跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/15 07:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃稚鈜
研究生(外文):HUANG, ZHI-HONG
論文名稱:複合材料I型梁的三點抗彎破壞行為之實驗與分析
論文名稱(外文):Experiment and Analysis of Failure Behavior of Composite I-Beams Under Three-Point Bending
指導教授:黃順發黃順發引用關係
指導教授(外文):HWANG, SHUN-FA
口試委員:尹慶中何旭川黃順發
口試委員(外文):YIN, CHING-JUNGHE, SHIU-CHUANHWANG, SHUN-FA
口試日期:2019-07-22
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:70
中文關鍵詞:複合材料I 型梁三點抗彎有限元素分析、真空輔助樹脂轉注成 形
外文關鍵詞:CompositeI beamThree Point BendingFinite Element MethodVARTM
相關次數:
  • 被引用被引用:1
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
I型梁是工程界常見的結構之一,其上下翼板部分可以承受彎矩作用,中間的腹板可以承受剪力作用,而其特點是I型梁可以在不減少強度的前提下,減少材料的使用量及成本。本篇以複合材料搭配使用真空輔助樹脂轉注成形(Vacuum Assistant Resin Transfer Molding, VARTM)的方式製作I型梁,透由改變纖維疊層、跨距,探討I型梁在三點抗彎實驗下的破壞情形。針對實驗最大負載值的部分,疊層角度[90°/0°/90°/0°]s和疊層角度[45°/-45°/90°/0°]s的I型梁,在跨距200 mm時,最大負載平均值分別為8,445 N、9,254 N,在跨距270 mm時,最大負載平均值分別為6,993 N、8,097 N。同樣的跨距,當試件的最外面兩層纖維角度從90度、0度更為換45度、-45度時,I型梁的最大負載值會上升,且會使其後續負載的降低幅度更為劇烈。疊層角度[90°/0°/90°/0°]s在跨距200 mm時的實驗平均值為8,445 N,在跨距270 mm時的實驗平均值為6,993 N;疊層角度[45°/-45°/90°/0°]s在跨距200 mm時的實驗平均值為9,254 N,在跨距270 mm時的實驗平均值為8,097 N,當跨距從200 mm增加至270 mm時,I型梁的最大負載值會降低,I型梁的剛性也會降低。本文研究也使用有限元素分析來模擬複合複合材料I型梁受到三點抗彎的破壞情形,根據疊層角度預測其最大負載,在疊層[90°/0°/90°/0°]s中最大誤差為33%,疊層[45°/-45°/90°/0°]s中最大誤差為10.7%,並利用有限元素分析中的漸進式破壞來比對模擬與實驗的破壞狀況,其整體三個階段破壞情形與實驗有相當的吻合性。
In engineering, I-beams made of steel are often seen. The flange of I-beam can resist bending stress, and the web of I beam can resist shear stress. Because of its shape, I-beam not only reduces weight but also lowers costs without reducing the strength. Unidirectional carbon fiber fabric was laminated and the I-beams were fabricated using Vacuum Assistant Resin Transfer Molding process. This composite I-beam subjected to three-point bending is investigated. The focus is on the stacking angle in the laminated beam and the span. The result shows that when the stacking angle is changed from [90°/0°/90°/0°]s to [45°/-45°/90°/0°]s, the peak force of three-point bending decreases from 8,455 N to 9,254 N for the span of 200 mm. In the span of 270 mm, the peak force of three-point bending decreases from 6,993 N to 8,097 N. In the same span, when the stacking angles of the outer-most two layer of the I beam are changed from 90 degree and 0 degree to 45 degree and -45 degree, the peak force of the I beam will increase slightly. However, this will enlarge the decline of residual strength of the specimen in the second and third stages during the loading process. When the stacking angle is [90°/0°/90°/0°]s and the span is varied from 200 mm to 270 mm, the peak force is decreased from 8,455 N to 6,993 N. When the stacking angle is [45°/-45°/90°/0°]s and the span is from 200 mm to 270 mm, the peak force is decreased from 9,254 N to 8,097 N. In addition, the stiffness in the first stage will be slightly reduced, but it can help reducing the decline of residual strength of the specimen in the second stage and the third stage. Furthermore, finite element analysis is used to simulate the composite I-beam subjected to three-point bending test and predict the force and the damage progression. The results show that the maximum relative error between the numerical simulation of the stacking angle [90°/0°/90°/0°]s and the experiment is 33%, and the maximum relative error between the numerical simulation of the stack angle [45°/-45°/90°/0°]s and the experiment is 10.7%. The finite element model accurately predicts the force value and the damage situation of three stages. Good correlation is achieved between experimental and numerical results.
摘要 i
ABSTRACT ii
目錄 iii
表目錄 v
圖目錄 vi
符號說明 ix
1、緒論 1
1.1 前言 1
1.2文獻回顧 2
1.3研究目的 8
1.4論文大綱 9
2、實驗過程及方法 10
2.1機械性質 10
2.2複合材料I型梁試件之製作 11
2.2.1 單方向碳纖維布疊層 11
2.2.2 複合材料I型梁疊層 12
2.2.3 真空輔助樹脂轉注成型 15
2.2.4 熱壓成型 17
2.2.5 試件的切割與修邊 18
2.3 複合材料I型梁三點抗彎實驗 19
3、有限元素分析 21
3.1 概述 21
3.2 元素 21
3.3 纖維角度的設定 22
3.4 分析模型建立 23
3.4.1 單一元素測試 23
3.4.2 I型梁抗彎模型建立 23
3.5 材料參數設定 24
3.6 接觸條件設定 26
3.4隱式分析的設定 27
4、結果與討論 28
4.1 實驗結果 28
4.1.1 角度探討 28
4.1.2 跨距探討 35
4.1.3 應變規量測 37
4.2 分析結果 40
4.2.1 單一元素測試 40
4.2.2 角度探討 41
4.2.3 跨距探討 41
4.2.4 應變趨勢探討 47
4.3 實驗與分析比較 48
5、結論與建議 54
5.1結論 54
5.2建議 55
參考文獻 57


[1]Yu Fu, Junjiang Xiong, Chuyang Luo, Xinyao Yun, 2017, “Static mechanical properties of hybrid RTM-made composite I- and Π-beams under three-point flexure,” Chinese Journal of Aeronautics, Vol. 28, pp. 903-913.
[2]J.B. Bai, R.A. Shenoi, X.Y. Yun, J.J. Xiong, 2016, “Progressive damage modelling of hybrid RTM-made composite Π-joint under four-point flexure using mixed failure criteria,” Composite Structure, Vol. 61, pp. 327-334.
[3]H. Ghasemnejad, V.R. Soroush,P.J. Mason, B. Weager, 2012, “To improve impact damage response of single and multi-delaminated FRP composites using natural Flax yarn,” Materials & Design, Vol. 36, pp. 865-873.
[4]Do-Hyoung Kim, Ku-Hyun Jung, In-Gyu Lee, Hee-June Kim, Hak-Sung Kim, 2017, “Three-dimensional progressive failure modeling of glass fiber reinforced
thermoplastic composites for impact simulation,” Composite Structures, Vol. 176, pp. 757-767.
[5]Viet-Hoai Truong, Khanh-Hung Nguyen, Sang-Seon Park, Jin-Hwe Kweon, 2018, “Failure load analysis of C-shaped composite beams using a cohesive zone model,” Composite Structures, Vol. 184, pp. 581-590.
[6]Yuxing Yang, Xueshu Liu, Yi-Qi Wang, Hang Gao, Rupeng Li, Yongjie Bao, 2017, “A progressive damage model for predicting damage evolution of laminated composites subjected to three-point bending,” Composites Science and Technology, Vol. 151, pp. 85-93.
[7]R. Subbaramaiah, B.G. Prusty, G.M.K. Pearce, S.H. Lim, R.S. Thomson, 2017, “Crashworthy response of fibre metal laminate top hat structures,” Composite Structures, Vol. 160, pp. 773-781.
[8]Kazimierz Furtak, Konrad Rodacki, 2018, “Experimental investigations of load-bearing capacity of composite timber-glass I-beams,” Archives of Civil and Mechanical Engineering, Vol. 18, pp. 956-964.
[9]Fatih Dogan, Homayoun Hadavinia, Todor Donchev, Prasannakumar S. Bhonge, 2012, “Delamination of impacted composite structures by cohesive zone interface elements and tiebreak contact,” Central European Journal of Engineering, Vol. 2, pp. 612-616
[10]Chuyang Luo, Junjiang Xiong, 2012, “Static pull and push bending properties of RTM-made TWF composite Tee-joints,” Chinese Journal of Aeronautics, Vol. 25, pp. 198-207.
[11]Adrian C. Orifici, Rodney S. Thomson, Israel Herszberg, Tanchum Weller, Richard Degenhardt, Javid Bayandor, 2008, “An analysis methodology for failure in postbuckling skin–stiffener interfaces,” Composite Structures, Vol. 86, pp. 186-193.
[12]Julien Bertolini, Bruno Castanie, Jean Jacques Barrau, Jean Philippe Navarro, 2008, “An experimental and numerical study on omega stringer debonding,” Composite Structures, Vol. 86, pp. 233-242.
[13]Hai Wu, Jiayu Xiao, Suli Xing, Siwei Wen, Fubiao Yang, Jinshui Yang, 2015, “Numerical and experimental investigation into failure of T700/bismaleimide composite T-joints under tensile loading,” Composite Structures, Vol. 130, pp. 63-74.
[14]Allan C. Manalo, Thiru Aravinthan, Warna Karunasena, 2010, “Flexural behaviour of glue-laminated fibre composite sandwich beams,” Composite Structures, Vol. 92, pp. 2703-2711.
[15]Lian Hong Gen, Lin Ye, Yu Wing Mai, 1999, “Simulations of mechanical performance of pultruded I-beams with various flange-web conjunctions,” Composites: Part B, Vol. 30, pp. 423-429.
[16]Yousif A. Khalid, Faris A. Ali, Barkawi B. Sahari, Elsadig Mahdi A. Saad, 2005, “Performance of composite I-beams under axial compression and bending load modes,” Materials and Design, Vol. 26, pp. 127-135.
[17]Ghang Zhou, J. Hood, 2006, “Design, manufacture and evaluation of laminated carbon/epoxy I-beams in bending,” Composites: Part A, Vol. 36, pp. 506-517.
[18]Kevin D. Potter, Richard Davies, M. Barrett, A. Godbehere, Lee Bateup, Michael Wisnom, Andrew Mills, 2001, “Heavily loaded bonded composite structure: design, manufacture and test of I-beam specimens,” Composite Structures, Vol. 51, pp. 389-399.
[19]LS-DYNA Keyword User's Manual, Version 971, Livermore Software Technology Corporation, Livermore, USA, 2006.
[20]邱鈺泰,2014,複合材料I型梁的分析與實驗,國立雲林科技大學碩士論文。
[21]黃合勝,2016,複合材料I型梁的三點抗彎破壞行為,國立雲林科技大學碩士論文。
[22]黃冠惟,2017,複合材料I型梁的三點抗彎分析與實驗,國立雲林科技大學碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊