跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/15 04:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂承駿
研究生(外文):LU, CHENG-JUN
論文名稱:後處理對鑽石線切割單晶矽織構化形貌之影響
論文名稱(外文):Effect of Post-Treatment on Textured Morphology of Diamond Wire-Sawn Single Crystalline Si
指導教授:王行達
指導教授(外文):WANG, SHING-DAR
口試委員:王行達陳文照謝淑惠
口試委員(外文):WANG, SHING-DARCHEN, WEN-JAUHHSIEH, SHU-HUEI
口試日期:2019-07-26
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:材料科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:68
中文關鍵詞:織構化單晶矽硝酸銅
外文關鍵詞:TexturedSingle crystal germaniumcopper nitrate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究為使用銅離子輔助化學蝕刻後進行後處理之矽晶片的表面形狀和反射率分析之探討,第一部分進行Cu(NO3)2/HF/H2O2的低溫酸蝕刻步驟,結束後使用HNO3清除金屬離子。第二部分使用HF/ HNO3/ H2O溶液進行後處理蝕刻,結束使用HF清除表面氧化物。使用場發射電子顯微鏡分析織構化後矽晶片表面形貌,紫外光/可見光分光光譜儀分析蝕刻後晶片之反射率。
透過SEM顯示使用Cu進行金屬輔助矽基板可以蝕刻出{111}面,進而形成倒金字塔的蝕刻洞,在這之中發現溫度、濃度、時間的改變均能造成整體蝕刻情形。另一方面在已經形成倒金字塔的蝕刻洞進行後處理,研究HF/HNO3的比值對後處理形貌的影響,發現HF/HNO3的比值在4~5.33之間能將倒金字塔結構蝕刻成完整的碗狀結構,進而利用碗狀結構更能降低光直接從表面反射出去的特性,增加太陽能電池的效率。

This study explores the surface shape and reflectivity analysis of tantalum wafers that have been post-treated with copper ion-assisted chemical etching.In the first part,we perform a low temperature acid etching step of Cu(NO3)2/HF/H2O2.At the end we use HNO3 to remove metal ions.The second part uses a HF/HNO3/ H2O solution for post-treatment etching,and at the end we use HF to remove surface oxides.The surface morphology of the textured ruthenium wafer was analyzed by field emission electron microscopy,and the reflectance of the etched wafer was analyzed by an ultraviolet/visible spectrophotometer.
We can etch the {111} plane by using SEM to use Cu for metal-assisted ruthenium substrates. It will form an etched hole in the inverted pyramid.Among them, we found that changes in temperature,concentration, and time all contribute to the overall etching situation.On the other hand, after the etch hole with inverted pyramid is formed,the effect of the ratio of HF/HNO3 on the post-treatment morphology is studied.It is found that the ratio of HF/HNO3 can etch the inverted pyramid structure from 4 to 5.33.The bowl-like structure, in turn, utilizes a bowl-like structure to further reduce the direct reflection of light from the surface and increase the efficiency of the solar cell.

摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 1
1.3論文架構 7
第二章 實驗原理與文獻回顧 8
2.1 文獻回顧 8
2.2 太陽光電效應 11
2.3 太陽能電池種類 14
2.3.1 太陽能矽晶片生產流程 15
2.3.2 磷擴散製成 16
2.3.3 表面抗反射薄膜製備 18
2.3.4 網印與導電漿技術 18
2.4 矽晶片蝕刻機制 19
2.4.1 酸蝕刻技術 22
2.4.2 金屬輔助化學蝕刻法 23
2.4.3 硝酸銅蝕刻機制 24
2.4.4 缺陷去除蝕刻法 27
2.5 太陽能電池的參數 28
2.6 高效率矽晶太陽能電池技術 30
2.6.1 鈍化射極及背面太陽能電池(PERC) 31
2.6.2 指叉狀背面電極太陽電池(IBC) 32
2.7 量測分析儀器 33
2.7.1 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope) 33
2.7.2紫外光/可見光光譜儀(UV-visible spectrophotometer) 33
第三章 實驗流程與實驗器材 35
3.1 實驗藥品. 35
3.2 實驗儀器 36
3.3 實驗流程 36
3.3.1 蝕刻前清洗 36
3.3.2 使用明徽清洗過後的蝕刻晶片進行Cu(NO3)2/ HF/H2O2蝕刻 37
第四章 結果與討論 39
4.1使用明徽單晶矽晶片進行Cu(NO3)2/ HF/H2O2蝕刻之表面形貌分析 39
4.2使用Cu(NO3)2 /HF/ H2O2蝕刻晶片進行後處理蝕刻之表面形貌分析 42
4.3將蝕刻晶片進行反射率分析 48
第五章 結論 51
參考文獻 52


[1]王珽玉、鄭鉦耀、劉俊毅,“太陽能矽晶片切片技術發展趨勢”,工業材料雜誌,第356期,民國105年。
[2]B. K Nayak, M. C Gupta, and K. W Kolasinski, "Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation," Nanotechnology, Vol. 18, 195302, 2007.
[3]王宗新,“金字塔抗反射結構之製作及其單晶矽太陽能電池之應用”,國立中山大學光電工程研究所碩士論文,民國108年。
[4]H. Zheng, M. Han, P. Zheng, L. Zheng, H. Qin, and L. Deng, “Porous silicon templates prepared by Cu-assisted chemical etching,” Materials Letters, Vol. 118, pp. 146-149, 2014.
[5]Y. Wang, Y. Liu, L. Yang, W. Chen, X. Du, .A. Kuznetsov, “Micro-structured inverted pyramid texturization of Si inspired by self-assembled Cu nanoparticles,” Nanoscale, Issue 2, pp. 1-7. 2016
[6]T. Rahman, R. Bonilla, A. Nawabjan, P. Wilshaw, and S. Boden, “Passivation of all-angle black surfaces for silicon solar cells,” Solar Energy Materials and Solar Cells, Vol. 160, pp. 444-453, 2017.
[7]C. Zheng, H. Shen, Tian Pu, Y. Jiang, Q. Tang, W. Yang, C. Chen, C. Rui, and Y. Li, “High-Efficient Solar Cells by the Ag/Cu-Assisted Chemical Etching Process on Diamond–Wire-Sawn Multi-crystalline Silicon,” IEEE Journal of Photovoltaics, Vol. 7, Issue. 1, pp. 153-156, 2017.
[8]F. Cao, K. Chen, J. Zhang, X. Ye, J. Li, S. Zou, and X. Su, “Next-generation multi-crystalline silicon solar cells: Diamond-wire sawing, nano-texture and high efficiency,” Solar Energy Materials and Solar Cells, Vol. 141, pp. 132-138, 2015.
[9]B. González-Díaz , R. Guerrero-Lemus , B. Díaz-Herreraa, N. Marreroa, J. Méndez-Ramos, and D. Borchert, "Optimization of roughness, reflectance and photoluminescence for acid textured mc-Si solar cells etched at different HF/HNO3 concentrations," Materials Science and Engineering B, Vol. 159. pp. 295-298, 2009.
[10]W. Chen, X. Liu, M. Li, C. Yin, and L. Zhou, “On the nature and removal of saw marks on diamond wire sawn multi-crystalline silicon wafers,” Material Science in Semiconductor Processing, Vol. 27, pp. 220-227, 2016.
[11]X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X. Wang, M. Shen, and X. Su, “18.45%-Effi cient Multi-Crystalline Silicon Solar Cells with Novel Nanoscale Pseudo-Pyramid Texture,” pp. 6708–6716, 2014.
[12]A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, AWang, “Angle-dependent reflectance measurements on photovoltaicmaterials and solar cells”, optics communicatons, Vol.172, pp.139-151, 1999.
[13]蔡政勳,“單晶矽太陽能電池表面粗糙化結構和抗反射層薄膜製程及性能研究”,中華大學機械工程學系研究所碩士論文,民國108年。
[14]L. Yang, Y. Liu, Y. Wang, W. Chen, Q. Chen, J. Wu, A. Kuznetsov, and D. Xiaolong, “18.87% - efficient inverted pyramid structured silicon solar cell by one - step Cu-assisted texturization technique,” Solar Energy Materials and Solar Cells, Vol. 166, pp. 121–126, 2017.
[15]U. Gangopadhyay, K. Kim, S. K. Dhungel, P. K. Basu, J. Yi,“Low-cost texturization of large-area crystalline silicon solar cellsusing hydrazine mono-hydrate for industrial use”, Renewable Energy,Vol.31, pp. 1906-1915, 2006.
[16]M. Cao, S. Li, J. Deng, Y. Li, W. Ma, and Y. Zhou, “Texturing a pyramid-like structure on a silicon surface via the synergetic effect of copper and Fe(III) in hydrofluoric acid solution,” Applied Surface Science, Vol. 372, pp. 36-41, 2016.
[17]Y. Cao, Y. Zhou, F. Liu, Y. Zhou, Y. Zhang, Y. Liu, and Y. Guo, “Progress and Mechanism of Cu Assisted Chemical Etching of Silicon in a Low Cu2+ Concentration Region,” ECS J. Solid State Sci. Technol. Vol 4, Issue 8, pp. 331-336, 2015.
[18]Y. Wang, L. Yang, Y. Liu, Z. Mei, W. Chen, J. Li, H. Liang, A. Kuznetsov, and D. Xiaolong “Maskless inverted pyramid texturization of silicon,” Scientific Reports, Vol. 5, 10843, 2015.
[19]Z. Xiao, G. Geng, X. Wei, Z. Yue, and L. Zhou, “On the mechanism of the vapor etching of diamond wire sawn multi-crystalline silicon wafers for texturing,” Material Science in Semiconductor Processing, Vol. 53, pp. 8-12, 2016.
[20]P. Wang, S. Xiao, R. Jia, H. Sun, X. Dai, G. Su, and K. Tao, “18.88%-efficient multi-crystalline silicon solar cells by combining Cucatalyzed chemical etching and post-treatment process,” Solar Energy Materials and Solar Cells, Vol. 169, pp. 153–158, 2018.
[21]Y. F. Zhuang, S. H. Zhong, J. H. Xu, W. Z. Shen, “Broadband spectral response of diamond wire sawn mc-Si solar cell with omnidirectional performance and improved appearance,” Solar Energy Materials and Solar Cells, Vol. 179, pp. 372–379, 2018.
[22]G. Su, X. Dai, K. Tao, H. Sun, R. Jia, Z. Jin, X. Liu, H. Liu, S. Liu, C. Xu, Y. Gao, Y. Zhao, H. Qu, B. Liu, B. Chen, “The study of the defect removal etching of black silicon for diamond wiresawn multi-crystalline silicon solar cells,” Solar Energy, Vol. 170, pp. 95–101, 2018.
[23]C. Xu, Y.Gao, Y. Zhao, H. Qu, B.Liu, B. Chen, “Thin‐film solar cells exceeding 22% solar cell efficiency,” Solar Energy, Vol. 170, pp. 98–101, 2018.
[24]陳松裕、林鈺璇,“P型雙面鈍化射極與背面電池介紹”,工業材料雜誌,第357期,民國105年。
[25]陳廷維,“製備低反射率鑽石線切割矽基板並應用在多晶矽太陽能電池”,雲林科技大學材料科技研究所碩士論文,民國106年。
[26]施品全,“Cu為催化劑對鑽石線切割多晶矽進行織構化之表面形貌與電性”,雲林科技大學材料科技研究所碩士論文,民國107年。
[27]B. Sopori, S. Devayajanam, S. Shet, D. Guhabiswas,P. Basnyat, H. Moutinho, L. Gedvilas, K. Jones, J. Binns, and J. Appel, “Characterizing Damage on Si Wafer Surfaces Cut by Slurry and Diamond Wire Sawing,” IEEE 39th Photovoltaic Specialists Conference, pp. 16-21, 2013.
[28]B. Meinel, T. Koschwitz, C. Blocks, and J. Acker, “Comparison of diamond wire cut and silicon carbide slurry processed silicon wafer surfaces after acidic texturisation,” Material Science in Semiconductor Processing, Vol. 26, pp. 93-100, 2014.
[29]Marcus Lippold,Florian Buchholz,Christoph Gondek,Florian Honeit,Eckard Wefringhaus,Edwin Kroke, “TexturingofSiC-slurryanddiamondwiresawnsilicon wafersbyHF–HNO3–H2SO4 mixtures,” Solar Energy Materials & Solar Cells, Vol. 127, pp. 104–110, 2014.
[30]G. Su, X. Dai, K. Tao, H. Sun, R. Jia, Z. Jin, X. Liu, H. Liu, S. Liu, C. Xu, Y. Gao, Y. Zhao, H. Qu, B. Liu, B. Chen, “The study of the defect removal etching of black silicon for diamond wiresawn multi-crystalline silicon solar cells,” Solar Energy, Vol. 170, pp. 95–101, 2018.
[31]C. Chartier, S. Bastide, C. Levy-Clement, “Metal-assisted chemical etching of silicon in HF-H2O2,” Electrochimica Acta, Vol. 53, pp. 5509–5516, 2008.
[32]Verena Blattmanna, Daniel Trusheima, “Hybrid laser-etching-process for wafer texturing,” Energy Procedia, Vol. 77, pp. 766–773, 2015.
[33]Y. C. Niu, H. T. Liu, X. J. Liu, Y. S. Jiang, X. K. Ren, P. Cai, T. G. Zhai, “Study on nano-pores enlargement during Ag-assisted electroless etching of diamond wire sawn polycrystalline silicon wafers,” Materials Science in Semiconductor Processing, Vol. 56, pp. 119–126, 2016.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊