跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/20 01:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王焌至
研究生(外文):WANG, JUN-ZHI
論文名稱:使用空氣橋場板及斜場板提升雙通道氮化鋁鎵/氮化鎵高電子遷移率電晶體之崩潰電壓
論文名稱(外文):Improving Breakdown Voltage for Double-Channel AlGaN/GaN HEMTs with Air-Bridge Field Plate and Slant Field Plate
指導教授:張彥華
指導教授(外文):CHANG, YANG-HUA
口試委員:張彥華賴志賢劉啟忠
口試委員(外文):CHANG, YANG-HUALAI, CHIH-HSIENLIU, CHI-CHUNG
口試日期:2019-07-05
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:63
中文關鍵詞:高電子遷移率電晶體崩潰電壓空氣橋場板斜場板
外文關鍵詞:high electron mobility transistorbreakdown voltageair-bridge field plateslant field plate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:312
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
在高電子遷移率電晶體(high electron mobility transistors, HEMTs)中,透過三五族材料所組成的化合物半導體異質接面,產生高電子密度及遷移率,而GaN材料具有的高崩潰電場,更能使得HEMTs元件擁有超高頻、超高速、高功率等特性。
本研究是使用Sentaurus TCAD半導體模擬軟體,模擬AlGaN/GaN HEMTs元件特性,並優化崩潰電壓。本論文首先介紹模擬軟體使用的物理模型,接著介紹模擬元件時,各個步驟的設定。
本研究使用空乏型雙通道結構,先加入橋場板,崩潰電壓確實可以有效提升,但是閘極下方通道電場仍呈現明顯高峰,因此嘗試以四種方法加以改進:1.橋場板掘入、2.僅橋場板加入斜場板、3.僅閘極加入斜場板、4.閘極和橋場板均加入斜場板。比較結果之後發現「僅閘極加入斜場板」為最佳結構,崩潰電壓從最初結構的19V提升至最後優化的200V。

A high electron mobility transistor (HEMT) is composed of one or more III-V heterostructures. It has excellent performance with high electron density and mobility. This study focuses on optimizing the structure of an AlGaN/GaN HEMT to improve the breakdown voltage.
Sentaurus TCAD was used to simulate the characteristics of AlGaN/GaN HEMTs. This thesis firstly introduces the physical models and boundary conditions used in the TCAD. Next, parameter setting in each step of the device simulation is explained.
The study started with a depletion-mode double-channel AlGaN/GaN HEMT structure. A air-bridge field plate was added on the structure, which reduced the electric field at the gate. Because the peak electric field was still present, four approaches were applied separately: 1. a recessed air-bridge field plate; 2. an add-on slant field plate under the recessed air-bridge field plate, 3. a slant field plate at the gate only, and 4. slant field plates under both the gate and air-bridge field plate. The study found that the third approach was the most effective in reducing the peak electric field. It resulted in a breakdown voltage of 200 V, a significant improvement in contrast to the 19 V of the initial structure.
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1前言 1
1-2 研究背景與研究目的 3
1-3 研究動機 3
1-4 論文架構 3
第二章 高電子遷移率電晶體元件原理與介紹 4
2-1 二維電子氣 4
2-2 異質接面極化效應 5
2-3 元件種類 9
2-4 空乏型改為增強型的方法 12
2-5 提升元件崩潰電壓 15
第三章 19
3-1 物理模型 19
3-1-1 基本電壓電流計算模型 20
3-1-2 半導體統計模型 21
3-1-3 復合模型 22
3-1-4 極化模型 23
3-1-5 遷移率模型 23
3-1-6 邊界條件 25
3-1-7 數值方法 26
3-1-8 圖形呈現 27
3-2 AlGaN/GaN HEMTs 元件模擬 27
3-2-1 AlGaN/GaN HEMTs 元件結構 28
3-2-2 建立元件網格 29
3-2-3 電極設定 29
3-2-4 極化效應模擬 30
3-2-5 模擬和量測曲線比較 33
第四章 結果與討論 34
4-1 定義崩潰電壓 34
4-2 元件初始結構 34
4-3 加入橋場板 37
4-4 第一種結構:橋場板掘入 38
4-5 第二種結構:橋場板下方加入斜場板 39
4-6 第三種結構:僅閘極加入斜場板 41
4-7 第四種結構:閘極和橋場板均加入斜場板 43
4-8 優化結構崩潰電壓 44
第五章 結論 48
參考文獻 49

[1] Simone Montanari, “Fabrication and Characterization of Planar Gunn Diodes for Monolithic Microwave Integrated Circuits,” Schriften des Forschungszentrums Jülich Reihe Informationstechnik / Information Technology Band / vol. 9, 2005.

[2] L. F. Eastman, U. K. Mishra, “The Toughest Transistor Yet,” IEEE Spectrum, vol. 39, no. 5, pp. 28 – 33, May 2002.

[3] Stephen Sque, “High-Voltage GaN-HEMT Devices, Simulation and Modelling,” Semiconductors ESSDERC Bucharest, Romania 16th, Sep 2013.

[4] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, M. Stutzmann, “Two Dimensional Electron Gases Induced by Spontaneous and Piezoelectricpolarization in Undoped and Doped AlGaN/GaN Heterostructures,” Journal of applied physics, vol. 87, no. 1, pp. 334 – 344, Jan 2000.

[5] 張嘉軒,2005,藉由非接觸式電場及光調制反射光譜探討氮化鎵表面能帶的彎曲現象,國立中山大學,碩士論文。

[6] Ashwin Ashok, Dragica Vasileska, Stephen M. Goodnick, Olin L. Hartin“Importance of the Gate-dependent Polarization charge on the operation of GaN HEMTs,” IEEE Trans. Electron Devices., vol. 56, no. 5, pp. 998 – 1006, May 2009.

[7] Yuechan Kong, Jianjun Zhou, Cen Kong, Youtao Zhang, Xun Dong, Haiyan Lu, Tangsheng Chen, Naibin Yang,“Monolithic Integration of E/D-Mode AlGaN/GaN MIS-HEMTs,”IEEE Electron Device Letters, vol. 35, no. 3, pp. 336 – 338, Mar 2014.

[8] Gang Xie, Bo Zhang, Fred Y. Fu, W. T. Ng, “Breakdown Voltage Enhancement for GaN High Electron Mobility Transistors,” 2010 22nd International Symposium on Power Semiconductor Devices & ICs, Hiroshima, pp. 237 – 240, Jun. 2010.

[9] Zhifang Fan, Changzhi Lu, A. E. Botchkarev, H. Tang, A. Salvador, O. Aktas, W. Kim and H. Morkoç, “AlGaN/GaN Double Heterostructure Channel Modulation Doped Field Effect Transistors (MODFETs),” Electronics Letters 24th, vol. 33, no. 9, pp. 814 – 815, Apr 1997.

[10]A. Kamath, T. Patil, R. Adari, I. Bhattacharya, S. Ganguly, R. W. Aldhaheri, M. A. Hussain, Dipankar Saha, “Double-Channel AlGaN/GaN High Electron Mobility Transistor with Back Barriers,” IEEE Electron Device Letters, vol. 33, no. 12, pp. 1690 – 1692, Dec 2012.

[11]R. Gaska, M. S. Shur, T. A. Fjeldly, A. D. Bykhovski, “Two-channel AlGaN-GaN Heterostructure Field-Effect Transistors for High Power Applications,” Journal of Applied Physics, vol. 85, no. 5, pp. 3009 – 3011, Feb 1999.

[12]Rongming Chu, Yugang Zhou, Jie Liu, Deliang Wang, K.J. Chen, K.M. Lau, “AlGaN-GaN double-channel HEMTs,” IEEE Transactions on Electron Devices, vol. 52, no. 4, pp. 438 – 446, Apr 2005.

[13]Ting-Hsiang Hung, Pil Sung Park, Sriram Krishnamoorthy, Digbijoy N. Nath, Siddharth Rajan, “Interface Charge Engineering for Enhancement-Mode GaN MISHEMTs,” IEEE Electron Device Letters, vol. 35, no. 3, pp. 312 – 314, Mar 2014.

[14]Dong Seup Lee, Xiang Gao, Shiping Guo, Tomás Palacios, “InAlN/GaN HEMTs with AlGaN Back Barriers,” IEEE Electron Device Letters, vol. 32, no. 5, pp. 617 – 619, May 2011.

[15]E. Bahat-Treidel, O. Hilt, F. Brunner, J. Wurfl, G. Trankle, “Punchthrough-voltage enhancement of AlGaN/GaN HEMTs using AlGaN double-heterojunction confinement,” IEEE Transactions on Electron Devices, vol. 55, no. 12, pp. 3354 – 3359, Dec 2008.

[16]Hongwei Chen, Maojun Wang, Kevin J. Chen, “Enhancement-mode AlGaN/GaN HEMTs Fabricated by Standard Fluorine Ion Implantation with a Si_3 N_4 Energy-Absorbing Layer,” Electrochemical and Solid-State Letters, vol. 14, no. 6, pp. 229 – 231 Mar 2011.

[17]S. Martin-Horcajo, M. J. Tadjer, M. F. Romero, R. Cuerdo, F. Calle, “Fabrication and characterization at high temperature of AlGaN/GaN enhancement-mode HEMTs,” 2011 8th Spanish Conference on Electron Devices (CDE'2011), Feb 2011.

[18]Maojun Wang , Kevin J. Chen, “Improvement of the Off-State Breakdown Voltage With Fluorine Ion Implantation in AlGaN/GaN HEMTs,” IEEE transactions on Electron Devices, vol. 58, no. 2, pp. 460 – 465, Feb 2011.

[19]S. Karmalkar, U. K. Mishra, “Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using a Field Plate,” IEEE transactions on Electron Devices, vol. 48, no. 8, pp. 1515 – 1521, Aug 2001.

[20]C. S. Suh, Y. Dora, N. Fichtenbaum, L. McCarthy, S. Keller, U.K. Mishra, “High-Breakdown Enhancement-Mode AlGaN/GaN HEMTs with Integrated Slant Field-Plate,” IEEE International Electron Devices Meeting, Dec 2006.

[21] R. Coffie, “Slant Field Plate Model for Field-Effect Transistors, ” IEEE Transactions on Electron Devices, vol. 61, no. 8, pp. 2867 – 2872, Aug 2014.

[22] G. Xie, E. Xu, J. Lee, N. Hashemi, W. T. Ng, B. Zhang, F. Y. Fu, “Breakdown voltage enhancement for power AlGaN/GaN HEMTs with Air-bridge Field Plate,” 2012 24th International Symposium on Power Semiconductor Devices and ICs, pp.337 – 340, Jun 2012.

[23] Sentaurus Device User Guide,Published by Synopsys Sentaurus Device, Sep 2011.

[24]B. G. Vasallo, N. Wichmann, S. Bollaert, A. Cappy, T. Gonzalez, D. Pardo, J. Mateos, “Monte Carlo Comparison Between InP-Based Double-Gate and Standard HEMTs,” 2006 European Microwave Integrated Circuits Conference, pp. 304 – 307, Sep 2006.

[25]莊國男,2015,斜場板雙通道氮化鋁鎵/氮化鎵高電子遷移率電晶體之崩潰電壓提升,國立雲林科技大學,碩士論文。

[26]林佳億,2014,雙通道氮化鋁鎵/氮化鎵高電子遷移率電晶體之線性度提升,國立雲林科技大學,碩士論文。

[27]M.H. Somerville, R. Blanchard, J.A. del Alamo, G. Duh, P.C. Chao, “A new gate current extraction technique for measurement of on-state breakdown voltage in HEMTs,” IEEE Electron Device Letters, vol. 19, no. 11, pp. 405 – 407, Nov 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 以雙閘極及閘極場板改善雙通道氮化鋁鎵/氮化鎵高電子遷移率電晶體之崩潰電壓
2. 閘極場板及閘極斜場板對氮化鋁鎵/氮化鎵高電子遷移率電晶體之崩潰電壓及直流電性影響
3. 以閘極斜場板與傳統場板之結合改善氮化鋁鎵/氮化鎵高電子遷移率電晶體之崩潰電壓
4. 使用電子阻障層提升雙通道增強型氮化鋁鎵/氮化鎵高電子遷移率電晶體崩潰電壓
5. 空氣橋場板對斜場板雙通道氮化鋁鎵/氮化鎵高電子遷移率電晶體崩潰電壓之影響
6. 藉由高介電質鈍化層提升氮化鋁鎵/氮化鎵高電子遷移率電晶體之崩潰電壓
7. 利用雙閘極改善氮化鋁鎵/氮化鎵高電子遷移率電晶體之崩潰電壓
8. 利用場板及低導電層改善氮化鋁鎵/氮化鎵高電子遷移率電晶體之崩潰電壓
9. 斜場板雙通道氮化鋁鎵/氮化鎵高電子遷移率電晶體之崩潰電壓提升
10. T型閘極氮化鋁銦(鎵)/氮化鋁/氮化鎵高電子遷移率電晶體製作與特性分析
11. 氮化鋁銦/氮化鎵高電子遷移率電晶體摻雜濃度與極化電荷對電性影響
12. 高線性度增強型雙通道氮化鋁鎵/氮化鎵高電子遷移率電晶體
13. 藉由源極場板及閘極斜場板改善氮化鋁鎵/氮化鎵高電子遷移率電晶體之崩潰電壓
14. 高崩潰電壓增強型雙通道氮化鋁鎵/氮化鎵高電子遷移率電晶體
15. 氮化鋁鎵/氮化鎵高電子遷移率元件製作與特性研究