跳到主要內容

臺灣博碩士論文加值系統

(100.28.231.85) 您好!臺灣時間:2024/11/06 17:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃彥樺
研究生(外文):HUANG, YAN-HUA
論文名稱:超音波輔助暫態液相擴散接合高強度鋁合金研究
論文名稱(外文):Ultrasonic-Assisted Transient Liquid Phase Diffusion Bonding of High Strength Aluminum Alloy
指導教授:張世穎張世穎引用關係
指導教授(外文):CHANG, SHIH-YING
口試委員:張世穎曹龍泉吳明偉
口試委員(外文):CHANG, SHIH-YINGTSAO, LUNG-CHUANWU, MING-WEI
口試日期:2019-07-05
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:172
中文關鍵詞:高強度鋁合金Sn-Zn合金暫態液相擴散接合超音波銲接高速等溫凝固
外文關鍵詞:high-strength aluminum alloySn-Zn alloystransient liquid diffusion bondingultrasonic solderinghigh-speed isothermal coagulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:358
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:1
7075高強度鋁合金具有優異的機械性質,廣泛應用於航太、國防與運輸等工業上。7075鋁合金雖擁有極佳的力學性能,但在銲接製程中會出現應力腐蝕、熱敏感性及填料合金潤濕性不良等問題,使得銲接合過程會造成7075高強度鋁合金的機械性質與組織結構劣化,因此可靠性較高的低溫接合技術將成為7075高強度鋁合金在工業應用的發展中為重要的關鍵。本研究針對7075高強度鋁合金低溫銲接,使用可靠性較高的超音波輔助低溫暫態液相擴散接合技術,改善固液擴散接合時,需長時間加壓與加熱的限制,並克服傳統暫態液相擴散接合製程所需的高溫及時間長等問題。本研究使用Sn、Sn-9Zn、Sn-8Zn-3Bi、Sn-8Zn-3Bi-4Ti及Sn-8Zn-3Bi-4Ti-0.1Y等五組銲錫合金,除探討銲錫合金添加Bi、Ti及稀土元素,對7075鋁合金的潤濕性影響,並針對銲錫合金的金相、固液相線溫度及機械性質等進行分析。分別利用機械活化-熱擴散方式與超音波輔助之高速等溫凝固技術,對7075高強度鋁合金進行暫態液相擴散接合,並探討鋁元素擴散至銲道之情況。

於錫中添加9wt.% 的Zn元素,可使合金熔點降至約201.6℃,再添加3wt.%Bi元素後可將熔點溫度調至198.8℃,而添加Ti及Y等元素,對熔點的影響並不顯著。錫添加Zn、Bi、Ti及Y其拉伸強度與微硬度則有明顯提升。機械活化-熱擴散方式進行固液擴散反應接合,在300℃反應溫度下,鋁大量溶入銲道中,隨著反應時間增加,接合剪力強度呈下降的趨勢,持溫至100小時後,銲道已消失,原先銲道中的錫已完全被鋁取代。超音波輔助之高速等溫凝固方式接合7075鋁合金,在250℃的接合溫度以1秒至30秒的超音波作用時間下,隨時間超音波的作用時間增加,可促使鋁溶解進入銲道中的均勻性,在添加Zn元素的銲錫合金,亦能使鋁加速溶解至銲道中。添加Bi、Ti及Y等元素對鋁的溶解速度的影響並不顯著,然而這些元素的添加可明顯提升填料合金的抗氧化性及對基材的潤濕性。採用超音波軟銲填料合金直接潤濕於7075鋁合金,使用振幅為65%與100%,在超音波作用30秒,探討不同銲錫合金的接合效果,結果顯示Sn銲料的效果最佳,而Sn-8Zn-3Bi-4Ti-0.1Y銲錫合金效果最差。

7075 high-strength aluminum alloy has excellent mechanical property, and is widely used in aerospace industry, transportation and defense industry. Although 7075 alluminum alloy has the best mechanical property, the welding process will be accompanied by stress corrosion, heat-reactivity (thermosensitivity) and poor weetability of filler alloy, which will cause the mechanical property and structure to be deteriorated. Therefore, high-reliable low temperature bonding is critical to the development of 7075 alluminum alloy applications. The purpose of the research is to use ultrasonic assisted low-temperture transient liquid diffusion bonding with high-reliability bonding to eliminate the limitation of long-term compression and heating of solid diffusion bonding and overcome the problem of long processing time of traditional transient liquid diffusion bonding. Sn, Sn-9Zn, Sn-8Zn-3Bi, Sn-8Zn-3Bi-4Ti and Sn-8Zn-3Bi-4Ti-0.1Y are the solder alloys used in this research. Besides discussing the addition of alloying elements have an impact on the wettability of 7075 aluminum alloy, metallographic test, solidus and liquidus temperature and mechanical property of solder alloys are analyzed in this study. The transient liquid diffusion bonding of 7075 high-strength aluminum alloy is performed by mechanical activated—thermal diffusion and ultrasonic-assisted high-speed isothermal coagulation, respectively.

The addition of 9% zinc to tin can lower the fusion pointof alloys to about 198℃. If 3% Bi, 4% Ti and 0.1% Y are added, it has no significant influence on melting point. Nevertheless, zinc increases apparently after the addition of Bi, Ti and Y. Using mechanical activated—thermal diffusion to carry out solid liquid interdiffusion bonding. At the reaction temperature of 300℃, the aluminum largely melted into the weld. As the reaction time increases, the junction shear strength decreases. After holding the temperature for 100 hours, tin in the weld disappeared, and was completely replaced by aluminum. Use ultrasonic-assisted high-speed isothermal coagulation to bond 7075 aluminum alloy. Using ultrasonic wave at the temperature of 250℃ from one second to 30 seconds, the aluminum dissolved in the weld as the time increases. The addition of zinc can also accelerate the dissolution of aluminum. The addition elements such as Bi, Ti and Y have no significant impact on the dissolution rate of aluminum. However, the addition of these elements can obviously improve the oxidation resistance of the filler alloys. Ultrasonic soldering filler alloy directly wet 7075 aluminum alloy, with the amplitude at 65% and 100%, and using ultrasonic wave on aluminum alloy for 30 seconds to discuss the bonding effect of different soldering alloys. The result shows that zinc solder has the best bonding effect, and the Sn-8Zn-3Bi-4Ti-0.1Y solder alloy is the worst.

摘要 ...............................................................i
Abstract...............................................................ii
誌謝 ...............................................................iv
目錄 ...............................................................v
表目錄 ...............................................................viii
圖目錄 ...............................................................ix
第一章 緒論...........................................................1
1.1 研究背景........................................................1
1.2 研究動機與目的...................................................2
第二章 理論與文獻回顧...................................................3
2.1 高強度鋁合金銲接技術與現況........................................3
2.2 無鉛銲錫........................................................5
2.2.1 無鉛銲錫合金之發展與特性..........................................5
2.2.2 Sn-Zn-Bi三元填料合金.............................................6
2.2.3 活性填料........................................................7
2.3 活性軟銲填料....................................................8
2.3.1 添加稀土元素對於銲錫合金的潤濕性影響...............................8
2.3.2 添加稀土元素對於軟銲的銲接性......................................8
2.3.3 稀土元素性質....................................................10
2.4 活性軟銲接合....................................................12
2.5 超音波輔助接合..................................................13
2.5.1 超音波潤濕機制..................................................13
2.5.2 超音波空化效應..................................................15
2.6 暫態液相接合....................................................16
2.6.1 暫態液相接合機制................................................16
2.6.2 Al-Sn二元固液擴散溶解機制........................................17
2.6.3 超音波對Al-Sn固液擴散反應影響....................................20
2.6.4 Al-Sn固液擴散溶解層的形成機制....................................22
第三章 實驗步驟與方法..................................................23
3.1 實驗材料.......................................................23
3.1.1 7075-T6鋁合金..................................................23
3.1.2 銲錫合金成分....................................................23
3.2 實驗流程........................................................24
3.3 銲錫合金DSC熔點分析試驗...........................................25
3.4 銲錫合金XRD分析試驗..............................................26
3.5 軟銲接合方式.....................................................27
3.5.1 機械活化接合.....................................................27
3.5.2 超音波軟銲接合...................................................28
3.6 超音波接合系統...................................................29
3.6.1 超音波系統結構...................................................29
3.6.2 超音波實驗制具設計................................................30
3.6.3 高溫時效處理......................................................31
3.7 鋁元素溶解與擴散..................................................32
3.8 金相製備.........................................................33
3.9 接合剪力強度及銲錫機械性質試驗......................................34
3.9.1 接合剪力強度試驗..................................................34
3.9.2 銲錫合金拉伸試驗..................................................35
3.10 硬度試驗.........................................................36
3.12 界面顯微組織分析與破斷面分析.......................................37
第四章 結果與討論.......................................................38
4.1 銲錫合金機械性質分析..............................................38
4.1.1 銲錫合金金相顯微組織..............................................38
4.1.2 銲錫合金XRD分析..................................................41
4.1.3 銲錫合金DSC熱分析................................................42
4.1.4 銲錫合金之微硬度分析..............................................46
4.1.5 銲錫合金拉伸試驗..................................................47
4.2 高溫固液擴散接合..................................................48
4.2.1 7075 Al與Sn接合界面與破斷面之顯微組織..............................48
4.2.2 7075 Al與Sn-9Zn接合界面與破斷面之顯微組織..........................53
4.2.3 7075 Al與Sn-8Zn-3Bi接合界面與破斷面之顯微組織......................59
4.2.4 7075 Al與Sn-8Zn-3Bi-4Ti接合界面與破斷面之顯微組織..................64
4.2.5 7075 Al與Sn-8Zn-3Bi-4Ti-0.1Y接合界面與破斷面之顯微組織.............70
4.2.6 本節小結.........................................................75
4.3 超音波輔助固液擴散接合.............................................77
4.3.1 超音波輔助7075 Al與Sn接合界面與破斷面之顯微組織......................80
4.3.2 超音波輔助7075 Al與Sn-9Zn接合界面與破斷面之顯微組織..................91
4.3.3 超音波輔助7075 Al與Sn-8Zn-3Bi接合界面與破斷面之顯微組織..............102
4.3.4 超音波輔助7075 Al與Sn-8Zn-3Bi-4Ti接合界面與破斷面之顯微組織..........113
4.3.5 超音波輔助7075 Al與Sn-8Zn-3Bi-4Ti-0.1Y接合界面與破斷面之顯微組織.....124
4.3.6 超音波直接潤濕於7075 Al與銲錫合金接合界面之顯微組織...................135
4.3.7 本節小結..........................................................141
第五章 結論.............................................................142
參考文獻 .................................................................143


[1]夏朝峰,王良龍,陳思悅,Al-Zn-Mg-Cu 合金時效析出相的研究,材料熱處理學報,2011, 32(s1):79-82
[2]曲明洋,熱變形對 7A04 鋁合金組織和性能的影響,太原:中北大學,2010
[3]張建,羅國強,李美娟,MB2-LY12 擴散焊接頭界面組織結構及其形成機制,材料研究學報,2012,26(2):138-142
[4]Sevim I, Hayat F, Kaya Y, et al.The study of MIG weldability of heat-treated aluminum alloys. The International Journal of Advanced Manufacturing Technology, 2013, 66(9):1825-1834.
[5]Chang C C, Chen C L, Wen J Y, et al. Characterization of hot cracking due to welding of high-strenghth aluminum alloys. Materials and Manufacturing Processes, 2012, 27(6):658-663.
[6]何偲倬,7075超硬鋁合金焊接性及焊接街頭組織研究,沈陽工業大學,碩士學位論文,2017
[7]徐勝,徐道榮,鋁及鋁合金釬焊技術的研究現狀. 輕合金加工技術,2004,32(1):1-4.
[8]李亞江,王娟,劉強,有色金屬焊接及應用,北京:化學工業出版社,2006:23-49
[9]劉政軍,何偲倬,蘇允海,張 琨,焊接材料對 7075鋁合金焊接性及焊縫組織的影響,沈陽工業大學學報,2018,40-2
[10]Peng Xiao-yan, Cao Xiao-wu, Duan Yu-lu, Chen Ju-fei,XU Guo-fu, Yin Zhi-min. Microstructures and properties of MIG welded joint of 7020 aluminum alloy. The Chinese Journal of Nonferrous Metals, 2014, 24(4): 912−918.
[11]Gai Hong-de, Tang Jie, Dai Jia-hui, Zhang Ming-xian. Effect of welding current on microstructure and properties of Welded joint in AC-TIG welding of 7A52 aluminum alloy, Materials Review, 2013, 27(21): 329−331.
[12]Enz J, Riekehr S, Ventzke V. Laser welding of High-strength aluminum alloys for the sheet metal forming Process. Procedia CIRP, 2014, 18: 203−208.
[13]Li Shuo, Ang Jun, Yang Shang-lu, etal. Study Onporositydefectsofaluminum alloyinlaser-MIG Hybridwelding. AppliedLaser, 2013, 33(6):595-600.
[14]宋友寶,李龍,呂金明,嚴安,周德敬,7xxx 系鋁合金焊接研究現狀與展望,中國有色金屬學報,2018,28-3
[15]Glazer J. Metallurgy of low temperature Pb2free solders for electronics assembly . InternationalMaterials Review, 1995, 40 (2) : 60 - 63.
[16]Bill Trumble. Get the lead out: Lead2free electronics come of age. IEEE Spectrum, 1998, (5) : 55 - 60.
[17]European Parliament. Proposal for a directive of the european parliament and of the council on waste electrical and electronic equipment and on the restriction of the use of certain hazardous substances in electrical and electronic equipment , 2000: 347.
[18]Japan Electronic Industry Development A ssociation (JEIDA). Report on research and development on lead2free soldering .Tokyo: Japan Electronic Industry Development A ssociation, 2000: 12.
[19]JEIDA.Report on research and development on lead-free soldering【c】.Tokyo:Japan Electronic Industry Development Association.2000:12-15
[20]Abtew M, Selvaduray G. Materials science and engineering [J ]. Report A Review Journal, 2000, 27 (5) : 95 - 141.
[21]简 虎 , 熊腊森. 电子工业用无铅钎料的研究及其可靠性 [J ]. 电子元件与材料 , 2005, 25 (7) : 68 – 71
[22]Mc Cormack M, Kamm lot G W , Chen H S, et al. New Pb2free solder alloy with superior mechanical2p roperties [J ]. App lied Physics Letters, 1993, 63 (1) : 15 - 17.
[23]Shiue R K, Tsay L W , L in C L, et al. The reliability study of selected Sn2Zn based lead2free solders on Au /N i2P /Cu substrate [J ]. M icroelectronics Reliability, 2003, 43: 453 - 463.
[24]H. Okamoto,P.R. Subramanian, and L.Kacprzak, 1992, Binary Alloy Phloy Phase Diagrams ,The Materials Information Society.
[25]張黎 冼愛平 王中光 韓恩厚 尚建庫,應變速率對Sn—9Zn共晶合金拉伸性能的影響,金屬學報,2004,40:1151
[26]Shiue R K, Tsay L W, Lin C L, Qu J L,Microelectron Reliab,2003;43:453
[27]Katsuaki S, Toshikazu M, Hiroji N, Yoshitaka T. J Mater Res, 2000; 4: 884
[28]Wu C M, Yu D Q, Law C M T , Wang L, Properties of lead-free solder alloys with rare earth element additions J Electorn Mater, 2000, 9: 921
[29]Kim Y S, Kim K S, Hwang C W, Katsuaki S, J E ffect of composition and cooling rate on microstructure and tensile properties of Sn–Zn–Bi alloys , 2003; 352: 237
[30]Taguchi, Toshihiko, Katoh, Rikiya, Toyodo, Yoshitake, USP 6503338, 2003
[31]Nakatsuka, Tetsuya, Soga, Soga, Tasao, Shimokawa, Hanae, Yamamoto, Kenichi, Masahide, Ochiai, Yuuji, Kamei, Tsuueaki, J Mater Eng Perfor, 2003; 12: 452
[32]陳 偉,胡 強,張富文,Bi對 Sn-Zn基無鉛釬料合金組織與性能的影響,2010年11月
[33]Peteves S.D, Ceccone G.and Paulasto M.,et al., Joining silicon nitride to itself and to metals[J]. JOM Journal of the Minerals, Metals and Materials Society, 1996. 48(1):48-52
[34]鄒僖,钎銲,1989北京,機械工業出版社
[35]馮武鋒 ,王春青 ,李明雨,電子元件焊接中的釬料合金研製及設計方法,電子工藝技術,2000.
[36]張建綱,黃繼華,戴志鋒,張華,趙興科,稀土對錶面組裝用Sn2.0Ag0.7CuRE釬料合金組織與性能的影響,中國稀土學報,2005.
[37]H. Mavoori, A.G. Ramirez, S. Jin, Lead-free universal solders for optical and electronic devices, J. Electron. Mater., 31 (11) (2002), pp. 1160-1165.
[38]A.G. Ramirez, H. Mavoori, S. Jin, Bonding nature of rare-earth-containing lead-free solders, Appl. Phys. Lett., 80 (3) (2002), pp. 398-400.
[39]C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, Properties of lead-free solder alloys with rare earth element additions, Materials Science and Engineering, 2004,1-44.
[40]C.M.L. Wu, C.M.T. Law, D.Q. Yu, L. Wang, The Wettability and Microstructure of Sn-Zn-RE Alloys, Journal of Electronic Materials, 2003Vol. 32, No. 2.63-69.
[41]徐光宪,稀土(第二版),北京,冶金工業出版社,1995.
[42]黃拿灿、胡社軍[編],稀土表面改性及其應用,國防工業出版社, 2008.
[43]IUPAC contributors. Edited by N G Connelly and T Damhus (with R M Hartshorn and A T Hutton) 編. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005 RSC Publishing. 2005: 51[2007-12-17]. ISBN 0-85404-438-8.
[44]CRC contributors. Yttrium. (編) Lide, David R. CRC Handbook of Chemistry and Physics 4. New York: CRC Press. 2007–2008: 41. ISBN 978-0-8493-0488-0.
[45]R. Kolenˇák , P. Šebo , M. Provazník , M. Kolenˇáková , K. Ulrich, Shear strength and wettability of active Sn3.5Ag4Ti(Ce,Ga) solder on Al2O3 ceramics , Materials and Design, 2011, 3997-4003.
[46]S.Y.Chang1,Y.H.Huang,L.C.Tsao,Active Solders and Active Soldering,
intechopen,2018.
[47]Zhiwu Xu, Jiuchun Yan, Baoyou Zhang, Xiangli Kong, Shiqin Yang, Behaviors of oxide film at the ultrasonic aided interaction interface of Zn–Al alloy and Al2O3/6061Al composites in air, Materials Science and Engineering: A, 2006, 415:80-86.
[48]Suslick k s, The hemical Effects of Ultrasound[J], Scientific American, 1989, 260(2):105-108.
[49]Jackson K A, Hunt J D, Lamellar and Rod Eutectic Growth[J], Aime Met Soc Trans, 1966, 236:1129-1142.
[50]Eskin G I, Ultrasonic treatment of light alloy melts[M], CRC, 1998:1352-1368.
[51]I. Tuah-Poku, M. Dollar and T. B. Massalski: Metall. Mater.Trans. A, 1988, 19A, 575–586.
[52]Klein K, Schwarz B, Eisenmenger S C, Tomastik C, Bama P B, Kovacs A, The initial states of wetting and spreading of Sn on Al surfaces[J], Vacuum, 2005, 80: 74−80.
[53]Eisenmenger S C, Bangert H, Bergauer A, Brenner J, Solidstate wetting and spreading of tin (Sn) on aluminium interfaces[J], Vacuum, 2003, 71: 253−259.
[54]馬會宇,竺培顯,週生剛,韓朝輝,Al/Sn 二元擴散偶相界面擴散溶解層的形成機理 ,中國有色金屬學報,第 23 卷第 3 期,2013.
[55]Jeurgens L P H, Sloof W G, Tichelaar F D, Mittemeijer E J, Structure and morphology of aluminium­oxide films formed by thermal oxidation of aluminium[J], Thin Solid Film, 2002, 418: 89−101.
[56]Schaffer G B, Sercombe T B, Lumley R N. Liquid phase sintering of aluminium alloys[J]. Materials Chemistry and Physics, 2001, 67: 85−91.
[57]ERDÉLYI G, FREITAG K, RUMMEL G, MEHRER H. Volume and grain boundary diffusion of implanted 113Sn in aluminium[J]. Applied Physics A: Solids and Surfaces, 1991, 53(4): 297−302.
[58]Yuanxing Li, Xuesong Leng, Sheng Cheng, Jiuchun Yan, Microstructure design and dissolution behavior between 2024 Al/Sn with the ultrasonic-associated soldering, Materials and Design, 2012, 427-432.
[59]Song Yu­qiang, Li Shi­chun, Du Guang­hui. Forming rule of Ti/Cu interphase diffusion solution zone[J]. Rare Metal Materials and Engineering, 2009, 38(7): 1188−1192.
[60]高銘聰,超音波對高強度鋁合金軟銲接合界面反應及機械性質影響之研究,國立雲林科技大學,碩士論文,2013
[61]蔡孟岑,添加稀土元素之無鉛銲錫合金氧化與腐蝕行為之研究,國立雲林科技大學,碩士論文,2011
[62]沈彥志,活性元素對暫態液相接合影響之研究,國立雲林科技大學,碩士論文,2013。
[63]張新,Sn-Zn-Bi合金組織控制及性能研究,天津大學材料工程,2016。
[64]H. Okamoto, “Sn-Ti (Tin-Titanium)”, Journal of Phase Equilibria and Diffusion, Vol. 31, pp. 202-203, 2010
[65]Vilius Palenskis, Drift Mobility, Diffusion Coefficient of Randomly Moving Charge Carriers in Metals and Other Materials with Degenerated Electron Gas, World Journal of Condensed Matter Physics, 2013, Vol.3 No.1

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top