|
Abu Samah, N., & Heard, C. (2011). Topically applied KTTKS: a review. International Journal of Cosmetic Science, 33(6), 483-490.
Boon, J. M., & Smith, B. D. (2002). Chemical control of phospholipid distribution across bilayer membranes. Medicinal Research Reviews, 22(3), 251-281.
Bradley, E. J., Griffiths, C. E., Sherratt, M. J., Bell, M., & Watson, R. E. (2015). Over-the-counter anti-ageing topical agents and their ability to protect and repair photoaged skin. Maturitas, 80(3), 265-272.
Budziak, I., Arczewska, M., Sachadyn-Król, M., Matwijczuk, A., Waśko, A., Gagoś, M., Kamiński, D. M. (2018). Effect of polyols on the DMPC lipid monolayers and bilayers. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1860(11), 2166-2174.
Cui, H., Webber, M. J., & Stupp, S. I. (2010). Self‐assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Peptide Science: Original Research on Biomolecules, 94(1), 1-18.
Donath, E., & Pastushenko, V. (1979). Electrophoretical study of cell surface properties. The influence of the surface coat on the electric potential distribution and on general electrokinetic properties of animal cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 104, 543-554.
El‐Domyati, M., Attia, S., Saleh, F., Brown, D., Birk, D., Gasparro, F., Uitto, J. (2002). Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Experimental Dermatology, 11(5), 398-405.
Finkley, M., Appa, Y., & Bhandarkar, S. (2005). Copper peptide and skin. Cosmeceutical and Active Cosmetics. New York: Taylor and Francis, 550-564.
Garbuzenko, O., Barenholz, Y., & Priev, A. (2005). Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chemistry and Physics of Lipids, 135(2), 117-129.
Gorouhi, F., & Maibach, H. (2009). Role of topical peptides in preventing or treating aged skin. International Journal of Cosmetic Science, 31(5), 327-345.
Hamley, I. (2011). Self-assembly of amphiphilic peptides. Soft Matter, 7(9), 4122-4138.
Hartgerink, J. D., Beniash, E., & Stupp, S. I. (2001). Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 294(5547), 1684-1688.
Herbst, E., Paglialunga, S., Gerling, C., Whitfield, J., Mukai, K., Chabowski, A., Holloway, G. P. (2014). Omega‐3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle. The Journal of Physiology, 592(6), 1341-1352. Israelachvili, J. N. (2011). Intermolecular and Surface Forces: Academic press.
Israelachvili, J. N., Mitchell, D. J., & Ninham, B. W. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 72, 1525-1568.
Kumar, V. (1991). Complementary molecular shapes and additivity of the packing parameter of lipids. Proceedings of the National Academy of Sciences, 88(2), 444-448.
Lingwood, D., & Simons, K. (2010). Lipid rafts as a membrane-organizing principle. Science, 327(5961), 46-50.
Lintner, K., & Peschard, O. (2000). Biologically active peptides: from a laboratory bench curiosity to a functional skin care product. International Journal of Cosmetic Science, 22(3), 207-218.
Lupo, M. P., & Cole, A. L. (2007). Cosmeceutical peptides. Dermatologic Therapy, 20(5), 343-349.
Maquart, F.-X., Pasco, S., Ramont, L., Hornebeck, W., & Monboisse, J.-C. (2004). An introduction to matrikines: extracellular matrix-derived peptides which regulate cell activity: implication in tumor invasion. Critical Reviews in Oncology/Hematology, 49(3), 199-202.
Maquart, F.-X., Pickart, L., Laurent, M., Gillery, P., Monboisse, J.-C., & Borel, J.-P. (1988). Stimulation of collagen synthesis in fibroblast cultures by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+. FEBS letters, 238(2), 343-346.
Maquart, F.-X., Siméon, A., Pasco, S., & Monboisse, J.-C. (1999). Regulation of cellular activity by the extracellular matrix: the concept of matrikines. Journal of the Society of Biology, 193(4-5), 423-428.
Nagarajan, R. (2002). Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir, 18(1), 31-38.
Noguchi, H., & Takasu, M. (2001). Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation. Physical Review E, 64(4), 041913.
Norbert, K., Jana, G., & Daniela, U. (2019). The membrane structure and function affected by water. Chemistry and Physics of Lipids, 221, 104-144.
Oricha, B. S. (2010). Cosmeceuticals: A review. African Journal of Pharmacy and Pharmacology, 4(4), 127-129.
Österlund, N., Luo, J., Wärmländer, S. K., & Gräslund, A. (2018). Membrane-mimetic systems for biophysical studies of the amyloid-β peptide. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1867(5), 492-501.
Penkauskas, T., & Preta, G. (2018). Biological applications of tethered bilayer lipid membranes. Biochimie, 157, 131-141.
Phua, S. C., Chiba, S., Suzuki, M., Su, E., Roberson, E. C., Pusapati, G. V., Ikegami, K. (2017). Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision. Cell, 168(1-2), 264-279.
Pickart, L. (2008). The human tri-peptide GHK and tissue remodeling. Journal of Biomaterials Science, Polymer Edition, 19(8), 969-988.
Pickart, L., & Margolina, A. (2012). Anti-aging activity of the GHK peptide-the skin and beyond. The Journal of Aging Research & Clinical Practice, 1(1), 13-15.
Pickart, L., & Thaler, M. (1973). Tripeptide in human serum which prolongs survival of normal liver cells and stimulates growth in neoplastic liver. Nature: New Biology, 243(124), 85-87.
Pickart, L., Vasquez-Soltero, J. M., & Margolina, A. (2012). The human tripeptide GHK-Cu in prevention of oxidative stress and degenerative conditions of aging: implications for cognitive health. Oxidative Medicine and Cellular Longevity, 2012, 324832.
Schagen, S. (2017). Topical peptide treatments with effective anti-aging results. Cosmetics, 4(2), 16.
Siméon, A., Emonard, H., Hornebeck, W., & Maquart, F.-X. (2000). The tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+ stimulates matrix metalloproteinase-2 expression by fibroblast cultures. Life Sciences, 67(18), 2257-2265.
Siméon, A., Wegrowski, Y., Bontemps, Y., & Maquart, F.-X. (2000). Expression of glycosaminoglycans and small proteoglycans in wounds: modulation by the tripeptide–copper complex glycyl-l-histidyl-l-lysine-Cu2+. Journal of Investigative Dermatology, 115(6), 962-968.
Stendahl, J. C., Rao, M. S., Guler, M. O., & Stupp, S. I. (2006). Intermolecular forces in the self‐assembly of peptide amphiphile nanofibers. Advanced Functional Materials, 16(4), 499-508.
Van Meer, G., Voelker, D. R., & Feigenson, G. W. (2008). Membrane lipids: where they are and how they behave. Nature Reviews Molecular Cell Biology, 9(2), 112-124.
Vauthey, S., Santoso, S., Gong, H., Watson, N., & Zhang, S. (2002). Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proceedings of the National Academy of Sciences, 99(8), 5355-5360.
Velichko, Y. S., Stupp, S. I., & De La Cruz, M. O. (2008). Molecular simulation study of peptide amphiphile self-assembly. The Journal of Physical Chemistry B, 112(8), 2326-2334.
Versluis, F., Marsden, H. R., & Kros, A. (2010). Power struggles in peptide-amphiphile nanostructures. Chemical Society Reviews, 39(9), 3434-3444.
Wang, C., Wang, Z., & Zhang, X. (2012). Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles. Accounts of Chemical Research, 45(4), 608-618.
Zhang, L., & Falla, T. J. (2009). Cosmeceuticals and peptides. Clinics in Dermatology, 27(5), 485-494.
Zhang, Y. M., & Rock, C. O. (2008). Membrane lipid homeostasis in bacteria. Nature Reviews Microbiology, 6(3), 222.
Zhao, X., Pan, F., Xu, H., Yaseen, M., Shan, H., Hauser, C. A., Lu, J. R. (2010). Molecular self-assembly and applications of designer peptide amphiphiles. Chemical Society Reviews, 39(9), 3480-3498.
|