|
Amiri, M., & Jensen, R. (2016). Missing data imputation using fuzzy-rough methods. Neurocomputing, 205, 152-164. doi:10.1016/j.neucom.2016.04.015 Andridge, R. R., & Little, R. J. A. (2010). A Review of Hot Deck Imputation for Survey Non-response. 78(1), 40-64. doi:doi:10.1111/j.1751-5823.2010.00103.x b.Rubin, D. (1976). Inference and Missing Data. BIOMETRIKA. Batista, G. E., & Monard, M. C. (2003). An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence, 17(5-6), 519-533. Bholowalia, P., & Kumar, A. (2014). EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN. International Journal of Computer Applications, 105. Celestino Ordóñez Galán, Fernando Sánchez Lasheras, Francisco Javier de Cos Juez, & Sánchez, A. B. (2017). Missing data imputation of questionnaires by means of genetic algorithms with different fitness functions. Journal of Computational and Applied Mathematics, 311, 704–717. Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development. doi:10.5194/gmd-7-1247-2014 chang, C.-c., & lin, c.-j. (2011). LIBSVM -- A Library for Support Vector Machines. Donders AR, van der Heijden GJ, & Stijnen T, M. K. (2006). Review: a gentle introduction to imputation of missing values. Journal of clinical epidemiology, 59(10), 1087-1091. Donders, A. R., van der Heijden, G. J., Stijnen, T., & Moons, K. G. (2006). Review: a gentle introduction to imputation of missing values. J Clin Epidemiol, 59(10), 1087-1091. doi:10.1016/j.jclinepi.2006.01.014 Enders, C. K. (2017). Multiple imputation as a flexible tool for missing data handling in clinical research. Behaviour Research and Therapy, 98, 4-18. Garciarena, U., & Santana, R. (2017). An extensive analysis of the interaction between missing data types, imputation methods, and supervised classifiers. Expert Systems With Applications, 89, 52-65. Huang, H.-H. (2018). A Nearest Neighbors Field Method Based on Distance for Missing Value Imputation in Medical Application. National Yunlin University of Science & Technology, Retrieved from https://hdl.handle.net/11296/3a3f4d Jerez, J. M., Molina, I., Garcia-Laencina, P. J., Alba, E., Ribelles, N., Martin, M., & Franco, L. (2010). Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif Intell Med, 50(2), 105-115. doi:10.1016/j.artmed.2010.05.002 Jerez, J. M., Molina, I., Subirats, J. L., & Franco, L. (2006). Missing Data Imputation in Breast Cancer Prognosis. John, G. h., & langley, p. (1995). Estimating Continuous Distributions in Bayesian Classifiers. In proceedings of the eleventh conference on uncertainty in artificial intelligence, pp. 338-345. Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Ruth Silverman, & Wu, A. Y. (2002). An Efficient k-Means Clustering Algorithm: Analysis and Implementation. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 7. M€uhlenbruch, K., Kuxhaus, O., Giuseppe, R. d., Boeing, H., Weikert, C., & Schulze, M. B. (2017). Multiple imputation was a valid approach to estimate absolute risk from a prediction model based on caseecohort data. Journal of clinical epidemiology, 84, 130-141. Macqueen, J. (1967). Some Methods for Classification and Analysis of Multivariate Observations. Mehran Amiri, & Jensen, R. (2016). Missing data imputation using fuzzy-rough methods. Neurocomputing, 205. Mitra, S., & Pal, S. K. (1995). Fuzzy multi-layer perceptron, inferencing and rule generation. IEEE Transactions on Neural Networks, 6(1), 51-63. doi:10.1109/72.363450 monard, G. e. A. P. A. B. a. m. c. (2003). An Analysis of Four Missing Data Treatment Methods for Supervised Learning. Applied artificial intelligence, 17(5-6), 519-533. pp. 449-461. Nathaniel T. Ondeck, B. S., Michael C. Fu, M. D., M.H.S., , Laura A. Skrip, P. D., Ryan P. McLynn, B. S., Edwin P. Su, M. D., & Jonathan N. Grauer, M. D. (2017). Treatments of Missing Values in Large National Data Affects Conclusions: the Impact of Multiple Imputation on Arthroplasty Research. The Journal of Arthroplasty. Pearl, J., & Russell, S. (1998). Bayesian Networks. Pombo, N., Rebelo, P., Araújo, P., & Viana, J. (2015). Combining Data Imputation and Statistics to Design a Clinical Decision Support System for Post-Operative Pain Monitoring. Procedia Computer Science, 64, 1018-1025. doi:10.1016/j.procs.2015.08.621 Pombo, N., Rebelo, P., Araújo, P., & Viana, J. (2016). Design and evaluation of a decision support system for pain management based on data imputation and statistical models. Measurement, 93, 480-489. doi:10.1016/j.measurement.2016.07.009 Quinlan, J. R. (1993). C4.5: programs for machine learning: Morgan Kaufmann Publishers Inc. ROUSSEEUW, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New york: John wiley & sons, inc. Sammut, C., & Webb, G. I. (2011). Encyclopedia of Machine Learning: Springer Publishing Company, Incorporated. Sandercock, P. A., Niewada, M., Członkowska, A., & Group, f. t. I. S. T. C. (2011). The International Stroke Trial database. Trials. Shao, J. (2000). Cold deck and ratio imputation. Component of Statistics Canada. SHEU, Y.-J. (2017). Enhanced k Nearest Neighbors Method for Imputation in Financial Distress Application. National Yunlin University of Science & Technology, Retrieved from https://hdl.handle.net/11296/2un2bg
|