跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 16:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:董亭佑
研究生(外文):DONG, TING-YOU
論文名稱:雙十八烷基二甲基溴化銨/維生素C衍生物形成奈米聚集體的特性及應用
論文名稱(外文):Characteristics and applications of nanoaggregates formed by dioctadecyldimethylammonium bromide/vitamin C derivatives
指導教授:周宗翰
指導教授(外文):CHOU, TZUNG-HAN
口試委員:張鑑祥鄭宇伸周宗翰
口試委員(外文):CHANG, CHIEN-HSIANGCHENG, YU-SHENCHOU, TZUNG-HAN
口試日期:2019-06-28
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:58
中文關鍵詞:陰陽離子型液胞雙十八烷基二甲基溴化銨維他命C衍生物
外文關鍵詞:catanionic vesicledioctadecyldimethylammonium bromidevitamin C derivatives
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用不同比例混合的雙十八烷基二甲基溴化銨(Dioctadecyldimethylammonium bromide, DODAB)和維他命C衍生物(Vitamin C derivatives, VCD)的化合物A(compound A, A)與化合物B(compound B, B)形成奈米聚集體來評估相變行為、分子振動行為等全面性的研究。結果顯示DODAB/A、DODAB/B這兩種系統都能夠形成球狀的液胞結構,且都具有化學活性。在DODAB/A系統中,得知在較少A組成時,有較長的儲存天數;在DODAB/B系統下,當B組成較多時,有助於增強DODAB/B奈米聚集體的儲存穩定性。在DODAB/A與DODAB/B兩個系統下,隨著陰離子界面活性劑含量的增加,會逐漸擾亂DODAB的膜內排列,進而改變其相變行為及分子的振動情形。
The study of nanoaggregates formed by dioctadecyldimethylammonium bromide (DODAB) and vitamin C derivatives (VCD) including compound A (A) and compound B (B), was investigated. The nanoaggregates assessed regarding their phase transition behavior, molecular vibration and arrangement. Results revealed that DODAB/A and DODAB/B systems showed can form spherical structures, and all have chemical activity. In DODAB/A system, the A-less nanoaggregates showed better storage stability. When the content of B is more, it helps to enhance the storage stability of DODAB/B nanoaggregates. In the DODAB/A and DODAB/B systems, as the content of anionic surfactant increases, the intramolecular alignment of DODAB will be disturbed, and the phase transition behavior and molecular vibration will be changed.
摘要 I
Abstract II
Graphical abstract III
誌謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
符號說明 IX
縮寫說明 X
第一章 緒論 1
1-1前言 1
1-2 研究目的與動機 1
第二章 文獻回顧 3
2-1膠體分散液 3
2-2 陰陽離子型液胞 3
2-3 雙十八烷基二甲基溴化銨 4
2-4 抗壞血酸衍生物 5
第三章 實驗設備與方法 12
3-1實驗藥品 12
3-2 實驗方法 12
3-2-1 奈米聚集體製備流程 12
3-2-2 動態光散射儀分析 12
3-2-3 穿透式電子顯微鏡觀察 13
3-2-4螢光偏極化量測 14
3-2-5 微分式掃描熱卡計分析 15
第四章 結果與討論 16
4-1 混合 DODAB/A 奈米聚集體之物理特徵 16
4-1-1 混合 DODAB/A 奈米聚集體之粒徑、分散度及界面電位 16
4-1-2 混合 DODAB/A 奈米聚集體外觀型態觀察 17
4-1-3 混合 DODAB/A 分散液之相變行為 17
4-1-4 混合 DODAB/A 奈米聚集體之螢光偏極分析 18
4-4 混合 DODAB/B 奈米聚集體之物理特徵 19
4-4-1 混合 DODAB/B 奈米聚集體之粒徑、分散度及界面電位 19
4-4-2 混合 DODAB/B 奈米聚集體外觀型態觀察 20
4-4-3 混合 DODAB/B 分散液之相變行為 20
4-4-4 混合 DODAB/B 奈米聚集體之螢光偏極分析 21
第五章 結論 38
參考文獻 39

Baba, T., Minamikawa, H., Hato, M., Motoki, A., Hirano, M., Deshan Zhou, & Kawasaki, K. (1999). Synthetic Phytanyl-Chained Glycolipid Vesicle Membrane as a Novel Matrix for Functional Reconstitution of Cyanobacterial Photosystem II Complex. Biochemical and Biophysical Research Communications, 265(3), 734-738.
Barreleiro, P., & Lindman, B. (2003). The Kinetics of DNA-Cationic Vesicle Complex Formation. The Journal of Physical Chemistry Part B, 107(25), 6208-6213.
Benatti, C. R., Feitosa, E., M., R., b, F., & Lamy-Freund, M. T. (2001). Structural and thermal characterization of dioctadecyldimethylammonium bromide dispersions by spin labels.pdf. Chemistry and Physics of Lipids, 111(2), 93–104.
Bissett, D., Chatterjee, R., Hannon, D. (1990). Photoprotective effect of superoxide-scavenging antioxidants against ultraviolet radiation-induced chronic skin damage in the hairless mouse. Photodermatol Photoimmunol Photomed, 7(2), 56-62.
Brewer, J., Bernardino de la Serna, J., Wagner, K., & Bagatolli, L. A. (2010). Multiphoton excitation fluorescence microscopy in planar membrane systems. Biochimica et Biophysica Acta, 1798(7), 1301-1308.
Carneiro, C., Correia, A., Collins, T., Vilanova, M., Pais, C., Gomes, A. C., . . . Sampaio, P. (2015). DODAB:monoolein liposomes containing Candida albicans cell wall surface proteins: a novel adjuvant and delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 89, 190-200.
Chen, W. J., Zhai, L. M., Li, G. Z., Li, B. Q., & Xu, J. (2004). Spontaneous vesicle formation and vesicle-tubular microstructure transition in aqueous solution of a poly-tailed cationic and anionic surfactants mixture. Journal of colloid and interface science, 278(2), 447-452.
Coppola, L., Youssry, M., Nicotera, I., & Gentile, L. (2009). Rheological investigation of thermal transitions in vesicular dispersion. Journal of colloid and interface science, 338(2), 550-557.
Darr, D., Combs, S., Dunston, S., Manning, T., & Pinnell, S. J. B. J. o. D. (1992). Topical vitamin C protects porcine skin from ultraviolet radiation‐induced damage. International Journal of Dermatology, 127(3), 247-253.
De Leo, V., Milano, F., Mancini, E., Comparelli, R., Giotta, L., Nacci, A., . . . Catucci, L. (2018). Encapsulation of Curcumin-Loaded Liposomes for Colonic Drug Delivery in a pH-Responsive Polymer Cluster Using a pH-Driven and Organic Solvent-Free Process. Molecules, 23(4),739.
Dhawan, V. V., & Nagarsenker, M. S. (2017). Catanionic systems in nanotherapeutics - Biophysical aspects and novel trends in drug delivery applications. Journal of Controlled Release, 266, 331-345.
Du, C.-B., Liu, J.-W., Su, W., Ren, Y.-H., & Wei, D.-Z. (2003). The protective effect of ascorbic acid derivative on PC12 cells: Involvement of its ROS scavenging ability. Life Sciences, 74(6), 771-780.
Dutt, S., Siril, P. F., & Remita, S. (2017). Swollen liquid crystals (SLCs): a versatile template for the synthesis of nano structured materials. Royal Society of Chemistry, 7(10), 5733-5750.
Ebihara, M., Akiyama, M., Ohnishi, Y., Tajima, S., Komata, K.-i., & Mitsui, Y. (2003). Iontophoresis promotes percutaneous absorption of l-ascorbic acid in rat skin. Journal of Dermatological Science, 32(3), 217-222.
Garg, T. (2016). Current nanotechnological approaches for an effective delivery of bio-active drug molecules in the treatment of acne. Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 98-105.
Hann, R. A., & Kathirgamanathan, P. (1990). Molecules for Langmuir—Blodgett film formation. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 330(1610), 141-152.
Hatem, S., Nasr, M., Moftah, N. H., Ragai, M. H., Geneidi, A. S., & Elkheshen, S. A. (2018). Melatonin vitamin C-based nanovesicles for treatment of androgenic alopecia: Design, characterization and clinical appraisal. European Journal of Pharmaceutical Sciences, 122, 246-253.
Hossain, M. M., & Kato, T. (2000). Line Tension Induced Instability of Condensed Domains. Langmuir, 16(26), 10175-10183.
Hou, M., Gao, Y. E., Shi, X., Bai, S., Ma, X., Li, B., . . . Xu, Z. (2018). Methotrexate-based amphiphilic prodrug nanoaggregates for co-administration of multiple therapeutics and synergistic cancer therapy. Acta Biomaterialia, 77, 228-239.
Hussain, S. A.(2009). Langmuir-Blodgett Films a unique tool for molecular electronics. Modern Physics Letters B, 23(29), 3437-3451.
Inoue, Y., Hibino, M., Murata, I., & Kanamoto, I. (2017). A Nanocarrier Skin-Targeted Drug Delivery System using an Ascorbic Acid Derivative. Pharmaceutical Research, 35(1), 1.
Jiang, Y., Hu, X., Zhang, J., Jin, G., & Luan, Y. (2019). Chlorambucil prodrug-participating catanionic aggregates for sustained drug release and improved antitumour activity. Journal of Molecular Liquids, 274, 556-561.
Juan, J., Marlen, I., Luisa, C., Diaz, R., Luisa, A., & Casas, N. (2012). Nanocarrier Systems for Transdermal Drug Delivery. In Recent Advances in Novel Drug Carrier Systems,3, 3-17.
Khalil, R. A., & Zarari, A.-h. A. (2014). Theoretical estimation of the critical packing parameter of amphiphilic self-assembled aggregates. Applied Surface Science, 318, 85-89.
Kumar, A., Kaur, G., Kansal, S. K., Chaudhary, G. R., & Mehta, S. K. (2016). Enhanced solubilization of curcumin in mixed surfactant vesicles. Food Chemistry, 199, 660-666.
Kumar, R., & Manjuladevi, V. (2012). Molecular Interactions at Interfaces. In Molecular Interactions.
Kunitake, T., & Okahata, Y. J. J. o. t. A. C. S. (1977). A totally synthetic bilayer membrane. Journal of the American Chemical Society, 99(11), 3860-3861.
Kuo, J. H., Chang, C. H., Lin, Y. L., & Wu, C. J. (2008). Flow cytometric characterization of interactions between U-937 human macrophages and positively charged catanionic vesicles. Colloids and Surfaces B: Biointerfaces, 64(2), 307-313.
Liang, C. H., & Chou, T. H. (2009). Effect of chain length on physicochemical properties and cytotoxicity of cationic vesicles composed of phosphatidylcholines and dialkyldimethylammonium bromides. Chemistry and Physics of Lipids, 158(2), 81-90.
Liang, C. H., Yeh, L. H., Liao, P. W., & Chou, T. H. (2015). Characterization and in vitro biocompatibility of catanionic assemblies formed with oppositely charged dicetyl amphiphiles. Colloids and Surfaces B: Biointerfaces, 126, 10-17.
Lin, Y., Han, X., Cheng, X., Huang, J., Liang, D., & Yu, C. J. L. (2008). pH-Regulated Molecular Self-Assemblies in a Cationic− Anionic Surfactant System: From a “1− 2” Surfactant Pair to a “1− 1” Surfactant Pair. Langmuir, 24(24), 13918-13924.
Liu, J., Jiang, Y., Cui, Y., Xu, C., Ji, X., & Luan, Y. (2014a). Cytarabine-AOT catanionic vesicle-loaded biodegradable thermosensitive hydrogel as an efficient cytarabine delivery system. International Journal of Pharmaceutics, 473(1-2), 560-571.
Liu, J., Jiang, Y., Cui, Y., Xu, C., Ji, X., & Luan, Y. (2014b). Cytarabine-AOT catanionic vesicle-loaded biodegradable thermosensitive hydrogel as an efficient cytarabine delivery system. International Journal of Pharmaceutics, 473(1-2), 560-571.
Liu, J., Nagao, N., Kageyama, K., & Miwa, N. J. A. r. (2000). Anti-metastatic effect of an autooxidation-resistant and lipophilic ascorbic acid derivative through inhibition of tumor invasion. Anticancer Research, 20(1A), 113-118.
Mahmoud, G., Jafar, A., Hamidreza, K.-M., Hossein, D., & Ali, S. (2018). Niosome: A Promising Nanocarrier for Natural Drug Delivery through Blood-Brain Barrier. Advances in Pharmacological Sciences, 2018, 6847971.
Marques, E. F., Regev, O., Khan, A., Miguel, M. d. G., & Lindman, B. J. M. (1999). Interactions between catanionic vesicles and oppositely charged polyelectrolytes phase behavior and phase structure. Macromolecules, 32(20), 6626-6637.
Mohanty, C., Das, M., & Sahoo, S. K. (2012). Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opinion on Drug Delivery, 9(11), 1347-1364.
N., O., & Jr., O. (1992). Langmuir-Blodgett Films - Properties and Possible Applicat ions. Brazilian Journal of Physics, 22(2), 60-69.
Parekh, P., Varade, D., Parikh, J., & Bahadur, P. (2011). Anionic–cationic mixed surfactant systems: Micellar interaction of sodium dodecyl trioxyethylene sulfate with cationic gemini surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 385(1-3), 111-120.
R, A., A, S., & A, B. (1997). Stability of vitamin C derivatives in solution and topical formulations. Journal of Pharmaceutical and Biomedical Analysis, 15(6), 795-801.
Reboiras, M. D., Miller, M. J., & Jones, M. N. (1997). Liposome adsorption to Candida albicans. Colloids and surfaces B: Biointerfaces, 9(1), 101-107
Rendon, M. I., & Gaviria, J. I. (2005). Review of skin‐lightening agents. Dermatologic surgery, 31, 886-890.
Salim, M., Minamikawa, H., Sugimura, A., & Hashim, R. (2014). Amphiphilic designer nano-carriers for controlled release: from drug delivery to diagnostics. Medicinal Chemistry Communication, 5(11), 1602-1618.
Shibuya, S., Ozawa, Y., Toda, T., Watanabe, K., Tometsuka, C., Ogura, T., . . . Shimizu, T. (2014). Collagen peptide and vitamin C additively attenuate age-related skin atrophy in Sod1-deficient mice. Bioscience, Biotechnology, and Biochemistry, 78(7), 1212-1220.
Silva, S. G., do Vale, M. L., & Marques, E. F. (2015). Size, charge, and stability of fully serine-based catanionic vesicles: towards versatile biocompatible nanocarriers. Chemistry, 21(10), 4092-4101.
Srivastava, A., Liu, C., Lv, J., kumar deb, D., & Qiao, W. (2018). Enhanced intercellular release of anticancer drug by using nano-sized catanionic vesicles of doxorubicin hydrochloride and gemini surfactants. Journal of Molecular Liquids, 259, 398-410.
Suzana, S., & Durdica, T. (2006). Spontaneous formation of vesicles. Advances in Colloid and Interface Science, 121(1-3), 51-75.
Tah, B., Pal, P., Mahato, M., & Talapatra, G. J. T. J. o. P. C. B. (2011). Aggregation behavior of SDS/CTAB catanionic surfactant mixture in aqueous solution and at the air/water interface. The Journal of Physical Chemistry B, 115(26), 8493-8499.
Tondre, C., & Caillet, C. (2001). Properties of the amphiphilic films in mixed cationic anionic vesicles: a comprehensive view from a literature analysis. Advances in Colloid and Interface Science, 93(1-3), 115-134.
Truong, N. P., Whittaker, M. R., Anastasaki, A., Haddleton, D. M., Quinn, J. F., & Davis, T. P. (2016). Facile production of nanoaggregates with tuneable morphologies from thermoresponsive P(DEGMA-co-HPMA). Polymer Chemistry, 7(2), 430-440.
Valiño, V., San Román, M. F., Ibáñez, R., Benito, J. M., Escudero, I., & Ortiz, I. (2014). Accurate determination of key surface properties that determine the efficient separation of bovine milk BSA and LF proteins. Separation and Purification Technology, 135, 145-157.
Wang, L., Liu, R., Hu, Y., Liu, J., & Sun, W. (2016). Adsorption behavior of mixed cationic/anionic surfactants and their depression mechanism on the flotation of quartz. Powder Technology, 302, 15-20.
Wang, L., Song, Y., Han, X., Zhang, B., & Wang, E. (2003). Growth of cationic lipid toward bilayer lipid membrane by solution spreading: scanning probe microscopy study. Chemistry and Physics of Lipids, 123(2), 177-185.
Wang, Y., Pereira, C. M., Marques, E. F., Brito, R. O., Ferreira, E., & Silva, F. J. T. S. F. (2006). Catanionic surfactant films at the air–water interface. Thin Solid Films, 515(4), 2031-2037.
Wu, C.-J., Kuo, A.-T., Lee, C.-H., Yang, Y.-M., & Chang, C.-H. (2013). Fabrication of positively charged catanionic vesicles from ion pair amphiphile with double-chained cationic surfactant. Colloid and Polymer Science, 292(3), 589-597.
Zhao, H., & Lappalainen, P. (2012). A simple guide to biochemical approaches for analyzing protein-lipid interactions. Molecular Biology of the Cell, 23(15), 2823-2830.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top