跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/14 01:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林承翰
研究生(外文):LIN, CHENG-HAN
論文名稱:棕櫚醯甘胺醯-組胺醯-離胺酸對於不同脂質膜模型的影響
論文名稱(外文):The impact of palmitoyl glycyl-histidyl-lysine on different lipid model membrane systems
指導教授:周宗翰
指導教授(外文):CHOU, TZUNG-HAN
口試委員:周宗翰張鑑祥楊宏達
口試委員(外文):CHOU, TZUNG-HANCHANG, CHIEN-HSIANGYANG, HONG-TA
口試日期:2019-06-28
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:116
中文關鍵詞:GHK胜肽衍生物脂質模型膜氫化大豆磷脂醯膽鹼雙十六烷基磷酸酯
外文關鍵詞:GHK peptide derivativeslipid model membranehydrogenated soy phosphatidylcholinedihexadecyl phosphate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
甘氨醯-組氨醯-賴氨酸(glycyl-histidyl-lysine,GHK)是人體中的一種三肽,已有文獻證明它具有多種生物活性。本研究將GHK的衍生物之雙親性分子棕櫚醯甘氨醯 - 組氨醯 - 賴氨酸(palmitoyl glycyl-histidyl-lysine,Pal-GHK)與氫化大豆磷脂醯膽鹼(hydrogenated soy phosphatidylcholine,HSPC)和雙十六烷基磷酸酯(dihexadecyl phosphate,DHP)混合以形成脂質雙層(lipid bilayer)作為細胞膜的模型,並以多重技術評估Pal-GHK如何對HSPC和DHP模型膜的物理化學特性產生影響,其中包含:動態光散射、透射電子顯微鏡、熱差示掃描量熱法、螢光偏極化、衰減全反射傅立葉變換紅外光譜和Langmuir-Blodgett單分子層。在HSPC系統,當將Pal-GHK以莫耳分率(XPal-GHK = 0.1至0.3)加入HSPC分散液中時,主轉變溫度降低,螢光偏極化中,純HSPC分散液的行為進行比較,當XPal-GHK為0.1和0.3時,膜內流動性也增加,而在XPal-GHK接近0.4~0.7後,相較於XPal-GHK = 0.1~0.3而言,其膜內流動性低,而IR研究中,脂質膜的烷基鏈的堆疊密度變化也顯示出相似的變化。在DHP系統,膠體分散粒子的主轉變溫度和堆疊密度隨著Pal-GHK組成的增加都降低,而膜內流動性則隨組成的增加而增加。在單分子層研究中,Pal-GHK在高表面壓力下被迫脫離HSPC單分子層。然而與HSPC分子相比,帶正電的Pal-GHK有與帶負電的DHP分子產生更多相互作用的可能性。根據本研究之結果,Pal-GHK會使的HSPC和DHP模型膜的結構與分子堆疊與變得鬆散。此外根據上述實驗推測,在Pal-GHK莫耳分率為0.4至0.8的範圍內,HSPC的液胞雙層結構可能轉變為交叉式雙層。
Glycyl-histidyl-lysine (GHK) is a kind of tripeptide in the human body. It has been proven to exhibit several bioactivities. The amphiphilic molecules palmitoyl glycyl-histidyl-lysine (Pal-GHK) derived from GHK was mixed with hydrogenated soy phosphatidylcholine (HSPC) and dihexadecyl phosphate (DHP) to form lipid bilayer as models of the cell membrane. Multi˗techniques estimate the physicochemical characteristics and properties of HSPC and DHP model membrane affected by Pal-GHK. In the HSPC system, the main-transition temperature decreased when the molar fraction of Pal-GHK (XPal-GHK = 0.1 to 0.3) was added into the HSPC bilayer. By comparing with the behavior of pure HSPC dispersion, the membrane fluidity also increased when XPal-GHK is from 0.1 and 0.3. After XPal-GHK approached 0.4 ~ 0.7, their membrane fluidity was lower than those of XPal-GHK = 0.1 to 0.3. The packing density of lipid alkyl chain also shows a similar result in IR study. In the DHP system, the main-transition temperature, packing density of lipid alkyl chain decreased, and the membrane fluidity increased as increasing the amount of Pal-GHK. From the result of monolayer model, Pal-GHK was forced out of the HSPC monolayer at high surface pressure. However, Pal-GHK expresses more potential to interact with DHP molecules compared to HSPC. In summary, Pal-GHK loosens the packing of both HSPC and DHP model membrane. In addition, it can be suggested that HSPC vesicle structures may form the interdigitated bilayer with the Pal-GHK molar ratio at the range from 0.4 to 0.8.
摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 vii
符號說明 xiii
第1章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
第2章 文獻回顧 3
2-1 藥妝品常用之抗皺胜肽 3
2-2 GHK與GHK-Cu 4
2-3 GHK之衍生物 5
2-4 脂質膜之模型 6
2-5 脂質雙層結構與分子自聚集和堆疊之間的關係 8
第3章 實驗材料與方法 12
3-1 實驗藥品 12
3-2 實驗方法與原理 13
3-2-1 膠體分散液製備 13
3-2-2 粒徑分析 13
3-2-3 界面電位分析 14
3-2-4 穿透式電子顯微鏡 15
3-2-5 微分式掃描熱卡計分析 16
3-2-6 螢光偏極化分析 17
3-2-7 傅立葉變換衰減全反射紅外光譜分析 18
3-2-8 Langmuir–Blodgett 單分子層技術 19
3-2-8-1 單分子層氣-液界面之表面張力量測 20
3-2-8-2 混合單分子層之表面壓與每分子佔據面積之等溫線量測 22
3-2-8-3 混合單分子層之螢光顯微影像分析 22
第4章 實驗結果與討論 29
4-1 HSPC/Pal-GHK混合分散液之物化特徵 29
4-1-1 HSPC/Pal-GHK混合分散液之粒徑、分散度與界面電位分析 29
4-1-2 HSPC/Pal-GHK混合分散液之粒子型態觀察 30
4-1-3 HSPC/Pal-GHK混合分散液之相變行為分析 31
4-1-4 HSPC/Pal-GHK混合分散液之膜內流動性分析 32
4-1-5 HSPC/Pal-GHK混合分散液之紅外光光譜分析 33
4-2 HSPC/Pal-GHK混合單分子層之行為與特性 37
4-2-1 HSPC/Pal-GHK混合單分子層之π–A等溫線分析 37
4-2-2 HSPC/Pal-GHK混合單分子層之界面型態觀察 38
4-3 DHP/Pal-GHK混合分散液之物化特徵 39
4-3-1 DHP/Pal-GHK 混合分散液之粒徑、分散度與界面電位分析 39
4-3-2 DHP/Pal-GHK混合分散液之粒子型態觀察 40
4-3-3 DHP/Pal-GHK混合分散液之相變行為分析 40
4-3-4 DHP/Pal-GHK混合分散液之膜內流動性分析 42
4-3-5 DHP/Pal-GHK混合分散液之紅外光光譜分析 43
4-4 DHP/Pal-GHK混合單分子層之行為 44
4-4-1 DHP/Pal-GHK混合單分子層之π–A等溫線分析 44
4-4-2 DHP/Pal-GHK混合單分子層之界面型態觀察 44
第5章 結論 93
參考文獻 94
Abu Samah, N., & Heard, C. (2011). Topically applied KTTKS: a review. International Journal of Cosmetic Science, 33(6), 483-490.

Boon, J. M., & Smith, B. D. (2002). Chemical control of phospholipid distribution across bilayer membranes. Medicinal Research Reviews, 22(3), 251-281.

Bradley, E. J., Griffiths, C. E., Sherratt, M. J., Bell, M., & Watson, R. E. (2015). Over-the-counter anti-ageing topical agents and their ability to protect and repair photoaged skin. Maturitas, 80(3), 265-272.

Budziak, I., Arczewska, M., Sachadyn-Król, M., Matwijczuk, A., Waśko, A., Gagoś, M., Kamiński, D. M. (2018). Effect of polyols on the DMPC lipid monolayers and bilayers. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1860(11), 2166-2174.

Cui, H., Webber, M. J., & Stupp, S. I. (2010). Self‐assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Peptide Science: Original Research on Biomolecules, 94(1), 1-18.

Donath, E., & Pastushenko, V. (1979). Electrophoretical study of cell surface properties. The influence of the surface coat on the electric potential distribution and on general electrokinetic properties of animal cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 104, 543-554.

El‐Domyati, M., Attia, S., Saleh, F., Brown, D., Birk, D., Gasparro, F., Uitto, J. (2002). Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Experimental Dermatology, 11(5), 398-405.

Finkley, M., Appa, Y., & Bhandarkar, S. (2005). Copper peptide and skin. Cosmeceutical and Active Cosmetics. New York: Taylor and Francis, 550-564.

Garbuzenko, O., Barenholz, Y., & Priev, A. (2005). Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chemistry and Physics of Lipids, 135(2), 117-129.

Gorouhi, F., & Maibach, H. (2009). Role of topical peptides in preventing or treating aged skin. International Journal of Cosmetic Science, 31(5), 327-345.

Hamley, I. (2011). Self-assembly of amphiphilic peptides. Soft Matter, 7(9), 4122-4138.

Hartgerink, J. D., Beniash, E., & Stupp, S. I. (2001). Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 294(5547), 1684-1688.

Herbst, E., Paglialunga, S., Gerling, C., Whitfield, J., Mukai, K., Chabowski, A., Holloway, G. P. (2014). Omega‐3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle. The Journal of Physiology, 592(6), 1341-1352.
Israelachvili, J. N. (2011). Intermolecular and Surface Forces: Academic press.

Israelachvili, J. N., Mitchell, D. J., & Ninham, B. W. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 72, 1525-1568.

Kumar, V. (1991). Complementary molecular shapes and additivity of the packing parameter of lipids. Proceedings of the National Academy of Sciences, 88(2), 444-448.

Lingwood, D., & Simons, K. (2010). Lipid rafts as a membrane-organizing principle. Science, 327(5961), 46-50.

Lintner, K., & Peschard, O. (2000). Biologically active peptides: from a laboratory bench curiosity to a functional skin care product. International Journal of Cosmetic Science, 22(3), 207-218.

Lupo, M. P., & Cole, A. L. (2007). Cosmeceutical peptides. Dermatologic Therapy, 20(5), 343-349.

Maquart, F.-X., Pasco, S., Ramont, L., Hornebeck, W., & Monboisse, J.-C. (2004). An introduction to matrikines: extracellular matrix-derived peptides which regulate cell activity: implication in tumor invasion. Critical Reviews in Oncology/Hematology, 49(3), 199-202.

Maquart, F.-X., Pickart, L., Laurent, M., Gillery, P., Monboisse, J.-C., & Borel, J.-P. (1988). Stimulation of collagen synthesis in fibroblast cultures by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+. FEBS letters, 238(2), 343-346.

Maquart, F.-X., Siméon, A., Pasco, S., & Monboisse, J.-C. (1999). Regulation of cellular activity by the extracellular matrix: the concept of matrikines. Journal of the Society of Biology, 193(4-5), 423-428.

Nagarajan, R. (2002). Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir, 18(1), 31-38.

Noguchi, H., & Takasu, M. (2001). Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation. Physical Review E, 64(4), 041913.

Norbert, K., Jana, G., & Daniela, U. (2019). The membrane structure and function affected by water. Chemistry and Physics of Lipids, 221, 104-144.

Oricha, B. S. (2010). Cosmeceuticals: A review. African Journal of Pharmacy and Pharmacology, 4(4), 127-129.

Österlund, N., Luo, J., Wärmländer, S. K., & Gräslund, A. (2018). Membrane-mimetic systems for biophysical studies of the amyloid-β peptide. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1867(5), 492-501.


Penkauskas, T., & Preta, G. (2018). Biological applications of tethered bilayer lipid membranes. Biochimie, 157, 131-141.

Phua, S. C., Chiba, S., Suzuki, M., Su, E., Roberson, E. C., Pusapati, G. V., Ikegami, K. (2017). Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision. Cell, 168(1-2), 264-279.

Pickart, L. (2008). The human tri-peptide GHK and tissue remodeling. Journal of Biomaterials Science, Polymer Edition, 19(8), 969-988.

Pickart, L., & Margolina, A. (2012). Anti-aging activity of the GHK peptide-the skin and beyond. The Journal of Aging Research & Clinical Practice, 1(1), 13-15.

Pickart, L., & Thaler, M. (1973). Tripeptide in human serum which prolongs survival of normal liver cells and stimulates growth in neoplastic liver. Nature: New Biology, 243(124), 85-87.

Pickart, L., Vasquez-Soltero, J. M., & Margolina, A. (2012). The human tripeptide GHK-Cu in prevention of oxidative stress and degenerative conditions of aging: implications for cognitive health. Oxidative Medicine and Cellular Longevity, 2012, 324832.

Schagen, S. (2017). Topical peptide treatments with effective anti-aging results. Cosmetics, 4(2), 16.

Siméon, A., Emonard, H., Hornebeck, W., & Maquart, F.-X. (2000). The tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+ stimulates matrix metalloproteinase-2 expression by fibroblast cultures. Life Sciences, 67(18), 2257-2265.

Siméon, A., Wegrowski, Y., Bontemps, Y., & Maquart, F.-X. (2000). Expression of glycosaminoglycans and small proteoglycans in wounds: modulation by the tripeptide–copper complex glycyl-l-histidyl-l-lysine-Cu2+. Journal of Investigative Dermatology, 115(6), 962-968.

Stendahl, J. C., Rao, M. S., Guler, M. O., & Stupp, S. I. (2006). Intermolecular forces in the self‐assembly of peptide amphiphile nanofibers. Advanced Functional Materials, 16(4), 499-508.

Van Meer, G., Voelker, D. R., & Feigenson, G. W. (2008). Membrane lipids: where they are and how they behave. Nature Reviews Molecular Cell Biology, 9(2), 112-124.

Vauthey, S., Santoso, S., Gong, H., Watson, N., & Zhang, S. (2002). Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proceedings of the National Academy of Sciences, 99(8), 5355-5360.

Velichko, Y. S., Stupp, S. I., & De La Cruz, M. O. (2008). Molecular simulation study of peptide amphiphile self-assembly. The Journal of Physical Chemistry B, 112(8), 2326-2334.

Versluis, F., Marsden, H. R., & Kros, A. (2010). Power struggles in peptide-amphiphile nanostructures. Chemical Society Reviews, 39(9), 3434-3444.

Wang, C., Wang, Z., & Zhang, X. (2012). Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles. Accounts of Chemical Research, 45(4), 608-618.

Zhang, L., & Falla, T. J. (2009). Cosmeceuticals and peptides. Clinics in Dermatology, 27(5), 485-494.

Zhang, Y. M., & Rock, C. O. (2008). Membrane lipid homeostasis in bacteria. Nature Reviews Microbiology, 6(3), 222.

Zhao, X., Pan, F., Xu, H., Yaseen, M., Shan, H., Hauser, C. A., Lu, J. R. (2010). Molecular self-assembly and applications of designer peptide amphiphiles. Chemical Society Reviews, 39(9), 3480-3498.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top