跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 21:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅巧郁
研究生(外文):LO, CHIAO-YU
論文名稱:建構醫院院內病患不預期心跳停止事件重要因子之預測模型
論文名稱(外文):Constructing Predictive Model to Predict important Factors for In-Hospital Cardiac Arrest patients
指導教授:鄭博文鄭博文引用關係
指導教授(外文):CHENG, BOR-WEN
口試委員:童超塵林昭維
口試委員(外文):TORNG, CHAU-CHENLIN, JOU-WEI
口試日期:2019-06-20
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:64
中文關鍵詞:院內心跳停止事件臨床警示系統決策樹C5.0支援向量機
外文關鍵詞:In-Hospital Cardiac Arrest (IHCA)Clinical Alert System (CAS)Decision tree C5.0Support Vector Machine(SVM)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
住院病患安全是醫院醫療品質的重要指標,而影響的主要原因是院內心跳停止事件,該事件發生頻率極高,但是經過急救後存活下來的機率是極低的。儘管,採用臨床警示系統(clinical alert system , CAS)取代人為監控,提高通報住院病患的生命徵象異常事件之次數,死亡率卻沒有降低。因此本研究想提升醫院CAS之敏感度與特異性,預先讓醫護人員發現狀況不穩定之病患,提前給予適合的醫療處理,有效的降低院內不預期心跳停止事件的發生及死亡率。
因此本研究收集個案醫院所提供以2016年至2018年期間的CAS標準之當下有進行通報臨床異常事件的生命徵象資料庫,年齡為20歲以上成人之一般急性住院的住院病患。運用決策樹C5.0與羅吉斯迴歸找出自變數與依變數之關聯性,再利用決策樹C5.0、羅吉斯迴歸與支援向量機SVM方法進行資料探勘分析,找出影響不預期心跳死亡事件之重要因子並建立預測模型,最後採用準確率與ROC曲線來作為模型績效評估標準。其研究結果最佳預測模型為決策樹C5.0,準確率為83.93%,此結果較適合醫師在醫學臨床上做為參考。

The safety of inpatients is an important indicator for hospital healthcare quality, so the in-hospital cardiac arrest(IHCA) has always been the main reason. Because the frequency of occurrence is extremely high, and the survival rate is extremely low after first aid. Although, hospital use clinical alert system(CAS) substitute human monitor in order to increase the number of alarm, but the mortality has not decreased. Thus, in this study will promote sensitivity and specificity for CAS. The medical personnel will find patients with unstable conditions in advance after CAS is improved, then give inpatients appropriately medical treatment to effectively reduce the events occurrence and mortality.
Therefore, in this study will collect the data of the clinically abnormal events with the CAS standards and the adult inpatients who over twenty years old from in case hospital database during 2016 to 2018.Using decision tree C5.0 and Logistic regression to find the correlation between independent variables and dependent variables, and then we use the decision tree C5.0 , Logistic regression and support vector machine(SVM) to conduct data mining and analysis to find out the impact. The important factors of in-hospital cardiac arrest events and building a predictive models. Finally, we use the accuracy and ROC curve as the model performance evaluation criteria. Based on this result , the best predicted model is the decision tree C5.0 , the accuracy is 83.93%. This result can be as a reference for physician in clinical medicine.

摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3研究對象、範圍與限制 3
1.4名詞定義 3
1.5研究流程 4
第二章 文獻探討 6
2.1院內心跳停止事件 6
2.2臨床警示系統 6
2.2.1院內CAS啟動內容與流程 8
2.3快速反應小組 11
2.3.1 院內加入RRT小組工作 12
2.4決策樹 13
2.5支援向量機(Support Vector Machine , SVM) 15
2.5.1線性SVM基本概念 16
2.5.2 SVM核心函數 17
2.6羅吉斯迴歸運用在醫療上 19
2.7本章小節 21
第三章 研究方法 22
3.1研究架構 22
3.2研究資料 24
3.2.1資料來源 24
3.2.2資料蒐集 24
3.3資料前處理 27
3.4支援向量機SVM 28
3.4.1支援向量機SVM模型 28
3.4.2支援向量機SVM參數設定 29
3.5預測模型建構 29
3.5.1 k-fold交叉驗證法(k-fold cross-validation) 29
3.5.2 建構決策樹C5.0模型 30
3.6模型績效評估 33
第四章 研究結果 35
4.1決策樹C5.0模型 35
4.1.1決策樹C5.0模型訓練樣本組及測試樣本組選擇 35
4.1.2決策樹C5.0模型結果 36
4.2羅吉斯迴歸模型 37
4.2.1羅吉斯迴歸模型訓練樣本組與測試樣本組選擇 37
4.2.2羅吉斯迴歸模型結果 37
4.3支援向量機SVM模型 38
4.3.1支援向量機模型最佳參數組合 39
4.3.2支援向量機SVM模型一訓練樣本組與測試樣本組選擇 39
4.3.3支援向量機SVM模型一結果 40
4.3.4支援向量機SVM模型二訓練樣本組與測試樣本組選擇 41
4.3.5支援向量機SVM模型二結果 41
4.3.6支援向量機SVM模型三訓練樣本組與測試樣本組選擇 42
4.3.7支援向量機SVM模型三結果 43
4.4模型績效評估 44
第五章 結論與建議 49
5.1研究發現與結論 49
5.2未來方向研究與討論 50
參考文獻 52

1.Abel Kho, David Rotz,Kinan Alrahi,Wendy Cárdenas, Kristin Ramsey,David Liebovitz, Gary Noskin, Chuck Watts. (2007). Utility of commonly captured data from an EHR to identify hospitalized patients at risk for clinical deterioration. AMIA Annual Symposium.
2.Alex James, C. W. (2018). Cardiopulmonary resuscitation. Medicine.
3.Andrea L. BeninP. Borgstrom, Grace Y. Jenq, Sarah A. Roumanis,Leora I. HorwitzChristopher. (2012). Defining Impact of a Rapid Response Team: Qualitative Study with Nurses, Physicians, and Hospital Administrators. Postgraduate Medical Journal.
4.Bleyer AJ, Vidya S, Russell GB, Jones CM, Sujata L, Daeihagh P, Hire D. (2011). Longitudinal analysis of one million vital signs in patients in an academic medical center. Resuscitation.
5.Brennan TA, L. A. (1990). Identification of adverse events occurring during hospitalization: a cross-sectional study of litigation, quality assurance, and medical records at two teaching hospitals. Ann Intern Med.
6.Cheng-Lung Huang, M.-C. C.-J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications.
7.Chih-wei Hsu, C.-c. C.-j. (2004). A practical guide to support vector classification. Department of Computer Science National Taiwan University.
8.Christopher. (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery.
9.Chun-LangChang, C.-H. (2009). Applying decision tree and neural network to increase quality of dermatologic diagnosis. Expert Systems with Applications.
10.Cretikos M, Chen J, Hillman K, Bellomo R, Finfer S, Flabouris A. (2007). The objective medical emergency team activation criteria: a case-control study. Resuscitation.
11.Delen D, W. G. (2005). Predicting breast cancer survivability: a comparison of three data mining methods. Artificial Intelligence in Medicine.
12.Dursun Delen, G. W. (2005). Predicting breast cancer survivability:a comparison of three data mining methods. Artificial Intelligence in Medicine.
13.Gao H, McDonnell A, Harrison DA, Moore T, Adam S, Daly K, Esmonde L, Goldhill DR, Parry GJ, Rashidian A, Subbe CP, Harvey S. (2007). Systematic review and evaluation of physiological track and trigger warning systems for identifying at-risk patients on the ward. Intensive Care Medicine.
14.Hartigan, J. (1975). Clustering Algorithms. John Wiley & Sons.
15.Hillman K, Chen J, Cretikos M, Bellomo R, Brown D, Doig G, Finfer S, Flabouris A. (2005). Introduction of the medical emergency team (MET) system: a cluster-randomised controlled trial. The Lancet.
16.J. García-NietoE.Alba,L.Jourdan,E.Talbi. (2009). Sensitivity and specificity based multiobjective approach for feature selection: Application to cancer diagnosis. Information Processing Letters.
17.Jansen, Cuthbertson. (2010). Detecting critical illness outside the ICU: the role of track and trigger systems. Current Opinion in Critical Care.
18.Jiawei HanKamberMicheline. (2001). Data Mining: Concepts and Techniques. Academic Press.
19.Jih-Shuin JerngKo, Frank Leigh Lu, Yih-Sharng Chen, Szu-Fen Huang, Chong-Jen YuWen-Je. (2008). Incidence and Significance of Clinically Abnormal Events in a Tertiary Referral Medical Center: Implementation of the Clinical Alert System (CAS). Journal of the Formosan Medical Association.
20.Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. International Joint Conference on Arti
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top