跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/15 14:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯柏宇
研究生(外文):Bo-Yu Hou
論文名稱:PPV-6阻斷類澱粉乙型蛋白所誘發之已分化神經元再進入細胞週期
論文名稱(外文):PPV-6 Suppresses Amyloid Beta (Aβ)-Induced Cell Cycle Reentry in Differentiated Primary Cortical Neurons
指導教授:楊定一楊定一引用關係
指導教授(外文):Ding-I Yang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:腦科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:64
外文關鍵詞:AmyloidCell cycleCell death and survivalCortical neuronsPlant polysaccharides
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
類澱粉乙型蛋白(Aβ)是組成阿茲海默症患者腦部老年斑塊且具有神經毒性的主要蛋白質,Aβ已知也會促使有絲分裂後已分化的神經元再進入細胞週期,進一步造成細胞死亡。許多研究指出植物萃取多醣體具有治療阿茲海默症的潛力,然而多醣體是藉由何種機制來阻止Aβ誘導的細胞死亡仍不清楚。因此,本篇研究旨在探討萃取自多年生藤本植物的多醣體(PPV-6)之神經保護機制。我們假設PPV-6會藉由阻斷Aβ所誘導的神經元再進入細胞週期來抑制神經細胞死亡。為了驗證這個假說,我們利用已分化之初代培養大腦皮質神經細胞共同處理PPV-6和Aβ,再利用西方點墨法、免疫細胞化學染色法與流式細胞儀來評估神經元再進入細胞週期的程度,此外也利用MTT試驗來分析細胞存活率。和單獨處理Aβ相比,PPV-6和Aβ共處理時不管是細胞存活率或是型態皆有回復。進一步的,處理PPV-6後Aβ所誘導的細胞週期標記蛋白質cyclin D1、pRb-Pi、PCNA、p-Histone H3與細胞凋亡指標cleaved caspase-3的上升皆會被回復,利用流式細胞儀也觀察到類似結果。總結來說,我們的研究指出PPV-6的神經保護機制是藉由阻止神經元再進入細胞週期,進而抑制細胞死亡。
Amyloid-beta peptide (Aβ) is the main neurotoxic component of senile plaque, which is the pathological hallmark of Alzheimer’s disease (AD). In addition, Aβ is also known to trigger cell cycle reentry in post-mitotic neurons followed by cell death. Many studies have reported that polysaccharides from medicinal plants may carry therapeutic potential in AD. However, the molecular mechanisms underlying polysaccharide-mediated inhibition of Aβ neurotoxicity still remain unclear. Therefore, this study was designed to explore the neuroprotective mechanisms of polysaccharides extracted from a perennial vine (PPV-6). We hypothesized that PPV-6 may suppress cell cycle reentry and subsequent apoptosis induced by Aβ in the fully differentiated post-mitotic neurons. To test this hypothesis, primary cortical neurons were subjected to co-treatment with Aβ and PPV-6. Western blotting, immunocytochemistry, and flow cytometry were conducted to assess the extents of neuronal cell cycle reentry. MTT assay was performed to determine cell viability. Compared with Aβ alone, cell viability and neuronal morphology were recovered by co-treatment with PPV-6. Further, Aβ-induced upregulation of G1-phase markers including cyclin D1 and phosphorylated retinoblastoma protein (pRb-Pi), G2-phase marker such as proliferating cell nuclear antigen (PCNA), mitotic marker histone H3 phosphorylated at Ser-10 (p-Histone H3), and caspase-3 cleavage indicative of apoptosis were all reversed by PPV-6. Similar results were obtained with flow cytometry. Taken together, our finding indicated that the neuroprotective mechanisms of PPV-6 involve, at least in part, suppression of Aβ-induced neuronal cell cycle reentry and subsequent apoptosis.
Contents

Acknowledgments ............................. i
Chinese abstract ............................ ii
English abstract ............................ iii
Contents .................................... iv
Introduction ................................ 1
Alzheimer’s disease (AD) ................... 1
AD and aberrant cell cycle reentry ......... 2
Polysaccharides and neurodegenerative diseases
............................................ 4
Materials and Methods ....................... 6
Reagents and preparations of Aβs ........... 6
Primary rat cortical cultures .............. 6
MTT reduction assay ........................ 7
Western blotting ........................... 7
Immunocytochemistry (ICC) .................. 8
Quantification of neurite lengths and neurite branches
............................................ 9
Flow cytometry ............................. 9
Statistical analysis ....................... 10
Results ..................................... 11
PPV-6 has neuroprotective effects against Aβ toxicity in
vitro ...................................... 11
PPV-6 restores Aβ25-35-induced neuronal morphology and
synaptic damage ............................ 11
PPV-6 decreases the numbers of the cell undergoing cell
cycle reentry induced by Aβ25-35 ........... 12
PPV-6 downregulates expression of cell cycle and apoptosis
markers in primary cortical cultures ....... 12
PPV-6 decreases the numbers of post-mitotic neurons
expressing cell cycle markers upon Aβ25-35 exposure
............................................ 13
PPV-6 reverses Aβ25-35-induced neuronal cell cycle reentry
in a post- treatment paradigm .............. 14
PPV-6 downregulates expression of cell cycle and apoptosis
markers induced by Aβ1-42 in primary cortical cultures
............................................ 15
Discussion .................................. 16
References .................................. 21
Figure legends .............................. 27
References

1. Alonso, A. D., Grundke-Iqbal, I., Barra, H. S., & Iqbal, K. (1997). Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci U S A, 94(1), 298-303.
2. Alzheimer, A. (1906). Uber einen eigenartigen schweren Erkrankungsprozess der Hirninde. Neurol Cent, 25, 1134.
3. An, S., Lu, W., Zhang, Y., Yuan, Q., & Wang, D. (2017). Pharmacological basis for use of armillaria mellea polysaccharides in Alzheimer's disease: antiapoptosis and antioxidation. Oxid Med Cell Longev, 2017, 4184562.
4. Alzheimer's Association (2018). 2018 Alzheimer's disease facts and figures. Alzheimers Dement, 14(3), 367-429.
5. Barnes, L. L., & Bennett, D. A. (2014). Alzheimer's disease in African Americans: risk factors and challenges for the future. Health Aff (Millwood), 33(4), 580-586.
6. Barrio-Alonso, E., Hernández-Vivanco, A., Walton, C. C., Perea, G., & Frade, J. M. (2018). Cell cycle reentry triggers hyperploidization and synaptic dysfunction followed by delayed cell death in differentiated cortical neurons. Sci Rep, 8(1), 14316.
7. Baruch, K., Deczkowska, A., Rosenzweig, N., Tsitsou-Kampeli, A., Sharif, A. M., Matcovitch-Natan, O., Kertser, A., David, E., Amit, I., & Schwartz, M. (2016). PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer's disease. Nat Med, 22(2), 135-137.
8. Busser, J., Geldmacher, D. S., & Herrup, K. (1998). Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer's disease brain. J Neurosci, 18(8), 2801-2807.
9. Chao, A. C., Chen, C. H., Chang, S. H., Huang, C. T., Hwang, W. C., & Yang, D. I. (2019). Id1 and sonic hedgehog mediate cell cycle reentry and apoptosis induced by amyloid beta-peptide in post-mitotic cortical neurons. Mol Neurobiol, 56(1), 465-489.
10. Chen, S. D., Wu, C. L., Lin, T. K., Chuang, Y. C., & Yang, D. I. (2012). Renin inhibitor aliskiren exerts neuroprotection against amyloid beta-peptide toxicity in rat cortical neurons. Neurochem Int, 61(3), 369-377.
11. Christopher, K., Makani, V., Judy, W., Lee, E., Chiaia, N., Kim, D. S., & Park, J. (2015). Use of fluorescent ANTS to examine the BBB-permeability of polysaccharide. MethodsX, 2, 174-181.
12. Chun, W., & Johnson, G. V. (2007). The role of tau phosphorylation and cleavage in neuronal cell death. Front Biosci, 12, 733-756.
13. Cleveland, D. W., Hwo, S. Y., & Kirschner, M. W. (1977). Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol, 116(2), 207-225.
14. Cummings, J., Aisen, P. S., DuBois, B., Frolich, L., Jack, C. R., Jr., Jones, R. W., Morris, J. C., Raskin, J., Dowsett, S. A., & Scheltens, P. (2016). Drug development in Alzheimer's disease: the path to 2025. Alzheimers Res Ther, 8, 39.
15. Diehl, J. A. (2002). Cycling to cancer with cyclin D1. Cancer Biol Ther, 1(3), 226-231.
16. Du, X., Wang, X., & Geng, M. (2018). Alzheimer's disease hypothesis and related therapies. Transl Neurodegener, 7, 2.
17. Duan, Y., Dong, S., Gu, F., Hu, Y., & Zhao, Z. (2012). Advances in the pathogenesis of Alzheimer's disease: focusing on tau-mediated neurodegeneration. Transl Neurodegener, 1(1), 24.
18. El-Aouar Filho, R. A., Nicolas, A., De Paula Castro, T. L., Deplanche, M., De Carvalho Azevedo, V. A., Goossens, P. L., Taieb, F., Lina, G., Le Loir, Y., & Berkova, N. (2017). Heterogeneous family of cyclomodulins: smart weapons that allow bacteria to hijack the eukaryotic cell cycle and promote infections. Front Cell Infect Microbiol, 7, 208.
19. Ferri, C. P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., Hall, K., Hasegawa, K., Hendrie, H., Huang, Y., Jorm, A., Mathers, C., Menezes, P. R., Rimmer, E., & Scazufca, M. (2005). Global prevalence of dementia: a Delphi consensus study. Lancet, 366(9503), 2112-2117.
20. Gallardo, G., & Holtzman, D. M. (2017). Antibody therapeutics targeting Aβ and tau. Cold Spring Harb Perspect Med, 7(10).
21. Ganjhu, R. K., Mudgal, P. P., Maity, H., Dowarha, D., Devadiga, S., Nag, S., & Arunkumar, G. (2015). Herbal plants and plant preparations as remedial approach for viral diseases. Virusdisease, 26(4), 225-236.
22. Guerreiro, R., Wojtas, A., Bras, J., Carrasquillo, M., Rogaeva, E., Majounie, E., Cruchaga, C., Sassi, C., Kauwe, J. S., Younkin, S., Hazrati, L., Collinge, J., Pocock, J., Lashley, T., Williams, J., Lambert, J. C., Amouyel, P., Goate, A., Rademakers, R., Morgan, K., Powell, J., St George-Hyslop, P., Singleton, A., & Hardy, J. (2013). TREM2 variants in Alzheimer's disease. N Engl J Med, 368(2), 117-127.
23. Hippius, H., & Neundörfer, G. (2003). The discovery of Alzheimer's disease. Dialogues Clin Neurosci, 5(1), 101-108.
24. Hoozemans, J. J., Bruckner, M. K., Rozemuller, A. J., Veerhuis, R., Eikelenboom, P., & Arendt, T. (2002). Cyclin D1 and cyclin E are co-localized with cyclo-oxygenase 2 (COX-2) in pyramidal neurons in Alzheimer disease temporal cortex. J Neuropathol Exp Neurol, 61(8), 678-688.
25. Hung, Y. H., Chang, S. H., Huang, C. T., Yin, J. H., Hwang, C. S., Yang, L. Y., & Yang, D. I. (2016). Inhibitor of differentiation-1 and hypoxia-inducible factor-1 mediate sonic hedgehog induction by amyloid beta-peptide in rat cortical neurons. Mol Neurobiol, 53(2), 793-809.
26. Iqbal, K., Alonso Adel, C., Chen, S., Chohan, M. O., El-Akkad, E., Gong, C. X., Khatoon, S., Li, B., Liu, F., Rahman, A., Tanimukai, H., & Grundke-Iqbal, I. (2005). Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta, 1739(2-3), 198-210.
27. Kellogg, D. R. (2003). Wee1-dependent mechanisms required for coordination of cell growth and cell division. J Cell Sci, 116(Pt 24), 4883-4890.
28. Kim, S. Y., & Ferrell, J. E., Jr. (2007). Substrate competition as a source of ultrasensitivity in the inactivation of Wee1. Cell, 128(6), 1133-1145.
29. Koseoglu, M. M., Norambuena, A., Sharlow, E. R., Lazo, J. S., & Bloom, G. S. (2019). Aberrant neuronal cell cycle re-entry: The pathological confluence of Alzheimer's disease and brain insulin resistance, and its relation to cancer. J Alzheimers Dis, 67(1), 1-11.
30. Lee, H. G., Perry, G., Moreira, P. I., Garrett, M. R., Liu, Q., Zhu, X., Takeda, A., Nunomura, A., & Smith, M. A. (2005). Tau phosphorylation in Alzheimer's disease: pathogen or protector? Trends Mol Med, 11(4), 164-169.
31. Lei, T., Li, H., Fang, Z., Lin, J., Wang, S., Xiao, L., Yang, F., Liu, X., Zhang, J., Huang, Z., & Liao, W. (2014). Polysaccharides from Angelica sinensis alleviate neuronal cell injury caused by oxidative stress. Neural Regen Res, 9(3), 260-267.
32. Li, L., Cheung, T., Chen, J., & Herrup, K. (2011). A comparative study of five mouse models of Alzheimer's disease: cell cycle events reveal new insights into neurons at risk for death. Int J Alzheimers Dis, 2011, 171464.
33. Lim, S., & Kaldis, P. (2013). Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development, 140(15), 3079-3093.
34. Liu, H., Chen, S., Guo, C., Tang, W., Liu, W., & Liu, Y. (2018). Astragalus polysaccharide protects neurons and stabilizes mitochondrial in a mouse model of Parkinson disease. Med Sci Monit, 24, 5192-5199.
35. Lo Conte, M., & Carroll, K. S. (2013). The redox biochemistry of protein sulfenylation and sulfinylation. J Biol Chem, 288(37), 26480-26488.
36. Ma, L., Wang, X., Li, Y., Xiao, H., & Yuan, F. (2018). Effect of polysaccharides from Vitis vinifera L. on NF-κB/IκB-α signal pathway and inflammatory factors in Alzheimer's model rats. BIOTECHNOL BIOTEC EQ, 32(4), 1012-1020.
37. Mahajan, K., & Mahajan, N. P. (2013). WEE1 tyrosine kinase, a novel epigenetic modifier. Trends Genet, 29(7), 394-402.
38. Makani, V., Jang, Y. G., Christopher, K., Judy, W., Eckstein, J., Hensley, K., Chiaia, N., Kim, D. S., & Park, J. (2016). BBB-permeable, neuroprotective, and neurotrophic polysaccharide, Midi-GAGR. PLoS One, 11(3), e0149715.
39. Manoharan, S., Guillemin, G. J., Abiramasundari, R. S., Essa, M. M., Akbar, M., & Akbar, M. D. (2016). The role of reactive oxygen species in the pathogenesis of Alzheimer's disease, Parkinson's disease, and Huntington's disease: A mini review. Oxid Med Cell Longev, 2016, 8590578.
40. Muller, M., Lutter, D., & Puschel, A. W. (2010). Persistence of the cell-cycle checkpoint kinase Wee1 in SadA- and SadB-deficient neurons disrupts neuronal polarity. J Cell Sci, 123(Pt 2), 286-294.
41. Na, K., Li, K., Sang, T., Wu, K., Wang, Y., & Wang, X. (2017). Anticarcinogenic effects of water extract of sporoderm-broken spores of Ganoderma lucidum on colorectal cancer in vitro and in vivo. Int J Oncol, 50(5), 1541-1554.
42. Nurse, P., & Thuriaux, P. (1980). Regulatory genes controlling mitosis in the fission yeast Schizosaccharomyces pombe. Genetics, 96(3), 627-637.
43. Patterson, C. (2018). World Alzheimer report 2018—The state of the art of dementia research: New frontiers. Alzheimer’s Disease International (ADI): London.
44. Prigent, C., & Dimitrov, S. (2003). Phosphorylation of serine 10 in histone H3, what for? J Cell Sci, 116(Pt 18), 3677-3685.
45. Rowley, R., Hudson, J., & Young, P. G. (1992). The wee1 protein kinase is required for radiation-induced mitotic delay. Nature, 356(6367), 353-355.
46. Sanabria-Castro, A., Alvarado-Echeverría, I., & Monge-Bonilla, C. (2017). Molecular pathogenesis of Alzheimer's disease: An update. Ann Neurosci, 24(1), 46-54.
47. Seward, M. E., Swanson, E., Norambuena, A., Reimann, A., Cochran, J. N., Li, R., Roberson, E. D., & Bloom, G. S. (2013). Amyloid-beta signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer's disease. J Cell Sci, 126(Pt 5), 1278-1286.
48. Shankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E., Smith, I., Brett, F. M., Farrell, M. A., Rowan, M. J., Lemere, C. A., Regan, C. M., Walsh, D. M., Sabatini, B. L., & Selkoe, D. J. (2008). Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med, 14(8), 837-842.
49. Shankar, G. M., & Walsh, D. M. (2009). Alzheimer's disease: synaptic dysfunction and Abeta. Mol Neurodegener, 4, 48.
50. Sun, X. Z., Liao, Y., Li, W., & Guo, L. M. (2017). Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Neural Regen Res, 12(6), 953-958.
51. Takuma, H., Tomiyama, T., Kuida, K., & Mori, H. (2004). Amyloid beta peptide-induced cerebral neuronal loss is mediated by caspase-3 in vivo. J Neuropathol Exp Neurol, 63(3), 255-261.
52. Tan, C. K., Castillo, C., So, A. G., & Downey, K. M. (1986). An auxiliary protein for DNA polymerase-delta from fetal calf thymus. J Biol Chem, 261(26), 12310-12316.
53. Tang, W., Hemm, I., & Bertram, B. (2003a). Recent development of antitumor agents from Chinese herbal medicines. Part II. High molecular compounds(3). Planta Med, 69(3), 193-201.
54. Tang, W., Hemm, I., & Bertram, B. (2003b). Recent development of antitumor agents from chinese herbal medicines; part I. Low molecular compounds. Planta Med, 69(2), 97-108.
55. Tomashevski, A., Husseman, J., Jin, L. W., Nochlin, D., & Vincent, I. (2001). Constitutive Wee1 activity in adult brain neurons with M phase-type alterations in Alzheimer neurodegeneration. J Alzheimers Dis, 3(2), 195-207.
56. Tzianabos, A. O. (2000). Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin Microbiol Rev, 13(4), 523-533.
57. Varvel, N. H., Bhaskar, K., Patil, A. R., Pimplikar, S. W., Herrup, K., & Lamb, B. T. (2008). Abeta oligomers induce neuronal cell cycle events in Alzheimer's disease. J Neurosci, 28(43), 10786-10793.
58. Vassar, R., & Citron, M. (2000). Abeta-generating enzymes: recent advances in beta- and gamma-secretase research. Neuron, 27(3), 419-422.
59. Vermeulen, K., Van Bockstaele, D. R., & Berneman, Z. N. (2003). The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif, 36(3), 131-149.
60. Wang, J., Hu, S., Nie, S., Yu, Q., & Xie, M. (2016). Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxid Med Cell Longev, 2016, 5692852.
61. Wu, C. Y., Ke, Y., Zeng, Y. F., Zhang, Y. W., & Yu, H. J. (2017). Anticancer activity of Astragalus polysaccharide in human non-small cell lung cancer cells. Cancer Cell Int, 17, 115.
62. Xu, J., Zhang, R., Zuo, P., Yang, N., Ji, C., Liu, W., Wang, Y., Wang, H., Wu, A., Yue, Y., & Liu, Y. (2012). Aggravation effect of isoflurane on Abeta(25-35)-induced apoptosis and tau hyperphosphorylation in PC12 cells. Cell Mol Neurobiol, 32(8), 1343-1351.
63. Yang, Y., Mufson, E. J., & Herrup, K. (2003). Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer's disease. J Neurosci, 23(7), 2557-2563.
64. Yang, Y., Varvel, N. H., Lamb, B. T., & Herrup, K. (2006). Ectopic cell cycle events link human Alzheimer's disease and amyloid precursor protein transgenic mouse models. J Neurosci, 26(3), 775-784.
65. Zhang, B., Gaiteri, C., Bodea, L. G., Wang, Z., McElwee, J., Podtelezhnikov, A. A., Zhang, C., Xie, T., Tran, L., Dobrin, R., Fluder, E., Clurman, B., Melquist, S., Narayanan, M., Suver, C., Shah, H., Mahajan, M., Gillis, T., Mysore, J., MacDonald, M. E., Lamb, J. R., Bennett, D. A., Molony, C., Stone, D. J., Gudnason, V., Myers, A. J., Schadt, E. E., Neumann, H., Zhu, J., & Emilsson, V. (2013). Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell, 153(3), 707-720.
66. Zhang, F., Lu, J., Zhang, J. G., & Xie, J. X. (2015). Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson's disease model in C57BL/6J mice. Neural Regen Res, 10(2), 308-313.
67. Zhang, F., Shi, J. J., Thakur, K., Hu, F., Zhang, J. G., & Wei, Z. J. (2017). Anti-cancerous potential of polysaccharide fractions extracted from peony seed dreg on various human cancer cell lines via cell cycle arrest and apoptosis. Front Pharmacol, 8, 102.
68. Zhang, Q., Xia, Y., Luo, H., Huang, S., Wang, Y., Shentu, Y., Mahaman, Y. A. R., Huang, F., Ke, D., Wang, Q., Liu, R., Wang, J. Z., Zhang, B., & Wang, X. (2018). Codonopsis pilosula polysaccharide attenuates tau hyperphosphorylation and cognitive impairments in hTau infected mice. Front Mol Neurosci, 11, 437.
69. Zhao, W., Pan, X., Li, T., Zhang, C., & Shi, N. (2016). Lycium barbarum polysaccharides protect against trimethyltin chloride-induced apoptosis via sonic hedgehog and PI3K/Akt signaling pathways in mouse neuro-2a cells. Oxid Med Cell Longev, 2016, 9826726.
70. Zhu, X., Raina, A. K., & Smith, M. A. (1999). Cell cycle events in neurons. Proliferation or death? Am J Pathol, 155(2), 327-329.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top