(3.236.228.250) 您好!臺灣時間:2021/04/13 13:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳佑任
研究生(外文):Chen, Yu-Jen
論文名稱:科技廠房無塵室CFD model煙控與氣體偵測應用評估
論文名稱(外文):CFD model Evaluation of Smoke Control, Fire and Gas Detection Systems in Clean Rooms of High-Tech Plants
指導教授:徐啟銘徐啟銘引用關係
指導教授(外文):Shu, Chi-Min
口試委員:游美利周偉龍 簡賢文劉博滔
口試委員(外文):You, Mei-LiChou, Wei-LungChien, Shen-WenLiu, Bo-Tau
口試日期:2019-04-19
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:工程科技研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:76
中文關鍵詞:無塵室風機濾網機組防煙壁吸氣式偵煙探測器氣體洩漏火災模擬軟體
外文關鍵詞:Clean roomsFan Filter Unit (FFU)Smoke curtainsAir Sampling-Type Smoke Detector (ASD)Gas leakageFire Dynamics Simulator (FDS)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:237
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
過去的幾十年電腦以及3C產品運用與需求大增,使得科技產業對於產值良率要求度也隨之增加,為維護科技廠房潔淨度,無塵室中採用濾網以及大量換氣之方式維持潔淨度,此舉對於煙控與氣體偵測造成極大的影響,因作業上需求,無塵室中不易進行相關評估測試,因此鮮少有實務上的量化評估分析。
本研究針對目前無塵室常見的問題進行CFD model 模擬分析,以實際廠房尺寸與輸入相關條件,利用無塵室清洗機台廠商之損失判定標準,探討2 MW、5 MW於無塵室下排煙,以及上排煙設計之差異,結果顯示上排煙系統之排煙效果優於下排煙,建議無塵室內仍須採取上排煙之設計,此外,若上排煙結合一般排氣之設計時,當排煙量超過4500 CMM將不符合損失控制效益,且易造成排煙口過多的落塵問題,以及浪費能源之問題。目前無塵室因作業需求,並無法設置防煙壁,利用排煙區風機濾網機組Fan Filter Unit (FFU)停止或是降載配合排煙之方式,進行損失區域控制,結果顯示損失面積均明顯低於目前無防煙壁之排煙設計之現況。
由於火災初期,傳統偵煙式探測器因動作敏感度較高,以及高速氣流的影響,並無法有效發揮作用,因此建議於無塵室設置吸氣式偵煙探測器Air Sampling-Type Smoke Detector (ASD)系統,於高架地板下方,以及Dry-coil處,將可有效偵測無塵室火災。
當無塵室較空氣輕以及重的製程氣體洩漏量低至0.1 g/s時,兩者均無明顯的氣體擴散範圍,建議以氣體洩漏量1 g/s的範圍為基準,設置於高架地板下方。設置位置應事先進行評估流向與範圍,避免無法偵測到氣體洩漏的狀況。
若以CFD model進行無塵室煙控、濃煙與氣體偵測效能評估時,能避免影響無塵室製程,且可明確顯示煙層影響範圍,並可將損失狀況數據化,建議未來可採用此類軟體如火災模擬軟體Fire Dynamics Simulator (FDS),進行無塵室之相關性能評估。

Technology development has driven the development of various technology industries, increasing the need for 3C chips. To produce large quantities of chips, suppliers have been expanding their production lines at a quick pace; and to increase the yield of products, the demand of clean rooms has become more stringent. Cleanliness requirements for related processes made it difficult for field testing in clean rooms, therefore this research based design specifications on the majority of clean rooms to build the test model. This research assess some problem in fire control, detection, and gas leakage detection in clean room by CFD model. The evaluation models were setting by actual condition in clean room. Fab smoke exhaust system is approved as a better system to exhaust smoke, because hot gas will entrain air to go up with flow stream to the smoke exhaust system. 4500 CMM was found having the best exhaust efficiency for 2MW and 5 MW fires. The loss area is smaller for stopping or derating FFU in the fire zone than no smoke curtains scenario in this research.
Because of alarm thresholds, smoke detectors in the Fab did not actuate in early stages of clean room fire. Therefore, the Air Sampling-Type Smoke Detector, (ASD) systems were required below the raised floor and the dry-coil for monitoring.
Evaluation of airflow and diffusion within clean rooms showed light and heavy gases are both affected by the downward airflow of the FFU, resulting in a higher diffusion rate below elevated floors than above them. In addition, high levels of ventilation can dilute the leaked gas, resulting in an unobvious TWA leakage area for gas leaks below 0.1 g/s. Toxicity detectors should be installed within 1 g/s leakage areas below raised floor to ensure effectiveness, and be closer to actual conditions within clean rooms. Clean rooms are highly ventilated areas, and are difficult to perform tests and assessments. For evaluations regarding smoke control, fire detection, and gas leaks, this research can act as basis for protection of current factories, as well as aid in the design of new facilities. CFD models can be utilized to predict the interior airflow and other related parameters needed for protection. These results can be quantified and is important data for future facility improvements or designs.

摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 1
第二章 文獻回顧 3
2.1無塵室結構 3
2.2無塵室災例 5
2.3 FDS相關應用 9
第三章 研究方法與流程 11
3.1 CFD model無塵室設置 11
3.1.1FDS軟體介紹 11
3.1.2無塵室煙控設置參數說明 14
3.1.3煙控模擬火源與評估基準說明 21
3.1.4無塵室ASD設置參數說明 22
3.1.5火災偵測設備模擬火源與評估基準說明 23
3.1.6無塵室氣體洩漏偵測設置參數說明 25
第四章 結果與討論 31
4.1無塵室煙控評估 31
4.1.1單區、三區與下排煙控設計評估 31
4.1.2煙控改善設計評估 34
4.1.3防煙壁與相關煙控替代方案之評估 37
4.1.4小結 40
4.2 無塵室ASD設置位置效能評估 42
4.2.1小結 44
4.3無塵室氣體洩漏器設置位置評估 45
4.3.1氨氣洩漏現況評估-洩漏位置No.1 45
4.3.2氨氣毒性偵測器設置高度評估 52
4.3.3小結 61
第五章 結論與建議 62
參考文獻 64


1.消防署,各類場所消防安全設備設置標準,中華民國內政部,2014。
2.FEDERAL STANDARD 209E, Airborne Particulate Cleanliness Classes in Cleanrooms and Clean Zones, 1999.
3.International Standard ISO 14644-1 Cleanroom and associated controlled environments – Part 1 : Classification of air cleanliness. May 1, 1999.
4.謝文凱,高科技廠房消防設施有效性評估,碩士論文,長榮大學職業安全衛生研究所,2014。
5.張勝凱,半導體廠災害應變模式之探討,碩士論文,國立臺灣大學機械工程學研究所,2002。
6.Zalosh, RG. Industrial fire protection engineering. Hoboken, NJ: Wiley, 2003.
7.洪傳譜,高科技廠房先進救災設備配合緊急應變程序之研究,碩士論文,國立交通大學工學院碩士在職專班產業安全與防災學程,2005。
8.陳俊瑜,張國基,高科技產業製程安全技術與管理: 本質較安全設計,2017。
9.消防署,潔淨區消防安全設備設置指導綱領,中華民國內政部,2005。
10.消防署,潔淨區消防安全設備設置要點,中華民國內政部,2016。
11.NFPA 318, Standard for the Fire Protection of Cleanrooms, National Fire Protection Association, Quincy, MA, USA, 1999.
12.FM 7-7/17-12 LOSS PREVENTION RECOMMENDATIONS, Factory Mutual Insurance Company, 2005.
13.SEMI S2, Safety Guideline for Fire Protection of Semiconductor Manufacturing Equipment.
14.陳詠翔,半導體廠房無塵室煙控系統設計,碩士論文,國立交通大學機械工程學系,2005。
15.楊冠雄,無塵室性能式煙控系統設計與應用分析,2012。
16.陳朝慶,無塵室火災模擬,碩士論文,國立中山大學機械工程學系研究所,2001。
17.黃國勇,半導體廠煙控系統設計及動作程序之有效性研究,碩士論文,國立交通大學工學院碩士在職專班產業安全與防災學程,2004。
18.邱亦雄,性能式煙控設計與避難分析~以無塵室為例,碩士論文,國立交通大學機械工程學系,2005。
19.張家豪,建築物正負壓區劃性能式煙控設計之實測與模擬研究,碩士論文,國立臺北科技大學能源與冷凍空調工程系碩士班,2011。
20.莊凱翔,無塵室動態排煙區劃之設計與性能分析,碩士論文,國立成功大學土木工程學系,2016。
21.McGrattan K, McDermott R, Hostikka S, Floyd J, Fire Dynamics Simulator (Version 5) User’s Guide, NIST, 2010.
22.Meng N, Hu L, Wu L, Yang L, Zhu S, Chen L, Numerical study on the optimization of smoke ventilation mode at the conjunction area between tunnel track and platform in emergency of a train fire at subway station, Tunnelling and Underground Space Technology, 2014.
23.Fu Q, Peng B, Chen L, Performance-Based Smoke Prevention and Extraction System Design for an Exhibition Center, Procedia Engineering, 2014.
24.Hu SC, Chen CC, Locating the very early smoke detector apparatus (VESDA) in vertical laminar clean rooms according to the trajectories of smoke particles, Building and Environment, 2007.
25.I YP, Chiu YL, Wu SJ, The simulation of air recirculation and fire/explosion phenomena within a semiconductor factory, Journal of Hazardous Materials, 2009.
26.Chen CY, Chang KC, Huang CH, Lu CC, Study of Chemical Supply System of High-tech Process Using Inherently Safer Design Strategies in Taiwan, Journal of Loss Prevention in the Process Industries, 2014.
27.Forney GP, Smokeview (Version 5)- A Tool for Visualizing Fire Dynamics Simulation Data Volume 1: User' s Guide. MD, USA : National Institute of Standards and Technology, 2010.
28.BOCA, Fire Protection Systems, BUILDING OFFICIALS & CODE ADMINISTRATORS, 1996.
29.NFPA 92B, Standard for Smoke Management Systems in Malls, Atria, and Large Spaces, National Fire Protection Association, Quincy, MA, 2008.
30.Mulholland, G., 2002. Smoke Production and Properties, SFPE Handbook of Fire
Protection Engineering, third ed. National Fire Protection Association, Quincy, MA,
USA.
31.Alpert RL, Ceiling Jet Flows, The SFPE Handbook of Fire Protection Engineering, 3th edition, National Fire Protection Association, Quincy MA, USA, 2002.
32.NFPA 72, National Fire Alarm Code, National Fire Protection Association, Quincy, MA, USA, 2002.
33.Steve RH, Peter JD, Guidelines for Use of Vapor Cloud Dispersion Models, 2nd Edition, WILEY, 1987.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔