|
1. Akande, K. O., Owolabi, T. O., Twaha, S., Olatunji, S. O. (2014). Performance Comparison of SVM and ANN in Predicting Compressive Strength of Concrete. Journal of Computer Engineering, 16:88-94. 2. Bag, M., Gauri, S. K., & Chakraborty, S. (2012). An expert system for control chart pattern recognition. The International Journal of Advanced Manufacturing Technology, 62:291–301. 3. Bakas, J., Mahalat, M., & Mollah, A. (2016). A Comparative Study of Various Classifiers for Character Recognition on Multi-script Databases. International Journal of Computer Applications, 155:1-5. 4. Bradley, J. V. (1968). Distribution-Free Statistical Tests. Prentice Hall, New Jersey. 5. Chen, Z., Lu, S., Lam, S. (2007). A hybrid system for SPC concurrent pattern recognition. Advanced Engineering Informatics, 21:303-310. 6. Cheng, H. P., & Cheng, C. S. (2009). Control chart pattern recognition using wavelet analysis and neural networks. 品質學報, 16(5), 311-321. 7. Chinnam, R. B. (2002). Support vector machines for recognizing shifts in correlated and other manufacturing processes. International Journal of Production Research, 40:4449-4466. 8. Cortes, C., Vapnik, V. (1995). Support-Vector Network. Machine Learning, 20:273-297. 9. Cuentas, S., Niebles, R, P., Garcia, E. (2017). Support vector machine in statistical process monitoring: a methodological and analytical review. The International Journal of Advanced Manufacturing Technology, 91:485–500 10. Du, S., Huang, D., Lv, J. (2013). Recognition of concurrent control chart patterns using wavelet transform decomposition and multiclass support vector machines. Computers & Industrial Engineering, 66:683-695. 11. Guh, R. S. (2002). Effects of non-normality on artificial neural network based control chart pattern recognizer. Journal of the Chinese Institute of Industrial Engineers, 19:13-22. 12. Hachicha, W., Ghorbel, Ahmed. (2012). A survey of control-chart pattern-recognition literature (1991–2010) based on a new conceptual classification scheme. Computers & Industrial Engineering, 63 :204–222. 13. Heisele, B., Ho, P., Poggio, T. (2001). Face recognition with support vector machines: global versus component-based approach. Proceedings Eighth IEEE International Conference on Computer Vision, 2:688-694. 14. Holland, J. H. (1992). Adaptation in natural and artificial systems, MIT Press, Cambridge. 15. Huang, C. L., Wang, C. J. (2006). A GA-based feature selection and parameters optimization for support vector machines. Expert Systems with Applications, 31:231-240. 16. Lu, C. J., Shao, Y. E., Li. C. C. (2014). Recognition of Concurrent Control Chart Patterns by Integrating ICA and SVM. Applied Mathematics & Information Sciences, 8:681-689. 17. Nelson, L. S. (1985). Interpreting Shewhart X control charts. J. Qual. Technol, 17(2):114–116. 18. Ranaee, V., Ebrahimzadeh, A. (2011). Control chart pattern recognition using a novel hybrid intelligent method. Applied Soft Computing, 11:2676-2686.
|