跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 20:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳冠辰
研究生(外文):Wu, Kuan-Chen
論文名稱:鈷含量對釕鈷擴散阻障層性能之影響
論文名稱(外文):Effect of cobalt on barrier properties of electroplating RuCo alloy thin film
指導教授:陳文照陳文照引用關係曾駿逸
指導教授(外文):Chen, Wen-JauhTseng, Jiun-Yi
口試委員:陳文照曾駿逸
口試委員(外文):Chen, Wen-JauhTseng, Jiun-Yi
口試日期:2019-07-18
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:材料科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:50
中文關鍵詞:電鍍太陽能電池擴散阻障層
外文關鍵詞:ElectroplatingSolar cellsDiffusion barrier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究使用電鍍方式,在 (001)方向具織構的矽基材上,析鍍不同成分比例的鈷釕合金,將電鍍後的矽基材/鈷釕擴散阻障層/銅試片,在退火爐中以數個不同溫度退火十分鐘,退火後的矽基材/鈷釕擴散阻障層/銅試片,使用X光繞射(XRD)、掃描電子顯微鏡(SEM)、掃描穿透式顯微鏡(STEM)進行相關之分析,結果顯示在矽/純釕阻障層/銅試片中,於400 ºC退火時就會產生銅矽化合物(Cu3Si),而在矽/ Ru90Co10/銅的系統,則在500ºC時發現Cu3Si。最後將鈷提升至90%(矽/ Ru10Co90/銅)則在600ºC時才會產生Cu3Si,此顯示電鍍鈷釕阻障層中,鈷含量愈高則阻擋銅擴散的效果愈好,鈷釕合金阻擋溫度最高能達到600ºC。

關鍵字:電鍍;太陽能電池;擴散阻障層。

ABSTRACT
In this work, a thin RuCo layer with different composition were deposited on silicidation of textured (001) silicon by an electroplating method. The Cu/RumCon/textured-Si samples were annealed at various temperature for 10 minutes in an annealing furnace. The Cu/RumCon/textured-Si samples were defined using the following: x-ray diffractometer (XRD), scanning electron microscope (SEM), and scanning transmission electron microscope (STEM). For the Cu/Ru/textured-Si samples, the Cu3Si particles develop from an annealing temperature of 400ºC. For the Cu/Ru90Co10/textured-Si samples, the Cu3Si particles develop from an annealing temperature of 500ºC. For the Cu/Ru10Co90/textured-Si samples, the Cu3Si particles develop from an annealing temperature of 600ºC. This revealed that electroplating a thin RumCon layer with higher cobalt content can act as an effective diffusion barrier against Cu at higher than 500°C.

Keywords:Electroplating; Solar cells; Diffusion barrier

目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章緒論 1
1.1前言 1
1.2研究動機 1
第二章基礎原理 2
2.1文獻回顧 2
2.2無電鍍 2
2.2.1無電鍍原理 2
2.2.2無電鍍液特性 3
2.2.3無電鍍前處理 3
2.2.4無電鍍鎳反應原理 4
2.2.5無電鍍特性 5
2.3電鍍 5
2.4擴散阻障層 6
2.5金屬鈷、釕的特性 7
2.6金屬矽化合物 7
第三章實驗方法 9
3.1實驗藥品 9
3.2實驗流程圖 10
3.3 實驗步驟 12
第四章結果與討論 14
4.1無電鍍法析鍍鎳再鍍銅經退火不同溫度之分析 14
4.2電鍍鈷釕之分析 17
4.3 電鍍純釕金屬後鍍銅 18
4.4電鍍鈷釕合金之鈷含量10%( Co10Ru90 )後鍍銅 22
4.5電鍍鈷釕合金之鈷含量65%( Co65Ru35)後鍍銅 27
4.6電鍍鈷釕合金之鈷含量90%( Co90Ru10 )後鍍銅 29
4.7電鍍純鈷金屬後鍍銅 35
第五章結論 38
參考文獻 39

參考文獻
[1] T.K. Tsai, S.S. Wu and C.S. Hsu,“Effect of phosphorus on the copper diffusion barrier properties of electroless CoWP films” , Thin Solid Films 519 (2011) 4958-4962
[2] K.C. Hsu, D.C. Perng and Y.C. Wang, “Robust ultra-thin RuMo alloy film as a seedless Cu diffusion barrier”, Journal of Alloys and Compounds 516 (2012) 102-106
[3] W.L. Liu, S.H. Hsiesh, T.K. Tsai,and W.J. Chen,“Growth Kinetics of Electroless Cobalt Depositionby TEM”, Journalof the ElectrochemicalSociety 151 (2004) 680-683.
[4] S. Faraji and A.H. Faraji , “NooriAn investigation on electroless Cu–P composite coatings with micro and nano-SiCparticlesMater Des” , Journal Surface Engineering 54 (2014) 570–575
[5] R. Chan, T.N. Arunagiri, Y. Zhang, O. Chyan, R.M. Wallace, M.J. Kim, T.Q. Hurd, “A Study of Low k Material Porosity Effects on Ta/TaN Diffusion Barrier and Its Thermal Stability”, Electrochemical and Solid State Letters 7 (2004) 154.
[6] D.C. Perng , J.B. Yeh and C.H. Kuo, “Phosphorous doped Ru film for advanced Cu diffusion barriers” , Applied Surface Science 254 (2008) 6059–6062
[7] H.H. Guo, Y. Ling, X.S. Zhong, Y. Li and K. Xu, “Diffusion barrier performance of nano-structured and amorphous RueGe diffusion barriers for copper metallization”, Vacuum 86 (2012) 965-969
[8]維基百科 釕金屬特性 https://zh.wikipedia.org/wiki/%E9%92%8C
[9] J.O. Olowolafe, M.A. Nicolet and J.W. Mayer, “Influence of the nature of the Si substrate on nickel silicide formed from thin Ni films”, Thin Solid Films 38 (1976) 143–150
[10] D.K. Schroder, “Solar cell contact resistance” , IEEE Transactions on Electronic Devices 31 (1984) 637 - 647
[11] J. Bartsch, A. Mondon, K. Bayer, C. Schetter, M. Horteis and S.W. Glunz,
“Quick determination of copper-metallization long-term impact on silicon solar cells”, Journal of The Electrochemical Society 157 (2010) 942–946
[12] A.A. Istratov and E.R. Weber, “Electrical properties and recombination activity of copper, nickel and cobalt in silicon”, Appl. Phys. A: Mater. Sci. Process.66 (1998) 123–136
[13] S.R. Wenham, Y. Wu, R.D. Xiao, M. Taouk, J. Zhao, M. Guelden, M.A. Green, “Pilot line production of laser grooved silicon solar cells”, 11th European Photovoltaic Solar Energy Conference (1992) 416-419.
[14] T. Morimoto, T. Ohguro and H.S. Momose,“Self-Aligened Nickel Mono Silicides Technology for High-speed Deep-Submicrometer Logic CMOS ULSI”, IEE Transactions on ELeectron Devices 42 (1995) 915-922

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊