跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/23 16:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴昱勳
研究生(外文):LAI, YU-HSUN
論文名稱:以射頻濺鍍沉積銅/氧化矽/銅夾層結構薄膜於氮摻雜奈米碳管/石墨烯複合材料作為鋰離子電池負極材料
論文名稱(外文):Copper/silicon oxide/copper Sandwich-like Films Deposited by Radio-frequency Sputtering on Nitrogen-doping Carbon Nanotubes/graphene Composites as Anode Materials of Lithium-ion Batteries
指導教授:林春強林春強引用關係
指導教授(外文):LIN, CHUEN-CHANG
口試委員:胡啟章鄧熙聖
口試委員(外文):HU, CHI-CHANGTENG, HSI-SHENG
口試日期:2019-07-15
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:110
中文關鍵詞:化學氣相沉積氧化矽夾層結構石墨烯奈米碳管負極材料鋰離子電池
外文關鍵詞:chemical vapor depositionsandwich-like filmssilicon oxidecoppergraphenecarbon nanotubesanode materiallithium-ion battery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的為研製高功率密度、高能量密度及長壽命的鋰離子電池,藉此提高電子產品的性能與可靠度且降低成本增加競爭優勢;本研究採用化學氣相沉積法來製備石墨烯/奈米碳管複材做為基材,以RF射頻的方式濺鍍銅薄膜於石墨烯/奈米碳管複材表面,之後以RF射頻的方式反應性濺鍍氧化矽薄膜,最後再以RF射頻濺鍍銅薄膜於複材表面,形成夾層結構。氧化矽在初始放電過程中會產生Li2O與Li4SiO4惰性物質,這些可以減緩鋰化過程中矽所產生的體積膨脹。另以不同條件濺鍍銅於氧化矽表面來改變表層薄膜的結構,使得銅能發揮出它的高導電度來得到更好的電化學循環表現,觀察其拉曼光譜分析、SEM、XPS、AFM、充放電測試、循環壽命尋找最佳的條件。實驗結果顯示最佳條件濺鍍銅瓦數50 W 時間為25 min,第1圈充電(脫鋰)電容值為1196.88 mAh/g,第20圈充電(脫鋰)電容值為1151.20 mAh/g,電容維持率為96.18%。
The purpose of this study is the development of high power density, high energy density and long-life of lithium-ion batteries. In this way, people could not only improve the performance and reliability of electronic products. In this study, chemical vapor deposition method was used to prepare graphene / CNTs composites as a base, then copper film coated on the graphene / CNTs composites by the RF sputtering. And, the RF reactive sputtering silicon oxide flim on the copper / graphene / CNTs composites. At last, copper film coated on the composites surface by the RF sputtering .Form sandwich-like films.The Li2O and Li4SiO4 generated in the initial discharge process can immensely relieve the volume expansion induced by the lithiation of silicon. On the other hand, we change the surface structure of the film by copper splash with different watt and time parameters during the charge-discharge tests to investigate the best condition for copper to demonstrate its high ductility, better cycling performance and electrochemical properties. Experimental results optimal conditions Cu for Power 50 W, 25 min, the initial capacity of 1196.88 mAh/g, the capacity of the 20 th cycles 1051.20 mAh /g, the capacity retention rate was 96.18 %.
目錄
摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2研究動機 6
第二章 文獻回顧及理論 7
2.1 鋰二次電池 7
2.2 鋰電池原理 8
2.3鋰離子電池的特色 10
2.4 奈米碳管的簡介 10
2.4.1. 奈米碳管的構造 11
2.4.2. 奈米碳管製備方式 12
2.5石墨烯的簡介 15
2.5.1石墨烯的製備方法 15
2.6氮參雜碳材介紹 19
2.7濺鍍法介紹及應用 20
2.8 濺鍍的種類 22
2.8.1 直流濺鍍(DC) 22
2.8.2 射頻濺鍍(RF) 23
2.8.3 磁控濺鍍 23
2.8.4 反應式濺鍍 23
2.9 銅/氧化矽/銅/石墨烯/奈米碳管之文獻探討 25
第三章 實驗步驟與研究方法 29
3.1 實驗流程圖 29
3.2實驗藥品與儀器 30
3.2.1實驗藥品 30
3.2.2實驗設備 30
3.2.3實驗檢測儀器 31
3.3實驗步驟 31
3.3.1基材前處理 31
3.3.2配置硫酸銅溶液 32
3.3.3石墨烯與碳管複材同時成長 32
3.3.4 RF射頻濺鍍銅薄膜於石墨烯/碳管複材上 33
3.3.5 RF射頻反應性濺鍍氧化矽薄膜於銅/石墨烯/碳管複材上 34
3.3.6 RF射頻濺鍍銅薄膜於氧化矽/銅/石墨烯/碳管複材上 35
3.4鋰電池組裝 37
第四章 結果與討論 39
4.1奈米碳管/石墨烯複材氮參雜特性分析 40
4.1.1 奈米碳管/石墨烯複合材料SEM表面型態分析 40
4.1.2 拉曼分析 43
4.1.3. 奈米碳管/石墨烯複材之電化學分析 45
4.2濺鍍銅於氧化矽/銅/氮參雜之奈米碳管/石墨烯複材特性分析 47
4.2.1 SEM表面型態分析 47
4.2.2氧化矽/銅/氮參雜之奈米碳管/石墨烯複合材料之XPS分析 59
4.2.3鋰化後複材之XPS分析 61
4.2.4薄膜表面之AFM分析 63
4.2.5銅/氧化矽/銅/氮參雜之奈米碳管/石墨烯複合材料之電化學分析 71
第五章 結論 85
參考文獻 87

表目錄
表1-1電池比較表 3
表1-2電池優缺點比較表 4
表1-3商業上常見鋰離子電池正極材料比較表 5
表2-1過渡金屬氧化物、矽、氧化矽、錫、碳材理論電容以及膨脹 28
表3-1實驗藥品 30
表3-2實驗設備 30
表3-3實驗檢測儀器 31
表4-1未氮參雜與氮參雜石墨烯/奈米碳管複合材料之ID/ IG 44
表4-2 50 W Cu / SiOx / Cu / N-doped CNTs/GA複材不同時間之粒徑比較 50
表4-3 75 W Cu / SiOx / Cu / N-doped CNTs/GA複材不同時間之粒徑比較 54
表4-4 100 W Cu / SiOx / Cu / N-doped CNTs/GA複材之不同時間之粒徑比較 58
表4-5 50 W Cu/SiOx/Cu/N-doped CNTs/GA複材之不同濺鍍時間的電容值及表面粗糙度 64
表4-6 75 W Cu / SiOx / Cu / N-doped CNTs/GA複材之不同濺鍍時間的電容值及表面粗糙度 66
表4-7 100 W Cu / SiOx / Cu / N-doped CNTs/GA複材之不同濺鍍時間的電容值及表面粗糙度 68
表4-8 不同條件下Cu / SiOx / Cu / N-doped CNTs/GA 循環壽命測試(0.1C) 72
表4-9 有無頂部銅複材20圈電容值與維持率比較 75
表4-10 有無頂部銅複材50圈電容值與維持率比較 76
表4-11 不同實驗參數複材電容值與維持率比較 80

圖目錄
圖1.1 鋰離子電池與其他電池能量密度比較圖[4] 2
圖1.2 鋰離子電池應用市場[5] 2
圖2.1 層狀LiCoO2充放電時Li離子工作原理示意圖[17] 9
圖2.2 單層與多層碳管圖意示圖[24] 11
圖2.3 電弧放電示意圖[18] 13
圖2.4 雷射剝蝕示意圖[26] 14
圖2.5 化學氣相沉積示意圖 14
圖2.6 Graphene(AFM)膠帶法簡圖[31] 15
圖2.7 石墨表面帶有氧官能基[33] 16
圖2.8 還原後部分石墨間位置產生缺陷[33] 16
圖2.9 化學氣相沉積示意圖[44] 18
圖2.10 濺鍍設備系統構造示意圖 21
圖2.11 薄膜沉積機構示意圖 21
圖3.1 實驗流程圖 29
圖3.2 高溫爐設備示意圖 33
圖3.3 電漿反應系統示意圖 36
圖3.4 鋰離子電池組裝示意圖 37
圖3.5 全電池組裝示意圖 38
圖4.1 石墨烯/奈米碳管複合材料之SEM圖(a)25K (b)50K 41
圖4.2 氮參雜石墨烯/奈米碳管複合材料之SEM圖(a)30K (b)50K 42
圖4.3石墨烯/奈米碳管複合材料 44
圖4.4氮參雜石墨烯/奈米碳管複合材料 44
圖4.5 通氨氣成長碳材的電池循環壽命圖 45
圖4.6 通氨氣成長碳材的電池庫倫效率圖 46
圖4.7 50W 10 min Cu / SiOx / Cu / N-doped CNTs/GA複材SEM圖 47
圖4.8 50W 25 min Cu / SiOx / Cu / N-doped CNTs/GA複材SEM圖 48
圖4.9 50W 40 min Cu / SiOx / Cu / N-doped CNTs/GA複材SEM圖 49
圖4.10 75 W 10 min Cu / SiOx / Cu / N-doped CNTs/GA複材SEM圖 51
圖4.11 75 W 25 min Cu / SiOx / Cu / N-doped CNTs/GA複材SEM圖 52
圖4.12 75 W 40 min Cu / SiOx / Cu / N-doped CNTs/GA複材SEM圖 53
圖4.13 100 W 10 min Cu / SiOx / Cu / N-doped CNTs/GA複材SEM圖 55
圖4.14 100 W 25 min Cu / SiOx / Cu / N-doped CNTs/GA複材SEM圖 56
圖4.15 100 W 40 min Cu / SiOx / Cu / N-doped CNTs/GA複材SEM圖 57
圖4.16 Cu / SiOx / Cu / N-doped CNTs/GA複材光譜圖(a) Si 2p (b) Cu 2p 60
圖4.17 Cu / SiOx / Cu / N-doped CNTs/GA鋰化複材光譜圖(a) Li 1s (b) Cu 2p 62
圖4.18 50 W 10 min Cu / SiOx / Cu / N-doped CNTs/GA 64
圖4.19 50 W 25 min Cu / SiOx / Cu / N-doped CNTs/GA 65
圖4.20 50 W 40 min Cu / SiOx / Cu / N-doped CNTs/GA 65
圖4.21 75 W 10 min Cu / SiOx / Cu / N-doped CNTs/GA 66
圖4.22 75 W 25 min Cu / SiOx / Cu / N-doped CNTs/GA 67
圖4.23 75 W 40 min Cu / SiOx / Cu / N-doped CNTs/GA 67
圖4.24 100 W 10 min Cu / SiOx / Cu / N-doped CNTs/GA 68
圖4.25 100 W 25 min Cu / SiOx / Cu / N-doped CNTs/GA 69
圖4.26 100 W 40 min Cu / SiOx / Cu / N-doped CNTs/GA 69
圖4.27 Cu/SiOx/Cu/N-doped CNTs/GA複材不同濺鍍時間及瓦數粗糙度關係圖 70
圖4.28 Cu/SiOx/Cu/N-doped CNTs/GA複材之不同濺鍍時間及瓦數電容關係圖 70
圖4.29 濺鍍時間25 min下不同瓦數10圈循環壽命圖 72
圖4.30 濺鍍瓦數50 W下不同時間10圈循環壽命圖 73
圖4.31 50W 25min Cu/SiOx/Cu/N-doped CNTs/GA 複合材料充放電圖(0.1C) 74
圖4.32 最佳條件之20圈循環壽命圖(0.1C) 74
圖4.33 有無頂部銅之複材20圈循環壽命比較圖 75
圖4.34 有無頂部銅之複材庫倫效率比較圖 76
圖4.35 有無頂部銅之複材50圈循環壽命比較圖 76
圖4.36 有無頂部銅之複材倍率性能比較圖 77
圖4.37 Cu / SiOx / Cu / N-doped CNTs/GA複材SEM橫截面圖 78
圖4.38 不同條件20圈循環壽命圖 80
圖4.39 SiOx / N-doped CNTs/GA交流阻抗圖 81
圖4.40 SiOx / Cu / N-doped CNTs/GA交流阻抗圖 82
圖4.41 Cu / SiOx / Cu / N-doped CNTs/GA交流阻抗圖 82
圖4.42 Cu / SiOx / Cu / N-doped CNTs /GA之CV圖 83
圖4.43 Cu / SiOx / Cu / N-doped CNTs /GA之全電池充放電圖 84

1.M. J. Wakihara, Materials Science and Engineering, R33, 2001, 1092134
2.陳立業, 奈米結構氫氧化鎳之參雜改性及其對鎳氫電池性能的改善及機制研究(3/3), 2005
3.Z. Zheng, W. Shen, Z. Tang,化學世界., 2004, 270
4.J.-M. Tarascon and M. Armand, Nature, 414 , 2001, 359-367.
5.金融家月刊,6月號, 2012
6.台灣立凱電能科技股份有限公司
7.趙信豪,“鋰電池三元系正極材料之添加劑製備及電性能探討”,國立中央大學化學學系研究所, 2012
8.Y S Wu, C L Wu, Y M Chang, Journal of China Institute of Technology,31, 2004, pp. 247-262
9.Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. , Nature Materials, 1, 2002, pp. 123-128.
10.Kuczynski, G. C. Trans. Am. Inst. Min. (Metall.) Eng. , 185 ,1949, pp.169.
11.B. Diouf, R. Pode, “Potential of lithium-ion batteries in renewable energy”,Renew Energy, 76, 2015, pp. 375–380
12.D. Miranda, C.M. Costa, S. Lanceros-Mendez, “Lithium ion rechargeable batteries: State of the art and future needs of microscopic theoretical models and simulations”, J. Electroanalytical Chemistry, 739, 2015, pp. 97–110
13.Charles de las Casas, Wenzhi Li, “A review of application of carbon nanotubes for lithium ion battery anode material”,J. Power Sources,208, 2012, pp. 74-85
14.孫清華編譯,可充電電池技術大全,全華科技圖書股份有限公司, 2003
15.M. Wakihara , Yamamoto.-Weinheim, “Lithium Ion Batteries Fundamentals and Performance”, 1998,Kodansha Ltd., Tokyo (Japan)
16.M. Arakawa, S. Tobishima, Y. Nemoto, M. Ichimura, J. Yamaki,“Lithium electrode cycleability and morphology dependence on current density” ,J. Power Sources, 1993 ,43, pp. 27-35
17.B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo and R. P. Raffaelle, Energy Environ. Sci. 2 , 2009, pp. 638-654
18.Iijima, S . ,Nature, 354 , 1991, 56
19.Zhu, Y. W., Cheong, F. C., Yu, T., Xu, X. J., Carbon, 43 , 2005, pp.395-400.
20.Hu,C. G., Wang, W. L., Diamond and Related Materials, 12 , 2003, 1295-1299
21.Charlier, J. C., Issi, J. P., Appl. Phys. A., 67, 1998, 79.
22.Haus, M. D., Dresselhaus, G., Eklund, P., Saito, R., Phys. World, 33 , 1998.
23.Mintmire, J. W., and White, C. T., Appl. Phys. A, 67, 1998, 65
24.Cividanes LS, Simonetti EAN, Moraes MB, Fernandes FW and Thim GP. , Polymer Engineering and Science 54(11) , 2013, 2461–2469
25.Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomalnek D, Fischer J E, and Smalley R E, Science,273, 1996, 483-487
26.Smalley, R. E., Chemical Physics Letters, Vol. 243, 1995, 49-54.
27.Statishkumar, B. C., Govindaraj, A., and Rao, C. N. R., Chem. Phys. Lett., 307 , 1999, 158-162.
28.S.J. Chae, F. Gunes, K.K. Kim, E.S. Kim, G.H. Han, S.M. Kim, etal., “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation”, Adv Mater, 21, 2009, pp. 2328-2333.
29.莊鎮宇,“石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展”,物理雙月刊33(2) ,145-256
30.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science, 306, 2004, pp. 666-669
31.陳冠銘,“表面修飾石墨烯薄片及其在超級電容器之應用”,國立雲科技大學化學工程研究所,2012
32.Y. A. Wu, A. W. Robertson, F. Schäffel, S. C. Speller, J. H. Warner, “Aligned Rectangular Few-Layer Graphene Domains on Copper Surfaces”, Chem Mater., 23, 2011, pp. 4543-4547.
33.T. F. Chung, T. Shen, H. Cao, L. A. Jauregui, W. Wu, Q. Wu, D. Newell, and Y. P. Chen, International Journal of Modern Physics B, 27(10), 2013, 1341002-1 – 1341002-14.
34.M. G. Rybin, A. S. Pozharov, E. D. Obraztsova, “Control of number of graphene layers grown by chemical vapor deposition”, Physica Status Solidi C, 11-12, 2010, pp. 2785-2788.
35.D. M. Mattox,“The Foundations of Vacuum Coating Technology”, William Andrew Publishing, Noyes, 2003,
36.P. R. Somani, S. P. Somani and M. Umeno, “Planer nano-graphenes from camphor by CVD” Chem Phys Lett, 430, 2006, pp.56-59.
37.F. T. Si, X. W. Zhang, X. Liu, Z. G. Yin, S. G. Zhang, H. L. Gao, J. J. Dong, “Effects of ambient conditions on the quality of graphene synthesized by chemical vapor deposition” ,Vacuum 86, 2012, pp. 1867-1870.
38.G. Nandamuri, S. Roumimov, R. Solanki,“Chemical vapor deposition of graphene films”,Nanotechnology, 21, 2010, pp. 145604
39.D. Kondo, S. Sato, K. Yagi, N. Harada, M. Sato, M. Nihei, N. Yokoyama, “Low-temperature synthesis of graphene and fabrication of top-gated field effect transistors without using transfer processes”, Appl. Phys. Express, 3, 2010, pp. 025102
40.C.S. Chen, C.K. Hsieh, “Effects of acetylene flow rate and processing temperature on graphene films grown by thermal chemical vapor deposition”, Thin Solid Films, 584, 2015, pp. 265-269
41.Y. Zhang, Y. Fu, M. Edwards, K. Jeppson, L. Ye, J. Liu, “Chemical vapor deposition grown graphene on Cu-Pt alloys” , Materials Letters, 193, 2017, pp. 255-258
42.X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R.Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K.Banerjee, L. Colombo, R.S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science, 324, 2009, pp. 1312-1314
43.K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong,“Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature, 457, 2009, pp. 706-710
44.Taeho ,M., Chunjoong, K., Journal of Power Sources 155 , 2006, pp391–394
45.Z Zhou, X Gao, J Yan, D Song, and M Moringaga, J Phys Chem B, 108,2004, 9023-9026
46.D Deng, X Pan, L Yu, Y Cui, Y Jiang, J Qi, W Li, Q Fu, X Ma, Q Xue, G Sun, and X Bao, Chem Mater, 23 , 2011, 1188-1193
47.Xifei Li, Dongsheng Geng, Yong Zhang, Xiangbo Meng, Ruying Li, Xueliang Sun, “Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries”, Electrochem Commun,13, 2011, 822-825
48.H Wang, Chuanjian Zhang, Zhihong Liu, Li Wang, P Han, H Xu, K Zhang, S Dong, J Yao,and G Cui, “Nitrogen-doped graphene nanosheets with excellent lithium storage properties”, J Mater Chem,21, 2011, 5430-5434
49.A L Reddy, A Srivastava, S R Gowda, H Gullapalli, M Dubey, and P M Ajayan,“Synthesis of nitrogen-doped graphene films for lithium battery application.”, ACS Nano,4, 2010, 6337-6342
50.Weon Ho Shin, Hyung Mo Jeong, Byung Gon Kim, Jeung Ku Kang, and Jang Wook Choi, ACS Nano,12, 2012, 2283-2288
51.鄭博元,射頻磁控濺鍍法製備鋰離子二次電池用鋰-錳氧化物薄膜電極,國立雲林科技大學化學工程研究所,2006
52.柯賢文 編著,表面與薄膜處理技術,全華科技圖書股份有限公司,2005。
53.M. Yoshio, H.Y. Wang, K. Fukuda, Y. Hara, Y. Adachi., “Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium‐Ion Battery Anode Material”J. Electrochem. Soc., 147, 2000, pp. 1245–1250
54.H.-Y. Lee, S.-M. Lee., “Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries”,J. Power Sources, 112, 2002, pp. 649–654
55.M.N. Obrovac, L. Christensen, “Structural Changes in Silicon Anodes during Lithium Insertion/Extraction”,Electrochem. Solid-State Lett., 7, 2004, p. A93
56.M. Wachtler, J.O. Besenhard, M. Winter, “Tin and tin-based intermetallics as new anode materials for lithium-ion cells”,J. Power Sources, 94, 2001, p. 189
57.K. Wang, X. He, J. Ren, L. Wang, C. Jiang, C. Wan., “Preparation of Sn2Sb alloy encapsulated carbon microsphere anode materials for Li-ion batteries by carbothermal reduction of the oxides”,Electrochim. Acta, 52, 2006,, p. 1221
58.Y. Hmon, T. Brousse, F. Jousse, P. Topart, P. Buvat, D.M. Schleich, J. Power Sources, 97–98, 2001, p. 185
59.M. Wachtler, J.O. Besenhard, M. Winter., “Tin and tin-based intermetallics as new anode materials for lithium-ion cells”J. Power Sources, 94, 2001,p. 189
60.G.C.L.B.A. Boukamp. and R.A. Huggins., “All-solid lithium electrodes with mixed-conductor matrix”,J. Electrochem. Soc., 128/4 , 1981, p. 4
61.J.H. Ryu, J.W. Kim, Y.-E. Sung., “Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries”,Electrochem. Solid-state Lett., 7 , 2004, pp. A306–A309
62.T. Hasegawa, S.R. Mukai, Y. Shirato, H. Tamon., “Preparation of carbon gel microspheres containing silicon powder for lithium ion battery anodes”,Carbon, 42, 2004, pp. 2573–2579
63.H. Li, X.J. Huang, L.Q. Chen, Z.G. Wu, Y. Liang., “A High Capacity Nano ¬ Si Composite Anode Material for Lithium Rechargeable Batteries”,Electrochem. Solid-state Lett., 2, 1999, , pp. 547–549
64.H. Jung, M. Park, Y.-G. Yoon, G.-B. Kim, S.-K. Joo., J. Power Sources, 115, 2005, pp. 346–351
65.G.X. Wang, J.H. Ahn, J. Yao, S. Bewlay, H.K. Liu., “Nanostructured Si–C composite anodes for lithium-ion batteries”,Electrochem. Commun., 6, 2004, pp. 689–692
66.M.D. Fleischauer, M.N. Obrovac, J.R. Dahn, “Al-Si thin-film negative electrodes for Li-ion batteries”,Electrochem. Solid-State Lett., 155, 2008,pp. A851–A854
67.L.Y. Beaulieu, K.W. Eberman, R.L. Turner, L.J. Krause, J.R. Dahn., “Colossal Reversible Volume Changes in Lithium Alloys”,Electrochem. Solid-State Lett., 4 , 2001,pp. A137
68.B. D. Polat, O. L. Eryilmaz, O. Keles, A. Erdemir, and K. Amine., “Compositionally graded SiCu thin film anode by magnetron sputtering for lithium ion battery,” Thin Solid Films, 596, 2015, pp. 190–197.
69.M.D. Fleischauer, M.N. Obrovac, J.R. Dahn, “Al-Si thin-film negative electrodes for Li-ion batteries”,Electrochem. Solid-State Lett., 155, 2008,pp. A851–A854
70.Yang, J., Takeda, Y., Solid State Ionics, 152 , 2002, 125-129
71.莊鎮宇,“石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展”,物理雙月刊33(2) ,145-256
72.Simon, P. , Gogotsi, Y., Accounts Chem. Res., 46,5, , 2013, 1094-1103.
73.Franklin, N. R., Wang, Q., Tombler, T. W., Applied Physics Letters, 81,5 , 2002, 913-915.
74.Marinho, B,. Ghislandi, M., Powder Technology, 221 , 2012, 351-358.
75.J. Suk, D.Y. Kim, D.W. Kim, Y.K. Kang, “Electrodeposited 3D porous silicon/copper films with excellent stability and high rate performance for lithium-ion batteries”,J. Mater. Chem. A, 2 , 2014,, pp. 2478–2481
76.C.D. Wang, Y.S. Chui, R.G. Ma, T.L. Wong, J.G. Ren, Q.H. Wu, X.F. Chen, W.J. Zhang, “A three-dimensional graphene scaffold supported thin film silicon anode for lithium-ion batteries”,J. Mater. Chem. A, 1, 2013, pp. 10092–10098
77.Wang, Y., Yuan, A. ,Sloid State Electrochem., 12 , 2008, 1101-1107.
78.Zhuangjun F , Jun Y , Linjie Z , Adv. Mater. 22 ,2010,3723–3728
79.J. Gao, L.J. Fu, H.P. Zhang, T. Zhang, Y.P. Wu, H.Q. Wu,“Suppression of PC decomposition at the surface of graphitic carbon by Cu coating”, Electrochem. Comm., 8 ,2006, pp. 1726-1730
80.K. Guo, Q. Pan, L. Wang, S. Fang, “Nano-scale copper coated graphite as anode material for lithium ion batteries”, J. Appl. Electrochem, 32 ,2002, pp. 679-685
81.J. Gao, H.P. Zhang, T. Zhang, Y.P. Wu, R. Holze, “Preparation of Cu coating on graphite electrode foil and its suppressive effect on PC decomposition”, Solid State Ionics, 178 ,2007, pp. 1225-1229
82.V.A. Sethuraman, K. Kowolik, V. Srinivasan, “Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries”, J. Power Sources, 196 ,2011, pp. 393-398
83.Y.M. Kang, M.S. Park, M.S. Song, J.Y. Lee, “A relation between enhanced Li ion transfer and the improvement in electrochemical performance of a Si–Cu–carbon composite” Journal of Power Sources 162, 2006, pp. 1336-1340
84.A.A. Istratov, E.R. Weber, “Electrical properties and recombination activity of copper, nickel and cobalt in silicon”, Appl. Phys. A, 66 (1998), pp. 123-136
85.B.D. Polat, O. Keles,“Improving Si Anode Performance by Forming Copper Capped Copper-Silicon Thin Film Anodes for Rechargeable Lithium Ion Batteries” Electrochimica Acta, 170, 2015, pp. 63-71
86.J. H. Kim, C. M. Park, H. Kim, Y. J. Kim, H. J. Sohn, “Electrochemical behavior of SiO anode for Li secondary batteries”, J. Electroanal. Chem., 661, 2011, pp. 245-249
87.J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J. Xie, O. Yamamoto, “SiOx-based anodes for secondary lithium batteries”Solid State Ionics, 152, 2002 pp. 125-129
88.S.C. Jung, H.-J. Kim, J.-H. Kim, Y.-K. Han, 2016, “Atomic-Level Understanding toward a High-Capacity and High-Power Silicon Oxide (SiO) Material”J. Phys. Chem. C, 120, pp. 886-892
89.Y. Yao, J. Zhang, L. Xue, T. Huang, A. Yu, “Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries”, J. Power Sources, 196, 2011, pp. 10240-10243
90.J. Lee, N. Choi, S. Park, 2012, Energy Environ. Sci., 5 , 2012, pp. 7878-7882
91.HuiWang, PingWu, Huimin Shi, Wangzhong Tang, Yawen Tang, Yiming Zhou, Peiliang She, Tianhong Lu, “Hollow porous silicon oxide nanobelts for high-performance lithium storage”Journal of Power Sources 274 , 2015, 951-956
92.Won-Seok Chang, Cheol-Min Park, Jae-Hun Kim, Young-Ugk Kim, Goojin Jeong and Hun-Joon Sohn, “Quartz (SiO2): a new energy storage anode material for Li-ion batteries”, Energy Environ. Sci. 5, 2012, 6895
93.M.R.Babaa, A.Moldabayeva, M.Karim, A.Zhexembekova, Y.Zhang, Z.Bakenov, A.Molkenova, I.Taniguchi, “Development of a novel SiO2 based composite anode material for Li-ion batteries”, Materials today: proceedings 4(3), 2017, pp. 4542-4547
94.Y. Zhao, Z. Liu, Y. Zhang, A. Mentbayeva, X. Wang, M.Y. Maximov, B. Liu, Z. Bakenov, F. Yin, Nanoscale Res. Lett., 18 Jul 2017, p. 459
95.Mingqi Li, Jing Li, Kai Li, Yan Zhao, Yongguang Zhang, Denise Gosselink, P.Chen, “SiO2/Cu/polyacrylonitrile-C composite as anode material in lithium ion batteries”, Journal of Power Sources, 240, 2013, pp. 659-666
96.X. Xie, Jingze Zhang, Jian Zhang, T. Bao, B. Xia, Journal of Power Sources, vol 348,2017, pp16-20
97.W. Wang, L. Shi, A. Wang. K. Yuan, Z. Jin, Journal of Power Sources, vol 318, 2016 ,pp184-191
98.Dongsheng Tan, Bin Liu, Di Chen and Guozhen Shen , RSC Adv., 2014, 4, 18391
99.Jing Wang, Hailei Zhao, Jianchao He, Chunmei Wang, Jie Wang , Journal of Power Sources, vol 196, 2011, pp4811–4815
100.Xuejun Bai, Yueyang Yu, Harold H. Kung, Biao Wang, Jianming Jiang, Journal of Power Sources, vol 306, 2016, pp 42-48
101.Z. Tao, S. Guo, H. Li, H. Bai, J. Chen Journal of Power Sources, vol 248, 2014, pp 1141-1148
102.V. A.Sethuraman, K. Kowolik, V. Srinivasan, 2011, “Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries” Journal of Power Sources 196, pp. 393-398
103.Chuanjian Zhang, Shuping Pang, Qingshan Kong, Zhihong Liu, Hao Hu, Wen Jiang, Pengxian Han, Dong Wang, Guanglei Cui, RSC Adv. 3(2013), 1336-1340
104.Bartosz K., Artur P Terzyk, Marek W., Piotr A Gauden, Mirosław S., Mater. Res. Express 3(1), 2014 , 035040
105.Jungho Lee, Kei Hasegawa, Toshiyuki Momma, Tetsuya Osaka, Suguru Noda, Journal of Power Sources 286, 2015, pp.540–550
106.Ferrari A.C., Robertson J., Phys. Rev. B 61,2000,14095
107.Jinhui Zhu, Jun Yang, Rongrong Miao, Zhaoquan Yao, Xiaodong Zhuang, Xinliang Fengc, J. Mater. Chem. A, 4 , 2016, 2286
108.Hiura H, Ebbesen TW, Tanigaki K, et al, Chem. Phys. Lett 202, 1993,509
109.汪建民主編,材料分析,中國材料科學學會,新竹市,民國 87
110.Suenaga K., Johanson M.P., Hellgren N., Broitman E., Wallenberg L.R., Colliex C., Sundgren J.E., Hultman L., Chem. Phys. Lett. 300, 1999, 695
111.Sjostrom H., Goze C., Bernier P., Rudio A., Phys. Rev. Lett. 75, 1995, 1136
112.DB Polat, O Keles, K Amine, “Well-aligned, ordered, nanocolumnar, Cu–Si thin film as anode material for lithium-ion batteries”, J. Power Sources, 270, 2014,pp 238-247
113.Xu, T., Zhang, J., Yang, C., Luo, H., Xia, B., & Xie, X. , “Facile synthesis of carbon-coated SiO/Cu composite as superior anode for lithium-ion batteries. ”, Journal of Alloys and Compounds, 738, 2018,pp.323-330
114.F. Li, J. Li, X. Lin, X. Li, Y. Fang, L. Jiao, et al., “Designed synthesis of multi-walled carbon nanotubes@Cu@MoS2 hybrid as advanced electrocatalyst for highly efficient hydrogen evolution reaction”,J Power Sources, 300, 2015,pp. 301-308
115.J.Y. Park, Y.S. Jung, J. Cho, W.K. Choi,“Chemical reaction of sputtered Cu film with PI modified by low energy reactive atomic beam”, Appl Surf Sci, 252, 2006,pp. 5877-5891
116.Juan Wang, Han Zhu, JiaDong Chen, Bin Zhang, Ming Zhang, LiNa Wang, MingLiang Du, “Small and well-dispersed Cu nanoparticles on carbon nanofibers: self-supported electrode materials for efficient hydrogen evolution reaction”, Int. J. Hydrogen Energy, 41, 2016, pp. 18044-18049
117.Jiguo Tu, Yan Yuan, Pan Zhan, Handong Jiao, Xindong Wang, Hongmin Zhu, and Shuqiang Jiao, J. Phys. Chem. C. 118,14, 2014, 7357–7362
118.Wenjun Wu, Jing Shi, Yunhui Liang, Fang Liu, Yi Peng and Huabin Yang, Phys. Chem. Chem. Phys. 17, 2015, 13451-13456
119.Jingze Zhang,Jian Zhang,Tianzeng Bao,Xiaohua Xie,Baojia Xia, “Electrochemical and stress characteristics of SiO/Cu/expanded graphite composite as anodes for lithium ion batteries”, J. Power Sources, 348, 2017, pp. 16-20
120.Chi-Chang Hu,Ta-Wang Tsou ,Journal of Power Sources 115, 2003, pp.179-186
121.M. V. Reddy, B. Pecquenard, P. Vinatier, and A. Levasseur, J. Phys. Chem. B 110, 2006, 4301-4306 .
122.Hu, C. C.andTsou, Journal of Power Sources 115, 2003, pp.179
123.Pengpeng Lv, Hailei Zhao, Chunhui Gao, Tianhou Zhang, Xin Liu, Electrochimica Acta 152 , 2015, 345–351
124.Matthew T. McDowell , Seol Woo Lee , Chongmin Wang , Yi Cui , “The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation” Nano Energy, 1, 2012 , pp. 401-410
125.Chil-Hoon Doh, Chul-Wan Park, Hye-Min Shin, Dong-Hun Kima, Young-Dong Chung, Seong-In Moon, Bong-Soo Jin, Hyun-Soo Kima, Journal of Power Sources 179 , 2008, 367–370
126.C.H. Doh, C.W. Park, H.M. Shin, D.H. Kim, Y.D.Chung, S.I. Moon, B.S. Jin, H.S. Kim, A.Veluchamy,“A new SiO/C anode composition for lithium-ion battery”,J. Power Sources, 179 , 2008, pp. 367-370
127.Jing Wanga, Hailei Zhaoa, Jianchao Hea, Chunmei Wanga, Jie Wanga, Journal of Power Sources 196 , 2011, pp.4811–4815
128.L. Cui, R. Ruffo, C.K. Chan, H. Peng, Y. Cui, Nano Lett., 9 , 2009, 491
129.Xiaodong Huang , Fei Zhang , Yuanzhi Cao , Qing-an Huang, “Symmetrical Sandwich-Structured SiN/Si/SiN Composite for Lithium-Ion Battery Anode with Improved Cyclability and Rate Capacity” J. Electrochem. Soc. 2018, 165, A3397−A3402.
130.F.H. Du, K.X. Wang, W. Fu, P.F. Gao, J.F.Wang, J. Yang, J.S. Chen,“A graphene-wrapped silver–porous silicon composite with enhanced electrochemical performance for lithium-ion batteries”, J. Mater. Chem. A, 1 ,2013, p. 13648
131.A. Du, S. Sanvito, Z. Li, D. Wang, Y. Jiao, T.Liao, Q. Sun, Y.H. Ng, Z. Zhu, R. Amal, “Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron–hole puddle, interfacial charge transfer, and enhanced visible light response, ” J. Am. Chem. Soc., 134 , 2012, pp. 4393-4397
132.Zhang, W., Fu, Y., & Wang, X. , “Co3O4 nanocrystals with exposed low-surface-energy planes anchored on chemically integrated graphitic carbon nitride-modified nitrogen-doped graphene: A high-performance anode material for lithium-ion batteries. ”, Applied Surface Science, 439, 2018, 447-455
133.沈佑倫, “氧化鈷改質石墨烯/奈米碳管複合材料應用於鋰離子電池”,國立雲科技大學化學工程研究所,2016。
134.Ren, Y., Wu, X., & Li, M. , “Highly stable SiOx/multiwall carbon nanotube/N-doped carbon composite as anodes for lithium-ion batteries. ”, Electrochimica Acta, 206, 2016, 328-336.
135.Liqiang Mai , Liang Zhou , Zhenhui Liu , Yunlong Zhao , Ruhan He , Wen Luo , Jiashen Meng , Qiang Yu , Dongyuan Zhao, “Yolk@Shell SiOx/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage”. Energy Storage Materials, Volume 13, 2019, pp. 299-305
136.Lin Sun , Tingting Su , Lei Xu , Meipin Liu , hong Bin Du , “Two-dimensional ultra-thin SiOx (0 < x < 2) nanosheets with longterm cycling stability as lithium ion battery anodes”. Chem. Commun., 52 , 2016, pp. 4341-4344
137.Yue Qu,Dong Zhang,Xue Wang,Hailong Qiu,Tong Zhang,Min Zhang,Ge Tian,Huijuan Yue,Shouhua Feng,Gang Chen, “Porous ZnFe2O4 nanospheres as anode materials for Li-ion battery with high performance ”, Journal of Alloys and Compounds, 721, 2017,pp. 697-704.
138.Pengpeng Lv, Hailei Zhao, Zhaolin Li, Chunhui Gao, Yang Zhang, “Citrate-nitrate gel combustion synthesis of micro/nanostructured SiOx/C composite as high-performance lithium-ion battery anode”, Solid State Ionics, 340, 2019, 115024


電子全文 電子全文(網際網路公開日期:20240826)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 奈米碳管/石墨烯複合材料以氮電漿處理後再利用恆電流陰極電沉積及熱處理來披覆氧化鐵及氧化鈷以作為鋰離子電池之負極材料
2. 奈米碳管/石墨烯複合材料以氮電漿處理後再濺鍍二氧化錫以作為鋰離子電池之負極材料
3. 以循環伏安法沉積錳鈷鎳硫化物改質氮摻雜奈米碳管/石墨烯複合材料作為超級電容器之電極材料
4. 以射頻濺鍍沉積氧化矽/銅薄膜於氮摻雜奈米碳管/石墨烯複合材料作為鋰離子電池之陽極材料
5. 以反應性磁控濺鍍沉積氧化矽薄膜於石墨烯/奈米碳管複合材料應用於鋰離子電池負極材料之研究
6. 以錳鈷鎳氧化物改質氮摻雜奈米碳管/石墨烯複合材料作為超級電容器之電極材料
7. 奈米碳管/石墨烯複合材料以氮電漿處理後再濺鍍氧化鋁以改善鋰離子電池之負極材料的初始庫倫效率
8. 以循環伏安法沉積錳鈷硫化物改質氮摻雜奈米碳管/石墨烯複合材料作為超級電容器之電極材料
9. 含醯胺衍生物之材料合成及電致變色性質研究
10. 含噁二唑側鏈之新型光電材料合成與研究
11. 以乙烯/醋酸乙烯酯共聚物提升 矽氧烷水交聯低密度聚乙烯性質之研究
12. 反應性多面體倍半矽氧烷寡聚物(POSS)/磺化聚醯亞胺(SPI) 網狀結構體質子交換膜的製備及其應用於質子交換膜燃料電池
13. 紅外線發光二極體模擬熱影像顯示之研究
14. 低功耗12-T SRAM晶片設計
15. iOS應用程式漏洞檢測平台之研製