跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/27 09:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄧昕孟
研究生(外文):Shin-Meng Deng
論文名稱:探討透過益生質及共生質調控腸道菌叢對阿茲海默症小鼠的影響
論文名稱(外文):Investigate the Effects of Microbiota Modulation via Prebiotic and Synbiotic on Alzheimer’s Disease Mouse Model
指導教授:鄭菡若
指導教授(外文):Irene Han-Juo Cheng
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:腦科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:81
中文關鍵詞:腸道菌相共生質益生質阿茲海默症
外文關鍵詞:gut microbiotasynbioticprebioticAlzheimer's disease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
近年來腸-腦軸及腸道菌的重要性逐漸提升,腸道菌相失衡已經被證實和氣喘、肥胖、憂鬱症、自閉症、帕金森氏症及阿茲海默氏症等疾病高度相關。阿茲海默症是會使記憶功能缺損及行為改變的神經退化性疾病,至今仍然缺乏有效的治療方式。腸道菌的多樣性以及細菌代謝物都可能和阿茲海默症有關,但能否透過飲食調控腸道菌相的組成,改善患者的認知功能仍未定論。此研究中,我們使用益生質(TCP)、共生質(益生質及益生菌混和物TCP+P)進行研究。我們發現阿茲海默氏症小鼠經過共生質餵食,展現較佳的學習能力及空間記憶能力,並且增加神經新生的能力,同時降低全身性發炎反應及小鼠海馬迴中類澱粉蛋白的沉積量。我們的研究顯示共生質對阿茲海默氏症小鼠具有保護性作用,具有透過日常營養補充品減緩阿茲海默氏症疾病進程的效果。
The concept of gut-brain axis and importance of gut microbiota have been raised these years. Dysbiosis of gut microbiota is associated with multiple disorders, including asthma, obesity, depression, autism, Parkinson’s disease and Alzheimer’s disease (AD). AD is a neurodegenerative disease that impairs multiple memory and behavior domains without any effective treatment. Whether microbiota modulation can ameliorate cognitive function in AD remains unknown. In our study, we established prebiotics and synbiotic mixture, TCP and TCP+P, as intervention for AD mouse model. Our results demonstrated that after synbiotic treatment for 2 months, AD mice showed improving spatial memory, and increasing neurogenesis compared to untreated mice. Furthermore, the synbiotic treatment also reduced systemic inflammation, Aβ 42 accumulation and plaque formation.
Taken together, our study demonstrated the protective effects of synbiotic mixture in AD mice, suggesting that dietary modulation may be a potential treatment to slow down AD processing.
誌謝..........................................................................................i
摘要.........................................................................................ii
Abstract....................................................................................iii
Contents.....................................................................................iv
Figure index................................................................................vii
Introduction..................................................................................1
Alzheimer’s disease (AD).....................................................................1
Genetics......................................................................................2
hAPP transgenic mouse model...................................................................2
Gut-brain axis and gut microbiota.............................................................3
The changes of gut microbiota composition in AD...............................................3
Microbiota-induced inflammation in AD.........................................................4
Bacteria-derived amyloids.....................................................................5
Probiotics, prebiotics, and synbiotics........................................................6
Hypothesis and aims...........................................................................8
Materials and methods.........................................................................9
Animals.......................................................................................9
TCP+P mixture.................................................................................9
TCP mixture..................................................................................10
Fecal DNA preparation........................................................................10
16S rRNA gene sequencing.....................................................................10
Open field...................................................................................11
Novel object recognition test................................................................12
Morris water maze............................................................................12
Enzyme-linked immunosorbent assay (ELISA)....................................................12
Immunohistochemistry.........................................................................13
Microbiota composition analysis..............................................................13
Statistical analysis.........................................................................14
Results......................................................................................15
Synbiotic mixture ameliorated cognitive impairment in APP mouse model........................15
Prebiotic mixture had no effect on cognitive functions in APP mouse model....................19
Both prebiotics and synbiotic mixtures did not improve object recognition
memory in APP mouse model....................................................................22
Synbiotic mixture did not alter anxiety-related behavior and locomotor
activity in APP mouse model..................................................................24
Prebiotics mixture did not alter anxiety-related behavior and locomotor
activity in APP mouse model..................................................................27
Synbiotic mixture significant decreased Aβ42 level in hippocampus of APP mouse model........30
Both prebiotics and synbiotic mixture significantly decreased β-sheet
structures amyloid in the hippocampus of APP mouse model.....................................32
Neither prebiotics nor synbiotics mixtures could reduce astrocyte-related
inflammatory reaction in the hippocampus of APP mouse model..................................35
Both prebiotics and synbiotics did not alter Iba-1 positive microglia
expression in the hippocampus of APP mouse model.............................................38
Synbiotic mixture reduced local and systemic inflammation in APP mouse model.................41
Synbiotic mixtures induced neurogenesis in the hippocampus of APP mouse model................45
Synbiotic mixtures alter gut microbiota composition in APP mouse model.......................48
Discussion...................................................................................51
Human and mice gut microbiota composition....................................................51
Factors influencing the composition of mice gut microbiota...................................52
Morris water maze test for learning and memory deficits......................................53
Effects of probiotics treatment on behavioral deficits.......................................54
Effects of synbiotics treatment in neuroinflammation.........................................54
The efficacy and safety of probiotics in human...............................................55
The ability of probiotic bacteria colonization...............................................55
Possible mechanisms of probiotics affect Alzheimer’s disease................................56
The inhibitory effects of synbiotics on tumor development....................................57
The effects of synbiotics in Alzheimer’s disease............................................58
Conclusion...................................................................................59
References...................................................................................60
Appendix.....................................................................................75
Supplementary information....................................................................77
主座標分析(PCoA, Principal Co-ordinates Analysis)..........................................77
系統演化多樣性分析(Phylogenetic Diversity)...................................................77
相對豐富度(Relative Abundance)...............................................................78
各組別腸道菌相對豐富度之p value..............................................................79


Figure index
Fig. 1_17
Fig. 2_18
Fig. 3_20
Fig. 4_21
Fig. 5_23
Fig. 6_26
Fig. 7_29
Fig. 8_31
Fig. 9_34
Fig. 10_37
Fig. 11_40
Fig. 12_42
Fig. 13_44
Fig. 14_47
Fig. 15_49
Fig. 16_50
Alzheimer's, A. (2015). 2015 Alzheimer's disease facts and figures. Alzheimers Dement 11, 332-384.
Asti, A., and Gioglio, L. (2014). Can a bacterial endotoxin be a key factor in the kinetics of amyloid fibril formation? J Alzheimers Dis 39, 169-179.
Athari Nik Azm, S., Djazayeri, A., Safa, M., Azami, K., Ahmadvand, B., Sabbaghziarani, F., Sharifzadeh, M., and Vafa, M. (2018). Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in beta-amyloid (1-42) injected rats. Appl Physiol Nutr Metab 43, 718-726.
Bekkering, P., Jafri, I., van Overveld, F.J., and Rijkers, G.T. (2013). The intricate association between gut microbiota and development of type 1, type 2 and type 3 diabetes. Expert Rev Clin Immunol 9, 1031-1041.
Besselink, M.G., van Santvoort, H.C., Buskens, E., Boermeester, M.A., van Goor, H., Timmerman, H.M., Nieuwenhuijs, V.B., Bollen, T.L., van Ramshorst, B., Witteman, B.J., et al. (2008). Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet 371, 651-659.
Bird, T.D. (1993). Early-Onset Familial Alzheimer Disease. In GeneReviews((R)), M.P. Adam, H.H. Ardinger, R.A. Pagon, S.E. Wallace, L.J.H. Bean, K. Stephens, and A. Amemiya, eds. (Seattle (WA)).
Bischoff, S.C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J.D., Serino, M., Tilg, H., Watson, A., and Wells, J.M. (2014). Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol 14, 189.
Bonfili, L., Cecarini, V., Berardi, S., Scarpona, S., Suchodolski, J.S., Nasuti, C., Fiorini, D., Boarelli, M.C., Rossi, G., and Eleuteri, A.M. (2017). Microbiota modulation counteracts Alzheimer's disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 7, 2426.
Bonfili, L., Cecarini, V., Cuccioloni, M., Angeletti, M., Berardi, S., Scarpona, S., Rossi, G., and Eleuteri, A.M. (2018). SLAB51 Probiotic Formulation Activates SIRT1 Pathway Promoting Antioxidant and Neuroprotective Effects in an AD Mouse Model. Mol Neurobiol 55, 7987-8000.
Bostanciklioglu, M. (2019). The role of gut microbiota in pathogenesis of Alzheimer's disease. J Appl Microbiol.
Bourassa, M.W., Alim, I., Bultman, S.J., and Ratan, R.R. (2016). Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci Lett 625, 56-63.
Brandscheid, C., Schuck, F., Reinhardt, S., Schafer, K.H., Pietrzik, C.U., Grimm, M., Hartmann, T., Schwiertz, A., and Endres, K. (2017). Altered Gut Microbiome Composition and Tryptic Activity of the 5xFAD Alzheimer's Mouse Model. J Alzheimers Dis 56, 775-788.
Brinkman, B.M., Becker, A., Ayiseh, R.B., Hildebrand, F., Raes, J., Huys, G., and Vandenabeele, P. (2013). Gut microbiota affects sensitivity to acute DSS-induced colitis independently of host genotype. Inflamm Bowel Dis 19, 2560-2567.
Brinkman, B.M., Hildebrand, F., Kubica, M., Goosens, D., Del Favero, J., Declercq, W., Raes, J., and Vandenabeele, P. (2011). Caspase deficiency alters the murine gut microbiome. Cell Death Dis 2, e220.
Brosseron, F., Krauthausen, M., Kummer, M., and Heneka, M.T. (2014). Body fluid cytokine levels in mild cognitive impairment and Alzheimer's disease: a comparative overview. Mol Neurobiol 50, 534-544.
Burgess, N., Maguire, E.A., and O'Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron 35, 625-641.
Cascella, M., Bimonte, S., Muzio, M.R., Schiavone, V., and Cuomo, A. (2017). The efficacy of Epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer's disease: an overview of pre-clinical studies and translational perspectives in clinical practice. Infect Agent Cancer 12, 36.
Chao, S.H., Wu, R.J., Watanabe, K., and Tsai, Y.C. (2009). Diversity of lactic acid bacteria in suan-tsai and fu-tsai, traditional fermented mustard products of Taiwan. Int J Food Microbiol 135, 203-210.
Chen, S.G., Stribinskis, V., Rane, M.J., Demuth, D.R., Gozal, E., Roberts, A.M., Jagadapillai, R., Liu, R., Choe, K., Shivakumar, B., et al. (2016). Exposure to the Functional Bacterial Amyloid Protein Curli Enhances Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caenorhabditis elegans. Sci Rep 6, 34477.
Cheng, I.H., Scearce-Levie, K., Legleiter, J., Palop, J.J., Gerstein, H., Bien-Ly, N., Puolivali, J., Lesne, S., Ashe, K.H., Muchowski, P.J., et al. (2007). Accelerating amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J Biol Chem 282, 23818-23828.
Chow, V.W., Mattson, M.P., Wong, P.C., and Gleichmann, M. (2010). An overview of APP processing enzymes and products. Neuromolecular Med 12, 1-12.
Chunchai, T., Thunapong, W., Yasom, S., Wanchai, K., Eaimworawuthikul, S., Metzler, G., Lungkaphin, A., Pongchaidecha, A., Sirilun, S., Chaiyasut, C., et al. (2018). Decreased microglial activation through gut-brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats. J Neuroinflammation 15, 11.
Claesson, M.J., Jeffery, I.B., Conde, S., Power, S.E., O'Connor, E.M., Cusack, S., Harris, H.M., Coakley, M., Lakshminarayanan, B., O'Sullivan, O., et al. (2012). Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178-184.
Correa-Oliveira, R., Fachi, J.L., Vieira, A., Sato, F.T., and Vinolo, M.A. (2016). Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology 5, e73.
Crumeyrolle-Arias, M., Jaglin, M., Bruneau, A., Vancassel, S., Cardona, A., Dauge, V., Naudon, L., and Rabot, S. (2014). Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42, 207-217.
Cryan, J.F., and O'Mahony, S.M. (2011). The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 23, 187-192.
D'Mello, C., Ronaghan, N., Zaheer, R., Dicay, M., Le, T., MacNaughton, W.K., Surrette, M.G., and Swain, M.G. (2015). Probiotics Improve Inflammation-Associated Sickness Behavior by Altering Communication between the Peripheral Immune System and the Brain. J Neurosci 35, 10821-10830.
Distrutti, E., O'Reilly, J.A., McDonald, C., Cipriani, S., Renga, B., Lynch, M.A., and Fiorucci, S. (2014). Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP. PLoS One 9, e106503.
Du, X., Wang, X., and Geng, M. (2018). Alzheimer's disease hypothesis and related therapies. Transl Neurodegener 7, 2.
Eichenbaum, H., Fagan, A., Mathews, P., and Cohen, N.J. (1988). Hippocampal system dysfunction and odor discrimination learning in rats: impairment or facilitation depending on representational demands. Behav Neurosci 102, 331-339.
Eichenbaum, H., Stewart, C., and Morris, R.G. (1990). Hippocampal representation in place learning. J Neurosci 10, 3531-3542.
Erny, D., Hrabe de Angelis, A.L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Keren-Shaul, H., Mahlakoiv, T., Jakobshagen, K., Buch, T., et al. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18, 965-977.
Esteve, E., Ricart, W., and Fernandez-Real, J.M. (2011). Gut microbiota interactions with obesity, insulin resistance and type 2 diabetes: did gut microbiote co-evolve with insulin resistance? Curr Opin Clin Nutr Metab Care 14, 483-490.
Franklin, C.L., and Ericsson, A.C. (2017). Microbiota and reproducibility of rodent models. Lab Anim (NY) 46, 114-122.
Friedland, R.P., and Chapman, M.R. (2017). The role of microbial amyloid in neurodegeneration. PLoS Pathog 13, e1006654.
Fujimori, S., Gudis, K., Mitsui, K., Seo, T., Yonezawa, M., Tanaka, S., Tatsuguchi, A., and Sakamoto, C. (2009). A randomized controlled trial on the efficacy of synbiotic versus probiotic or prebiotic treatment to improve the quality of life in patients with ulcerative colitis. Nutrition 25, 520-525.
Fukushima, Y., Kawata, Y., Hara, H., Terada, A., and Mitsuoka, T. (1998). Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children. Int J Food Microbiol 42, 39-44.
Gerlai, R., and Clayton, N.S. (1999). Analysing hippocampal function in transgenic mice: an ethological perspective. Trends Neurosci 22, 47-51.
Graff, L.A., Walker, J.R., and Bernstein, C.N. (2009). Depression and anxiety in inflammatory bowel disease: a review of comorbidity and management. Inflamm Bowel Dis 15, 1105-1118.
Grant, M.C., and Baker, J.S. (2017). An overview of the effect of probiotics and exercise on mood and associated health conditions. Crit Rev Food Sci Nutr 57, 3887-3893.
Guyonnet, D., Schlumberger, A., Mhamdi, L., Jakob, S., and Chassany, O. (2009). Fermented milk containing Bifidobacterium lactis DN-173 010 improves gastrointestinal well-being and digestive symptoms in women reporting minor digestive symptoms: a randomised, double-blind, parallel, controlled study. Br J Nutr 102, 1654-1662.
Harach, T., Marungruang, N., Duthilleul, N., Cheatham, V., Mc Coy, K.D., Frisoni, G., Neher, J.J., Fak, F., Jucker, M., Lasser, T., et al. (2017). Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 7, 41802.
He, B., Hoang, T.K., Wang, T., Ferris, M., Taylor, C.M., Tian, X., Luo, M., Tran, D.Q., Zhou, J., Tatevian, N., et al. (2017). Resetting microbiota by Lactobacillus reuteri inhibits T reg deficiency-induced autoimmunity via adenosine A2A receptors. J Exp Med 214, 107-123.
Heneka, M.T., Nadrigny, F., Regen, T., Martinez-Hernandez, A., Dumitrescu-Ozimek, L., Terwel, D., Jardanhazi-Kurutz, D., Walter, J., Kirchhoff, F., Hanisch, U.K., et al. (2010). Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci U S A 107, 6058-6063.
Hildebrand, F., Nguyen, T.L., Brinkman, B., Yunta, R.G., Cauwe, B., Vandenabeele, P., Liston, A., and Raes, J. (2013). Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol 14, R4.
Hill, J.M., Clement, C., Pogue, A.I., Bhattacharjee, S., Zhao, Y., and Lukiw, W.J. (2014). Pathogenic microbes, the microbiome, and Alzheimer's disease (AD). Front Aging Neurosci 6, 127.
Honeycutt, T.C., El Khashab, M., Wardrop, R.M., 3rd, McNeal-Trice, K., Honeycutt, A.L., Christy, C.G., Mistry, K., Harris, B.D., Meliones, J.N., and Kocis, K.C. (2007). Probiotic administration and the incidence of nosocomial infection in pediatric intensive care: a randomized placebo-controlled trial. Pediatr Crit Care Med 8, 452-458; quiz 464.
Hufnagel, D.A., Tukel, C., and Chapman, M.R. (2013). Disease to dirt: the biology of microbial amyloids. PLoS Pathog 9, e1003740.
Iqbal, K., Alonso Adel, C., Chen, S., Chohan, M.O., El-Akkad, E., Gong, C.X., Khatoon, S., Li, B., Liu, F., Rahman, A., et al. (2005). Tau pathology in Alzheimer disease and other tauopathies. Biochimica et biophysica acta 1739, 198-210.
Jacobson, A., Lam, L., Rajendram, M., Tamburini, F., Honeycutt, J., Pham, T., Van Treuren, W., Pruss, K., Stabler, S.R., Lugo, K., et al. (2018). A Gut Commensal-Produced Metabolite Mediates Colonization Resistance to Salmonella Infection. Cell Host Microbe 24, 296-307 e297.
Janda, J.M., and Abbott, S.L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45, 2761-2764.
Jeong, J.J., Kim, K.A., Hwang, Y.J., Han, M.J., and Kim, D.H. (2016). Anti-inflammaging effects of Lactobacillus brevis OW38 in aged mice. Benef Microbes 7, 707-718.
Jeong, J.J., Woo, J.Y., Kim, K.A., Han, M.J., and Kim, D.H. (2015). Lactobacillus pentosus var. plantarum C29 ameliorates age-dependent memory impairment in Fischer 344 rats. Lett Appl Microbiol 60, 307-314.
Joseph, J., Depp, C., Shih, P.B., Cadenhead, K.S., and Schmid-Schonbein, G. (2017). Modified Mediterranean Diet for Enrichment of Short Chain Fatty Acids: Potential Adjunctive Therapeutic to Target Immune and Metabolic Dysfunction in Schizophrenia? Front Neurosci 11, 155.
Karch, C.M., Cruchaga, C., and Goate, A.M. (2014). Alzheimer's disease genetics: from the bench to the clinic. Neuron 83, 11-26.
Kasubuchi, M., Hasegawa, S., Hiramatsu, T., Ichimura, A., and Kimura, I. (2015). Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7, 2839-2849.
Kellermayer, R., Dowd, S.E., Harris, R.A., Balasa, A., Schaible, T.D., Wolcott, R.D., Tatevian, N., Szigeti, R., Li, Z., Versalovic, J., et al. (2011). Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice. FASEB J 25, 1449-1460.
Kelly, C.J., Zheng, L., Campbell, E.L., Saeedi, B., Scholz, C.C., Bayless, A.J., Wilson, K.E., Glover, L.E., Kominsky, D.J., Magnuson, A., et al. (2015). Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host Microbe 17, 662-671.
Kobayashi, Y., Sugahara, H., Shimada, K., Mitsuyama, E., Kuhara, T., Yasuoka, A., Kondo, T., Abe, K., and Xiao, J.Z. (2017). Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer's disease. Sci Rep 7, 13510.
Krych, L., Hansen, C.H., Hansen, A.K., van den Berg, F.W., and Nielsen, D.S. (2013). Quantitatively different, yet qualitatively alike: a meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS One 8, e62578.
Lee, C.Y.D., Daggett, A., Gu, X., Jiang, L.L., Langfelder, P., Li, X., Wang, N., Zhao, Y., Park, C.S., Cooper, Y., et al. (2018). Elevated TREM2 Gene Dosage Reprograms Microglia Responsivity and Ameliorates Pathological Phenotypes in Alzheimer's Disease Models. Neuron 97, 1032-1048 e1035.
Ley, R.E., Backhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D., and Gordon, J.I. (2005). Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102, 11070-11075.
Ley, R.E., Turnbaugh, P.J., Klein, S., and Gordon, J.I. (2006). Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022-1023.
Ma, B.W., Bokulich, N.A., Castillo, P.A., Kananurak, A., Underwood, M.A., Mills, D.A., and Bevins, C.L. (2012). Routine habitat change: a source of unrecognized transient alteration of intestinal microbiota in laboratory mice. PLoS One 7, e47416.
Mallikarjuna, N., Praveen, K., and Yellamma, K. (2016). Role of Lactobacillus plantarum MTCC1325 in membrane-bound transport ATPases system in Alzheimer's disease-induced rat brain. Bioimpacts 6, 203-209.
Marchesi, J.R., Adams, D.H., Fava, F., Hermes, G.D., Hirschfield, G.M., Hold, G., Quraishi, M.N., Kinross, J., Smidt, H., Tuohy, K.M., et al. (2016). The gut microbiota and host health: a new clinical frontier. Gut 65, 330-339.
Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L., and Beyreuther, K. (1985). Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82, 4245-4249.
Merrill, C.A., Jonsson, M.A., Minthon, L., Ejnell, H., H, C.s.S., Blennow, K., Karlsson, M., Nordlund, A., Rolstad, S., Warkentin, S., et al. (2006). Vagus nerve stimulation in patients with Alzheimer's disease: Additional follow-up results of a pilot study through 1 year. J Clin Psychiatry 67, 1171-1178.
Minter, M.R., Hinterleitner, R., Meisel, M., Zhang, C., Leone, V., Zhang, X., Oyler-Castrillo, P., Zhang, X., Musch, M.W., Shen, X., et al. (2017). Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1DeltaE9 murine model of Alzheimer's disease. Sci Rep 7, 10411.
Minter, M.R., Zhang, C., Leone, V., Ringus, D.L., Zhang, X., Oyler-Castrillo, P., Musch, M.W., Liao, F., Ward, J.F., Holtzman, D.M., et al. (2016). Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer's disease. Sci Rep 6, 30028.
Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11, 47-60.
Mucke, L., Masliah, E., Yu, G.Q., Mallory, M., Rockenstein, E.M., Tatsuno, G., Hu, K., Kholodenko, D., Johnson-Wood, K., and McConlogue, L. (2000). High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20, 4050-4058.
Navarro, V., Sanchez-Mejias, E., Jimenez, S., Munoz-Castro, C., Sanchez-Varo, R., Davila, J.C., Vizuete, M., Gutierrez, A., and Vitorica, J. (2018). Microglia in Alzheimer's Disease: Activated, Dysfunctional or Degenerative. Front Aging Neurosci 10, 140.
Nguyen, T.L., Vieira-Silva, S., Liston, A., and Raes, J. (2015). How informative is the mouse for human gut microbiota research? Dis Model Mech 8, 1-16.
Nimgampalle, M., and Kuna, Y. (2017). Anti-Alzheimer Properties of Probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer's Disease induced Albino Rats. J Clin Diagn Res 11, KC01-KC05.
O'Shea, E.F., Cotter, P.D., Stanton, C., Ross, R.P., and Hill, C. (2012). Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int J Food Microbiol 152, 189-205.
Padurariu, M., Ciobica, A., Hritcu, L., Stoica, B., Bild, W., and Stefanescu, C. (2010). Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer's disease. Neurosci Lett 469, 6-10.
Palop, J.J., Jones, B., Kekonius, L., Chin, J., Yu, G.Q., Raber, J., Masliah, E., and Mucke, L. (2003). Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer's disease-related cognitive deficits. Proc Natl Acad Sci U S A 100, 9572-9577.
Panigrahi, P., Parida, S., Nanda, N.C., Satpathy, R., Pradhan, L., Chandel, D.S., Baccaglini, L., Mohapatra, A., Mohapatra, S.S., Misra, P.R., et al. (2017). A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 548, 407-412.
Parashar, A., and Udayabanu, M. (2017). Gut microbiota: Implications in Parkinson's disease. Parkinsonism Relat Disord 38, 1-7.
Querfurth, H.W., and LaFerla, F.M. (2010). Alzheimer's disease. N Engl J Med 362, 329-344.
Raman, M., Ambalam, P., Kondepudi, K.K., Pithva, S., Kothari, C., Patel, A.T., Purama, R.K., Dave, J.M., and Vyas, B.R. (2013). Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes 4, 181-192.
Reagan-Shaw, S., Nihal, M., and Ahmad, N. (2008). Dose translation from animal to human studies revisited. FASEB J 22, 659-661.
Riboulet-Bisson, E., Sturme, M.H., Jeffery, I.B., O'Donnell, M.M., Neville, B.A., Forde, B.M., Claesson, M.J., Harris, H., Gardiner, G.E., Casey, P.G., et al. (2012). Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota. PLoS One 7, e31113.
Rothhammer, V., and Quintana, F.J. (2016). Environmental control of autoimmune inflammation in the central nervous system. Curr Opin Immunol 43, 46-53.
Saito, Y., Hinoi, T., Adachi, T., Miguchi, M., Niitsu, H., Kochi, M., Sada, H., Sotomaru, Y., Sakamoto, N., Sentani, K., et al. (2019). Synbiotics suppress colitis-induced tumorigenesis in a colon-specific cancer mouse model. PLoS One 14, e0216393.
Sasada, T., Hinoi, T., Saito, Y., Adachi, T., Takakura, Y., Kawaguchi, Y., Sotomaru, Y., Sentani, K., Oue, N., Yasui, W., et al. (2015). Chlorinated Water Modulates the Development of Colorectal Tumors with Chromosomal Instability and Gut Microbiota in Apc-Deficient Mice. PLoS One 10, e0132435.
Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., Bird, T.D., Hardy, J., Hutton, M., Kukull, W., et al. (1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med 2, 864-870.
Schwartz, K., and Boles, B.R. (2013). Microbial amyloids--functions and interactions within the host. Curr Opin Microbiol 16, 93-99.
Sekirov, I., Russell, S.L., Antunes, L.C., and Finlay, B.B. (2010). Gut microbiota in health and disease. Physiol Rev 90, 859-904.
Sinclair, L., Osman, O.A., Bertilsson, S., and Eiler, A. (2015). Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PLoS One 10, e0116955.
Sjogren, M.J., Hellstrom, P.T., Jonsson, M.A., Runnerstam, M., Silander, H.C., and Ben-Menachem, E. (2002). Cognition-enhancing effect of vagus nerve stimulation in patients with Alzheimer's disease: a pilot study. J Clin Psychiatry 63, 972-980.
Smith, M.D., Bhatt, D.P., Geiger, J.D., and Rosenberger, T.A. (2014). Acetate supplementation modulates brain adenosine metabolizing enzymes and adenosine A(2)A receptor levels in rats subjected to neuroinflammation. J Neuroinflammation 11, 99.
Sofi, M.H., Gudi, R., Karumuthil-Melethil, S., Perez, N., Johnson, B.M., and Vasu, C. (2014). pH of drinking water influences the composition of gut microbiome and type 1 diabetes incidence. Diabetes 63, 632-644.
Stecher, B. (2015). The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection. Microbiol Spectr 3.
Subash, S., Essa, M.M., Braidy, N., Awlad-Thani, K., Vaishnav, R., Al-Adawi, S., Al-Asmi, A., and Guillemin, G.J. (2015). Diet rich in date palm fruits improves memory, learning and reduces beta amyloid in transgenic mouse model of Alzheimer's disease. J Ayurveda Integr Med 6, 111-120.
Subramaniam, S.R., and Federoff, H.J. (2017). Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson's Disease. Front Aging Neurosci 9, 176.
Tanzi, R.E., and Bertram, L. (2005). Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120, 545-555.
Tarkowski, E., Andreasen, N., Tarkowski, A., and Blennow, K. (2003). Intrathecal inflammation precedes development of Alzheimer's disease. J Neurol Neurosurg Psychiatry 74, 1200-1205.
Tukel, C., Nishimori, J.H., Wilson, R.P., Winter, M.G., Keestra, A.M., van Putten, J.P., and Baumler, A.J. (2010). Toll-like receptors 1 and 2 cooperatively mediate immune responses to curli, a common amyloid from enterobacterial biofilms. Cell Microbiol 12, 1495-1505.
Tukel, C., Wilson, R.P., Nishimori, J.H., Pezeshki, M., Chromy, B.A., and Baumler, A.J. (2009). Responses to amyloids of microbial and host origin are mediated through toll-like receptor 2. Cell Host Microbe 6, 45-53.
Turroni, F., Serafini, F., Foroni, E., Duranti, S., O'Connell Motherway, M., Taverniti, V., Mangifesta, M., Milani, C., Viappiani, A., Roversi, T., et al. (2013). Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions. Proc Natl Acad Sci U S A 110, 11151-11156.
Ubeda, C., Bucci, V., Caballero, S., Djukovic, A., Toussaint, N.C., Equinda, M., Lipuma, L., Ling, L., Gobourne, A., No, D., et al. (2013). Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect Immun 81, 965-973.
Vinolo, M.A., Rodrigues, H.G., Nachbar, R.T., and Curi, R. (2011). Regulation of inflammation by short chain fatty acids. Nutrients 3, 858-876.
Vogel, G. (2008). Clinical trials. Deaths prompt a review of experimental probiotic therapy. Science 319, 557.
Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A., Harding, S.J., Merluzzi, A.P., Johnson, S.C., Carlsson, C.M., Asthana, S., Zetterberg, H., Blennow, K., et al. (2017). Gut microbiome alterations in Alzheimer's disease. Sci Rep 7, 13537.
Vorhees, C.V., and Williams, M.T. (2006). Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1, 848-858.
Wang, Y., Jin, S., Sonobe, Y., Cheng, Y., Horiuchi, H., Parajuli, B., Kawanokuchi, J., Mizuno, T., Takeuchi, H., and Suzumura, A. (2014). Interleukin-1beta induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes. PLoS One 9, e110024.
Wang, Y., Yin, H., Wang, L., Shuboy, A., Lou, J., Han, B., Zhang, X., and Li, J. (2013). Curcumin as a potential treatment for Alzheimer's disease: a study of the effects of curcumin on hippocampal expression of glial fibrillary acidic protein. Am J Chin Med 41, 59-70.
Ward, N.L., Pieretti, A., Dowd, S.E., Cox, S.B., and Goldstein, A.M. (2012). Intestinal aganglionosis is associated with early and sustained disruption of the colonic microbiome. Neurogastroenterol Motil 24, 874-e400.
Westfall, S., Lomis, N., and Prakash, S. (2019). A novel synbiotic delays Alzheimer's disease onset via combinatorial gut-brain-axis signaling in Drosophila melanogaster. PLoS One 14, e0214985.
Whishaw, I.Q., and Tomie, J. (1996). Of mice and mazes: similarities between mice and rats on dry land but not water mazes. Physiol Behav 60, 1191-1197.
Wright, A.L., Zinn, R., Hohensinn, B., Konen, L.M., Beynon, S.B., Tan, R.P., Clark, I.A., Abdipranoto, A., and Vissel, B. (2013). Neuroinflammation and neuronal loss precede Abeta plaque deposition in the hAPP-J20 mouse model of Alzheimer's disease. PloS one 8, e59586.
Zenewicz, L.A., Yin, X., Wang, G., Elinav, E., Hao, L., Zhao, L., and Flavell, R.A. (2013). IL-22 deficiency alters colonic microbiota to be transmissible and colitogenic. J Immunol 190, 5306-5312.
Zhao, Y., and Lukiw, W.J. (2015). Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer's disease (AD). J Nat Sci 1.
Zmora, N., Zilberman-Schapira, G., Suez, J., Mor, U., Dori-Bachash, M., Bashiardes, S., Kotler, E., Zur, M., Regev-Lehavi, D., Brik, R.B., et al. (2018). Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell 174, 1388-1405 e1321.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊