--the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer, 2011. 128(11): p. 2527-35. 8. Jolly, M.K., et al., Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis. Front Oncol, 2015. 5: p. 155. 9. Francart, M.-E., et al., Epithelial–mesenchymal plasticity and circulating tumor cells: Travel companions to metastases. 2018. 247(3): p. 432-450. 10. Lu, W. and Y. Kang, Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Dev Cell, 2019. 49(3): p. 361-374. 11. Kang, Y. and J. Massagué, Epithelial-Mesenchymal Transitions: Twist in Development and Metastasis. Cell, 2004. 118(3): p. 277-279. 12. Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002. 2(6): p. 442-54. 13. Nieto, M.A., The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol, 2002. 3(3): p. 155-66. 14. Comijn, J., et al., The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell, 2001. 7(6): p. 1267-78. 15. Yang, J., et al., Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 2004. 117(7): p. 927-39. 16. Li, C.W., et al., Epithelial-mesenchymal transition induced by TNF-alpha requires NF-kappaB-mediated transcriptional upregulation of Twist1. Cancer Res, 2012. 72(5): p. 1290-300. 17. Yang, M.H., et al., Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol, 2008. 10(3): p. 295-305. 18. Cho, K.H., et al., STAT3 mediates TGF-beta1-induced TWIST1 expression and prostate cancer invasion. Cancer Lett, 2013. 336(1): p. 167-73. 19. Zhang, C.H., et al., Activation of STAT3 signal pathway correlates with twist and E-cadherin expression in hepatocellular carcinoma and their clinical significance. J Surg Res, 2012. 174(1): p. 120-9. 20. Tan, E.J., et al., Regulation of transcription factor Twist expression by the DNA architectural protein high mobility group A2 during epithelial-to-mesenchymal transition. J Biol Chem, 2012. 287(10): p. 7134-45. 21. Cheng, G.Z., et al., Twist is transcriptionally induced by activation of STAT3 and mediates STAT3 oncogenic function. J Biol Chem, 2008. 283(21): p. 14665-73. 22. Suzuki, S., et al., CD147 mediates transforming growth factor-beta1-induced epithelial-mesenchymal transition and cell invasion in squamous cell carcinoma of the tongue. Exp Ther Med, 2019. 17(4): p. 2855-2860. 23. Emon, B., et al., Biophysics of Tumor Microenvironment and Cancer Metastasis - A Mini Review. Comput Struct Biotechnol J, 2018. 16: p. 279-287. 24. Arya, S.K., B. Lim, and A.R. Rahman, Enrichment, detection and clinical significance of circulating tumor cells. Lab Chip, 2013. 13(11): p. 1995-2027. 25. Wilken, R., et al., Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer, 2011. 10: p. 12. 26. Ammon, H.P. and M.A. Wahl, Pharmacology of Curcuma longa. Planta Med, 1991. 57(1): p. 1-7. 27. Aggarwal, B.B., et al., Curcumin: the Indian solid gold. Adv Exp Med Biol, 2007. 595: p. 1-75. 28. Conney, A.H., et al., Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin. Adv Enzyme Regul, 1991. 31: p. 385-96. 29. Lin, Y.C., et al., Therapeutic efficacy evaluation of curcumin on human oral squamous cell carcinoma xenograft using multimodalities of molecular imaging. Am J Chin Med, 2010. 38(2): p. 343-58. 30. Chiang, I.T., et al., Curcumin synergistically enhances the radiosensitivity of human oral squamous cell carcinoma via suppression of radiation-induced NF-kappaB activity. Oncol Rep, 2014. 31(4): p. 1729-37. 31. Zhang, Y., et al., Identification of inhibitors of ABCG2 by a bioluminescence imaging-based high-throughput assay. Cancer Res, 2009. 69(14): p. 5867-75. 32. Kantara, C., et al., Curcumin promotes autophagic survival of a subset of colon cancer stem cells, which are ablated by DCLK1-siRNA. Cancer Res, 2014. 74(9): p. 2487-98. 33. Paramita, P., et al., Curcumin for the Prevention of Epithelial-Mesenchymal Transition in Endoxifen-Treated MCF-7 Breast Cancer Cel. Asian Pac J Cancer Prev, 2018. 19(5): p. 1243-1249. 34. Sulpice, E., et al., Neuropilin-1 and neuropilin-2 act as coreceptors, potentiating proangiogenic activity. Blood, 2008. 111(4): p. 2036-45. 35. Bielenberg, D.R., et al., Neuropilins in neoplasms: expression, regulation, and function. Exp Cell Res, 2006. 312(5): p. 584-93. 36. Guttmann-Raviv, N., et al., The neuropilins and their role in tumorigenesis and tumor progression. Cancer Lett, 2006. 231(1): p. 1-11. 37. Neufeld, G., et al., The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc Med, 2002. 12(1): p. 13-9. 38. Carrer, A., et al., Neuropilin-1 identifies a subset of bone marrow Gr1- monocytes that can induce tumor vessel normalization and inhibit tumor growth. Cancer Res, 2012. 72(24): p. 6371-81. 39. Cao, Y., et al., Neuropilin-1 mediates divergent R-Smad signaling and the myofibroblast phenotype. J Biol Chem, 2010. 285(41): p. 31840-8. 40. Chu, W., et al., Neuropilin-1 promotes epithelial-to-mesenchymal transition by stimulating nuclear factor-kappa B and is associated with poor prognosis in human oral squamous cell carcinoma. PLoS One, 2014. 9(7): p. e101931. 41. Hong, T.M., et al., Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clin Cancer Res, 2007. 13(16): p. 4759-68. 42. Roth, L., et al., Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene, 2012. 31(33): p. 3754-63. 43. Sugahara, K.N., et al., Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell, 2009. 16(6): p. 510-20. 44. Sugahara, K.N., et al., Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science, 2010. 328(5981): p. 1031-5. 45. Kantara, C., et al., Methods for detecting circulating cancer stem cells (CCSCs) as a novel approach for diagnosis of colon cancer relapse/metastasis. Lab Invest, 2015. 95(1): p. 100-12. 46. Likar, Y., et al., A new pyrimidine-specific reporter gene: a mutated human deoxycytidine kinase suitable for PET during treatment with acycloguanosine-based cytotoxic drugs. J Nucl Med, 2010. 51(9): p. 1395-403. 47. Yaghoubi, S.S. and S.S. Gambhir, PET imaging of herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk reporter gene expression in mice and humans using [18F]FHBG. Nat Protoc, 2006. 1(6): p. 3069-75. 48. Bulfoni, M., et al., In patients with metastatic breast cancer the identification of circulating tumor cells in epithelial-to-mesenchymal transition is associated with a poor prognosis. Breast Cancer Res, 2016. 18(1): p. 30. 49. Alix-Panabieres, C. and K. Pantel, Challenges in circulating tumour cell research. Nat Rev Cancer, 2014. 14(9): p. 623-31. 50. Kang, Y. and J. Massague, Epithelial-mesenchymal transitions: twist in development and metastasis. Cell, 2004. 118(3): p. 277-9.
|