跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/07 07:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡志旻
研究生(外文):CAI,ZHI-MIN
論文名稱:利用半導體/光電產業之集塵灰合成中孔洞沸石觸媒之製備及鑑定與應用於二氧化碳轉化成化學品之研發
論文名稱(外文):Preparation and Characterization of Mesoporous Zeolite Catalysts from Semiconductor/Optoelectronic Industries Flyashes for Application on CO2 Conversion into Chemicals
指導教授:林錕松
指導教授(外文):LIN,KUEN-SONG
口試委員:周正堂林景崎
口試委員(外文):CHOU,CHENG-TUNGLIN,JING-CHIE
口試日期:2020-11-05
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:193
中文關鍵詞:光電/半導體集塵灰沸石二氧化碳捕捉/分離溫室氣體資源再利用二甲醚
外文關鍵詞:Optoelectronic/semiconductorFly ashesZeolitesCarbon dioxide capture/separationGreenhouse effect gasResource recoveryMethanol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
半導體研發製造與光電產業的相關電子產業,是我國近年來成長最為快速的新興產業,再加上新製程的開發與研發技術不斷精進,不但在2018總產值已突破新台幣4兆元,同時更廣泛應用於5G通訊、車用電子、資訊、消費性電子及運輸等領域,儼然已經成為我國經濟命脈。然而從原料、生產、加工到產品產出,雖然目前我國光電半導體產業的相關技術已達到國際水準,但就相關集塵灰廢棄物的處理及再利用仍顯相當保守且處裡再利用之技術仍然需要很大的突破。因此,本論文之主要是將光電產業空氣污染防治設備,所收集之集塵灰有效地回收利用,並且合成人造沸石來進行CO2催化為化學品,達到廢棄物再利用。
主要實驗部分分為三個部分(I)集塵灰之再利用及沸石之篩選及合成方法建立、(II)沸石之特性及微結構鑑定與分析(XRD、FE-SEM、HR-TEM、FT-IR、TGA、ASAP等儀器分析)。實驗的第一部分主要是利用鹽析法合成 (NH4)2SiF6,經由XRD圖譜可確認成功合成兩種化合物;以FE-SEM鑑定分析可觀察到其材料顆粒大小約在30~100 nm,並由FTIR圖譜可得知N-H、Si-F及O-H官能基的存在;其中集塵灰之BET比表面積為38 m2/g,由孔洞分布可判斷為一中孔材料。實驗的第二部分主要是以集塵灰作為矽源進行水熱法合成Zr-SBA-15、CZZr/ZSM-5、CZZr/SAPO-11;以FE-SEM鑑定分析Zr-SBA-15、CZZr/ZSM-5、CZZr/SAPO-11沸石,可知其顆粒大小分別約在1~2 µm、100~200 nm、600 nm之間,Zr-SBA-15為二維六方柱結構,CZZr/ZSM-5之外觀為立方晶體結構物,CZZr/SAPO-11之外觀為圓球體結構形貌;
BET等溫吸附分析之沸石比表面積,Zr-SBA-15 CZZr/ZSM-5、CZZr/SAPO-11沸石之最佳合成條件BET比表面積分別為765 m2/g、260 m2/g、75 m2/g。以TPD-NH3吸附可以得知Zr-SBA-15在250至600 °C之間的峰表明存在強酸位點,這可從峰的強度看出。這表明自CO2對於,中等和強酸性部位對催化活性和產物之選擇性的影響很大。
進行轉化反應使用之條件為CO2:H2 (1:3)、兩種不同溫度(250, 275 oC)、設定壓力為30 bar、GHSV為8,010 h-1,可發現最佳條件為CO2:H2 = 1:3,溫度為275oC及壓力30 bar,最佳反應觸媒為CZZr(6/2/2)/ZSM-5觸媒,CO2轉化率、選擇率和產率分別為32.7、53.07及17.4%,由此可得知275oC之CZZr(6/2/2)/ZSM-5觸媒為最佳反應之條件。

Abstract Electronic industries related to the research and manufacturing of optic industry and semi-conductors have become one of the most rapidly rising emerging industries in Taiwan. Along with the advancement in the research of manufacturing processes and IC technology, the gross industrial output has reached NT$ 2 trillion in 2015. Products related to these industries are widely used in areas such as information technology, communications, consumer electronics, and transportation etc. it appears that these types of electronic industries have become one of the key economies of Taiwan. However, even though the technology (from raw materials to the manufacturing, processing and final output) for optoelectronic industries has reached international standards, the technology for disposal and reuse of its industrial waste is still lagging behind.

Therefore, the objective of this research were the efficient recycling of fly ashes generated by optoelectronic/ semiconductor industries, syntheses/characterization of Cu/Zr-SBA-15 and CZZr-ZSM-5 and CZZr/SAPO-11 three zeolites, and the capture/separation investigation of CO2 on as-synthesized zeolites. This research was divided into three main parts: (i) recovery/reuse of fly ashes, zeolites selection, and synthetic methods; (ii) structural characteristics and identification of zeolites by using the equipment of XRD, FE-SEM, HR-TEM, FT-IR, TGA, XPS, ASAP, and XANES/EXAFS;

(iii) CO2 conversion/seletivity/yield and a proposed for CO2 conversion and economic evaluation. Experimentally, the dissolution of fly ashes in aqueous solution at room temperature to isolate (NH4)2SiF6 was conducted.
These two compounds were identified using XRD patterns. Particles with the range of 1.5 μm and 90~100 nm were observed by FE-SEM for Na2SiF6 and (NH4)2SiF6 respectively. The existence of N-H, Si-F, and O-H functional groups are confirmed and found by FTIR spectra. The BET surface area of the fly ashes is 32 m2/g. From pore volume distribution measurement, a mesoporous material was determined and found.
In addition, the use of fly ashes as the silica source and syntheses of three kinds of zeolites such as Cu/Zr-SBA-15 and CZZr-ZSM-5 and CZZr/SAPO-11 using hydrothermal method were performed. It reveals that these three zeolites with particle sizes ranged of 1~2 µm,100~200 nm and 600 nm, respectively identified by FE-SEM.
The shapes of Cu/Zr-SBA-15 and CZZr-ZSM-5 and CZZr/SAPO-11 are hexagonal column structure,cubic crystal structure, and spherical with a nucleus, respectively. The BET surface area of Cu/Zr-SBA-15 and CZZr-ZSM-5 and CZZr/SAPO-11 are 765, 260, and 75 m2/g respectively.
The CO2 hydrogenation reactions were performed at different temperatures (250 and 275oC) over the CZZr(6/2/2)/ZSM-5 catalysts via CO2 hydrogenation (P = 30 bar, CO2/H2 = 1/3), the CO2 feed of 30 mL/min, and 30 bar. The optimal conversion, selectivity, and yield are 32.7, 53.07, and 17.4%, respectively at 275oC for DME formation via CO2 hydrogenation .

摘要
目 錄
圖目錄
表目錄
第1章 前言
1.1 研究緣起
1.2 研究內容及流程圖
第2章 文獻回顧
2.1 利用廢棄物合成人造沸石
2.2 化學氣相沉積法產生之非有害廢集塵灰
2.2.1 非有害廢集塵灰中二氧化矽之特性
2.2.2 非有害廢集塵灰中氫氟酸之特性
2.2.3 非有害廢集塵灰中氟矽酸鈉特性
2.3 沸石
2.3.1 SBA-15型沸石
2.3.2 ZSM-5
2.3.3 SAPO-11沸石
2.4 光電半導體業回收集塵灰後的再利用
2.5 中孔洞沸石用於催化合成二甲醚之應用
2.6.1 二甲醚的性質
2.6.2 二甲醚的主要用途
2.6.3 二甲醚的合成
第3章 實驗設備及流程
3.1 實驗藥品
3.2 實驗儀器
3.3 沸石之製備流程
3.3.1 Zr-SBA-15製備實驗流程
3.3.2 CuO/ZnO/ZrO2(CZZr)製備實驗流程
3.3.3 CZZr/ZSM-5製備實驗流程
3.3.4 CZZr/SAPO-11製備實驗流程
3.4 分析及性質測試之儀器介紹
3.4.1 X光粉末繞射儀(XRD)
3.4.2 場發掃描式電子顯微鏡(FE-SEM)
3.4.3 高解析穿透式電子顯微鏡(HR-TEM)
3.4.4 傅立葉轉換紅外線光譜分析(FTIR)
3.4.5 熱重量分析儀(TGA)
3.4.6 比表面積&孔隙度分析儀(ASAP 2020)
3.4.7 熱程控脫附儀(TPD)
3.4.8 X光光電子光譜儀(X-ray photoelectron spectroscopy, XPS)
3.4.9 同步輻射吸收光譜
3.4.10 氣相層析儀(Gas chromatograph, GC)
3.4.11 雙通道觸媒反應器
第4章 結果與討論
4.1 集塵灰再利用之矽源之特性鑑定及分析
4.1.2 XRD (X-ray powder diffractometer, XRD)圖譜鑑定
4.1.2 FE-SEM (Field-emission scanning electron microscopy)分析
4.1.3 HR-TEM (Transmission electron microscope)分析
4.1.5 TGA (Thermogravimetric analyzer)分析
4.1.6 比表面積、孔洞性質及吸附能力分析
4.1.6 ASAP比表面積&孔隙度分析
4.2 沸石之特性鑑定及分析
4.2.1 Zr-SBA-15沸石之鑑定
Zr-SBA-15 沸石之 XRD圖譜鑑定
Zr-SBA-15 沸石之FE-SEM分析
Zr-SBA-15 沸石之HR-TEM分析
Zr-SBA-15 沸石之FT-IR分析
Zr-SBA-15 沸石之TGA分析
Zr-SBA-15沸石之ASAP比表面積&孔隙度分析
Zr-SBA-15 沸石之熱程控脫附儀(TPD)
4.2.2 ZSM-5觸媒之鑑定
ZSM-5沸石之XRD圖譜鑑定
ZSM-5沸石之FE-SEM分析
ZSM-5沸石之HR-TEM分析
ZSM-5 沸石之TGA分析
ZSM-5 沸石之XPS分析
ZSM-5沸石之ASAP比表面積&孔隙度分析
ZSM-5沸石之同步輻射X光吸收光譜鑑定
ZSM-5沸石之X光延伸細微結構光譜
4.2.3 SAPO-11沸石之鑑定
SAPO-11沸石之XRD圖譜鑑定
SAPO-11沸石之FE-SEM鑑定
SAPO-11沸石之HR-TEM鑑定
SAPO-11 沸石之TGA分析
SAPO-11 沸石之XPS分析
SAPO-11沸石之ASAP比表面積&孔隙度分析
4.3 雙向高壓觸媒反應器之效率測試
4.3.1 CO2轉化率之計算式
4.3.2 二甲醚選擇率、產率之計算式
4.3.3 CO2生成二甲醚轉化率、選擇率、產率之計算
4.3.4 FT-IR定性分析之比較
4.3.5 CO2轉化率、選擇率和產率之計算
4.3.6 動力及熱力學分析
4.3.7 二氧化碳氫化生成二甲醚
4.3.8 二甲醚生成反應之反應焓、反應熵與吉布士能
4.4 二氧化碳與氫氣轉化生成二甲醚之基本設計與工程放大模擬
第5章 結論及未來研究方向
結論
未來研究方向
參考文獻


1.Zhou P. and Wang M., Carbon dioxide emissions allocation: A review, Ecological Economics, 125, 47-59 (2016).
2.De C. H. and Benson S. M., Carbon Dioxide Capture and Storage: Issues and Prospects., Annual Review of Environment and Resources, 39, 243-270(2014).
3.Chianese D. S., Rotz C. A., amd Richard T. L., Simulation of carbon dioxide emission from dairy farms to assess greenhouse gas reduction strategies, Transactions of the ASABE, 52(4), 1301-1312(2009).
4.Tseng S. C. and Hung S. W., A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management, Journal of Environmental Management, 133, 315-322(2014).
5.Arcoumanis C., Bae C., Crookes R., and Kinoshita E., The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review, Fuel, 87, 1014-1030(2008).
6.Ogawa T., Inoue N., Shikada T., and Ohno Y., Direct dimethyl ether synthesis, Journal of Natural Gas Chemistry, 12, 219-227(2003).
7.Cheng C., Zhang H., Ying W., and Fang D., Intrinsic kinetics of one-step dimethyl ether synthesis from hydrogen-rich synthesis gas over bi-functional catalyst, Korean Journal of Chemical Engineering, 28, 1511-1517(2011).
8.鍾鼎文,「晶圓廠濕蝕刻機台排水分流系統與氟系廢水處理設施
效能評估研究」,碩士論文,交通大學,新竹(2008)。
9.姚洋羽,「離子交換法處理含氫氟酸與氟矽酸的半導體廢水之研究」,碩士論文,元智大學,新竹(2003)。
10.Tetsu T., Fujimi C., and Atsushi O., Semiconductor manufacturing system and method for waste liquid collection, United States Patent, 8234013B2 (2012).
11.Ji Y., Yufeng C., Limei C., Yuling G., and Jinping J., Development and field-scale optimization of a honeycomb zeolite rotor concentrator/recuperative oxidizer for the abatement of volatile organic carbons from semiconductor industry, Environmental Science and Technology, 46(1), 441-446 (2012).
12.Ting Z., Sylvain G. C., Ilia I., Kenneth L. K. Jr., Istvan R., and Fan Z., Nanocrystals for electronic and optoelectronic applications, Journal of Nanomaterials, Volume 2012, Article ID 392742, 2 pages (2012).
13.Van M., and Joëlle P., Method for removing organic contaminants from a semiconductor surface, European Patent, 0867924B1 (2011).
14.李茂松、廖啟鐘、張王冠、邵信、倪慎如、李天菴,「積體電路產業氫氟酸廢水結晶處理整合回收技術」,1998工程實務研討會論文集(1998)。
15.張可翰,「以氧化鈣移除氟氣的反應動力研究」,碩士論文,高雄應用科技大學,高雄(2008)。
16.李珊如,「高科技產業氟化鈣污泥做為水泥生料之可行性研究」,碩士論文,交通大學,新竹(2002)。
17.Wei T. L. and Kung C. L., Application of reutilization technology to calcium fluoride sludge from semiconductor manufacturers, Journal of the Air and Waste Management Association, 61, 85-91 (2011).
18.Nadjib D., Saleh A., Hakim L., Drouiche M., Tarik O., and Norredine G., Fluoride removal from pretreated photovoltaic wastewater by electrocoagulation: an investigation of the effect of operational parameters, Procedia Engineering, 33, 385-391 (2012).
19.Rube´n A., Aurora G., and Angel I., Fluoride recovery in a fluidized bed: crystallization of calcium fluoride on silica sand, Industrial and Engineering Chemistry Research, 45, 796-802 (2006).
20.Aldaco R., Garea A., and Irabien A., Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor, Water Research, 41, 810-818 (2007).
21.Roger N., Surendra K., and James B., Fluoride removal system, United States Patent, 5403495 (1995).
22.Drouichea N., Ghaffourb N., Lounicic H., Mameric N., Maallemia A., and Mahmoudid H., Electrochemical treatment of chemical mechanical polishing wastewater: removal of fluoride-sludge characteristics-operating cost, Desalination, 223, 134-142 (2008).
23.黃奕叡,「廢棄物焚化灰渣熱熔之研究」,碩士論文,成功大學,台南(2002)。
24.劉惠如,「鹼法回收煉鋼集塵灰鋅金屬之研究」,碩士論文,高雄應用科技大學,高雄(2008)。
25.Ouellet L., Migeault G., and Li J., Anhydrous HF release process for MEMS devices, European Patent, 1700822B1 (2009).
26.Le Van Mae R., Vo N. T. C., Sjiariel B., Lee L., and Denesb G., Mesoporous aluminosilicates: preparation from Ca-A zeolite by treatment with ammonium fluorosilicate, Journal of Materials Chemistry, 2(6), 595-599 (1992).
27.Le Van Mao R., John A. L., Bernard S., and Cooper H. L., Mesoporous aluminosilicates prepared from zeolites by treatment with ammonium fluorosilicate, Journal of Materials Chemistry, 3(6), 679-683 (1993).
28.劉雅鈞,「築爐員工游離二氧化矽暴露評估與健康效應評估」,碩士論文,成功大學,台南(2002)。
29.賴眉諭,「TiO2在增進鉑、鈀金屬沸石抗硫性上所扮演的角色」,碩士論文,中正大學,嘉義(2004)。
30.陳威裕,「鑄造業游離二氧化矽危害預防」,工安技術論壇,3-7 (2007)。
31.Larisa P. D., Viaseslav S. R., and Alexandre S. B., Elaboration of nanometric amorphous silica from quartz-based minerals using the fluorination method, Journal of Fluorine Chemistry, 132, 1067-1071 (2011).
32.Sung K. C., Furen F. F., and Allen J. B., Electrodeposition of crystalline and photoactive silicon directly from silicon dioxide nanoparticles in molten CaCl2, Angewandte Chemie International Edition, 51, 12740-12744 (2012).
33.Karl A. and Gunter T., Process for converting silicon dioxide containing waste flue dust to crystalline zeolitic molecular sieves of type A, United States Patent, US4310496 (1982).
34.Xinmei L., Liang L., Tingting Y., and Zifeng Y., Zeolite Y synthesized with FCC spent catalyst fines: particle size effect on catalytic reactions, Journal of Porous Materials, 19, 133-139 (2012).
35.Emmanuelle G., Eric S., and Sylvie L., Dual zeolite catalyst comprising a group VIII metal and a group IIIA metal, and its use in isomerization of aromatic C8 compounds, United States Patent, 8183172B2 (2012).
36.Eric J., George P., Corma A., and Martinez C., Modified zeolite catalyst, European Patent, 2269734A1 (2011).
37.陳科良,「以透明MFI 沸石製作抗反射膜」,碩士論文,中央大學,桃園(2006)。
38.藍友聰,「於陶瓷纖維紙上合成ZSM-5與Au/CeO2沸石及反應性測試」,碩士論文,中央大學,桃園(2006)。
39.劉凱,「沸石吸附型沸石雙功能材料之吸脫附/沸石催化可行性研究」,碩士論文,交通大學,新竹(2010)。
40.邱鵬格,彭禹祥,郭昭吟,「沸石批覆二氧化鈦之管柱系統處理水中偶氮染料之研究」,雲林科技大學,雲林(2009)。
41.蔡尚恬,王奕凱,蔡振章,「鑄造業游離二氧化矽危害預防」,中國化學會,第六十五卷,第四期(2007)。
42.Franck M., Christian S., and Gérard F., Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic-organic microporous solids: CrIII(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x, Chemical Communications, 8, 822-823 (2002).
43.McBain C., Jungheum Y., Tae S. B., Jung D. K., Sunghun L., and Gun H. L., Antireflective silica nanoparticle array directly deposited on flexible polymer substrates by chemical vapor deposition, Nanoscale, 4, 7221-7230 (2012).
44.網址
https://sites.google.com/site/b9805135/fei-hui
45.網址
http://www.taipower.com.tw/content/new_info/new_info-e13-2.aspx?LinkID=15
46.網址
https://greennet.taipower.com.tw/Page_CircularEconomy_Plant.aspx
47.Cobianu C. and Pavelescu C., Silane oxidation study: analysis of data for SiO2 films deposited by low temperature chemical vapour deposition, Thin Solid Films, 117, 211-216 (1984).
48.David N., John M., Sam S., Cissy L., Salvador P., Kenneth S., and John A., Thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process, United States Patent, 5354715 (1994).
49.Qi Z., Daniel S. and Valanoor N., Chemical route derived bismuth ferrite thin films and nanomaterials, Journal of Materials Chemistry C, 4, 4092-4124 (2016)
50.Plummer J. D., Silicon VLSI technology fundamentals, Practice and Modeling, ISBN-13: 978-0130850379 (2000).
51.Davinder S. B., Andrew J. S., Ivan P. P., and Andrew J. D., Zeolite films: a new synthetic approach, Journal of Materials Chemistry A, 1, 1388-1393 (2013).
52.Yingwei L. and Ralph T. Y., Significantly enhanced hydrogen storage in metal-organic frameworks via spillover, Journal of the American Chemical Society, 128, 726-727 (2006).
53.柯賢文,「未來的氫能經濟」,科學發展,399,68-75 (2006)。
54.Bellussi G. and Pollesel P., Industrial applications of zeolite catalysts: production and uses of light olefins, Studies in Surface Science and Catalysis, 158, 1201-1212 (2005).
55.Makoto M., Heterogeneous catalysis of mixed oxides perovskite and heteropoly catalysts, Studies in Surface Science and Catalysis, 176, 1-181 (2013).
56.Jurgen C., Zeolite membranes: from the laboratory scale to technical applications, Adsorption, 11, 215-227 (2005).
57.Wiley V. V. G. and Co K., Zeolites and catalysis, Angewandte Chemie International Edition, 50, 5425-5426 (2011).
58.Sterling H. F. and Swann R. C. G, Chemical vapour deposition promoted by discharge, Solid State Eletronics, 8, 653-654 (1965).
59.Dorin D., Virginie B., Jean N. C., Yun F. L., Hervé R., Serge B., Robert S., Andreas K., Catherine H. V., Philippe A., François O., and Catherine D., Organic grafting on Si for interfacial SiO2 growth inhibition during chemical vapor deposition of HfO2, Chemical of Materials, 24, 3135-3142 (2012).
60.Ralph T. Y, Measures of oxygen consumption and work capacity, Journal of the American Chemical Society, 128, 823-829 (2008).
61.“一般及事業廢棄物最終處置技術”,行政院環境保護署環境保護人員訓練所,中壢市(2011)。
62.Edward C. and Maurice G., Co-disposal pollution control method, United States Patent, 4726710 (1988).
63.Edward C. and Maurice G., Co-disposal Pollution control method II, United States Patent, 4946311 (1990).
64.Philip M., Solid waste management and disposal systems at mills and refineries, Environmental & Earth Sciences, 21, 1-9 (2004).
65.Amutha R. D., Boccaccini A.R., Deegan D., and Cheeseman C.R., Air pollution control residues from waste incineration: current UK situation and assessment of alternative technologies, Waste Management, 28, 2279-2292 (2008).
66.Marjorie J., Introduction to municipal solid waste incineration, Air and Waste Management Association Annual Meeting, 1-32, New York (2002).
67.Kevin B. J., Leslie F. R., and Sharon M. S., Leaching of elements from bottom ash, economizer fly ash, and fly ash from two coal-fired power plants, International Journal of Coal Geology, 94, 337-348 (2012).
68.Anjali G. and Arvind K. N. Assessment of mineral sequestration of landfill CO2 achievable using alkaline waste residues, European Journal of Scientific Research, 73, 480-488 (2012).
69.Gomez E., Rani D. A., Cheeseman C. Deegan R. D., Wise, M., and Boccaccini A. R., Thermal plasma technology for the treatment of wastes: a critical review, Journal of Hazardous Materials, 161, 614-626 (2009).
70.南部科學工業園區事業廢棄物再利用許可申請書
71.網址
http://www.innolux.com/Pages/TW/CSR/LOVE/Green_Operations/Environmental_Impact_Reduction_TW.html
72.Hans W. K., The composition of the continental crust, Ingerson Lecture, 1217-1232 (1995).
73.Robert W. and Edith M., Crystalline silica, United States Patent, 4061724 (1977).
74.EPA ambient levels and noncancer health effects of inhaled crystalline and amorphous silica, Health Issue Assessment (1996).
75.IARC Monographs on the evaluation of carcinogenic risks to humans, International Agency for Research on Cancer, 68, 41-53 (2009).
76.游離二氧化矽之物理化學性質之研究,「勞工安全衛生研究報告」,行政院勞工委員會勞工安全衛生研究所(1995)。
77.游離二氧化矽粉塵濃度測定參考比對,「勞工安全衛生研究報告」,行政院勞工委員會勞工安全衛生研究所(1996)。
78.Kyeong H. E., Cheong H. K., Hyoung J., and Choi Y. S., Pulmonary hemorrhage with progressive massive fibrosis in a silicosis patient: an autopsy case, Korean Journal of Legal Medicine, 36, 186-189 (2012).
79.Srivastava S., Pasipanodya J. G., Meek C., Leff R., and Gumbo T., Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability, Journal of Infectious Diseases, 204, 1951-1959 (2011).
80.Chee C. B., Sester M., Zhang W., and Lange C., Diagnosis and treatment of latent infection with mycobacterium tuberculosis, Respirology, 18, 205-216 (2011).
81.Spieth P. M., Guldner A., and Abreu M. G., Chronic obstructive pulmonary disease, Current Opinion in Anaesthesiology, 25, 24-29 (2012).
82.Priyanka R. and Mishra R.M., Economic impact due to automobile air pollution linked diseases in Rewa, International Journal of Computational Engineering Research, 3, 17-22 (2013).
83.Michael N., Ambient air quality and the health of communities around chirano gold mines limited, Global Advanced Research Journal of Physical and Applied Sciences, 12, 30-35 (2011).
84.Leung C. C., Yu I. T. S., and Chen W., Silicosis, The Lancet, 379, 2008-2018 (2012).
85.Higuchi K., Koriyama C., and Akiba S., Increased mortality of respiratory diseases, including lung cancer, in the Area with large amount of ashfall from mount sakurajima volcano, Journal of Environmental and Public Health, Volume 2012, Article ID 257831, 4 pages (2012).
86.Muir D. C. F., Julian J. A., Shannon H. S., Verma D. K., Sebestyen A., and Charles D. B., Silica exposure and silicosis among ontario hardrock miners-III analysis and risk estimates, American Journal of Industrial Medicine, 16, 29-43 (1989).
87.Kyle S. and DavidB., Silicosis among gold miners exposure response analysis and risk assessment, American Journal of Public Health, 12, 85-88 (1995).
88.Susan L. H., Karen K. S., Mary A. D., and Atrick H. N., Silica exposure in anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and lupus nephritis, Journal of the American Society of Nephrology, 12, 134-142 (2001).
89.Iraj M., Aboulfath L., Behzad B., Naser A., Reza M., and Mohammadreza D., Pericardial plaque: a unique complication of silicosis, Industrial Health, 49, 122-125 (2011).
90.Patrick H., Occupational lung disease & pulmonary function testing, Pulmonary Function testing, 331, 25-30 (1990).
91.Nagayama S., Kajihara K., and Kanamura K., Synthesis of nanocrystalline LaF3 doped silica glasses by hydrofluoric acid catalyzed sol-gel process, Materials Science and Engineering: B, 177, 510-514 (2012).
92.Kirkpatrick J. J. R., Enion D. S., and Burd D. A. R., Hydrofluoric acid burns: a review, Butterworth Heinemann, 21, 483-493 (1995).
93.李茂松,「半導體工業中含氟廢水處理技術發展」,化工技術」,7卷第12期(1999)。
94.莊子傑,「以溶解空氣浮除法處理半導體製造業含氟廢水之研究」,碩士論文,國立台灣科技大學,台北(2001)。
95.許明華、馬念和、阮國棟,「氟化物水污染處理技術及管理策略」,工業污染防治,第30期(1996)。
96.黃崇真,「以沉澱浮除法處理半導體製造業含氟廢水之研究」,碩士論文,國立台灣科技大學,台北(1998)。
97.劉覲銘,「逆滲透與離子交換法處理半導體氫氟酸廢水之研究」,碩士論文,元智大學,桃園(2001)。
98.張明發,「半導體業含氟廢水處理之研究」,碩士論文,國立台灣科技大學,台北(2002)。
99.陳嘉和,「流體化床結晶技術在含氟廢水處理之應用」,碩士論文,長庚大學,桃園(2001)。
100.黃志彬、邵信、江萬豪、邱顯盛、烏春梅、李谷蘭,「新竹科學園區半導體及光電製造業廢水處理設施績效提昇輔導計畫」,國立交通大學環境工程所(2001)。
101.郭哲榮、魏善修、陳建清、吳忠杰,「含氟廢水處理成本降低與SS改善案例探討」,52 (2003)。
102.謝政宏,「晶圓廠含氟廢水加藥模式之探討」,碩士論文,國立交通大學,新竹(2006)。
103.Won C. H., Choi J., and Chung J., Evaluation of optimal reuse system for hydrofluoric acid wastewater, Journal of Hazardous Materials, 239-240, 110-117 (2012).
104.阮國棟,「氟化物之污染特性及處理技術」,工業技術污染防制,第29期(1989)。
105.Mustapha H., Frangoise P., Jean M., Jacqueline S., and Claude G., Fluoride removal from diluted solutions by donnan dialysis with anion-exchange membranes, Desalination, 122, 53-62 (1999).
106.Jane H. and Liu J. C., Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer, Water Research, 33, 3403-3412 (1999).
107.Emamjomeh M. M. and Sivakumar M., Fluoride removal by a continuous flow electrocoagulation reactor, Journal of Environmental Management, 90, 1204-1212 (2009).
108.Rube A., Aurora G., and Angel I., Fluoride recovery in a fluidized bed: crystallization of calcium fluoride on silica sand, Industrial & Engineering Chemistry Research, 45, 796-802 (2006).
109.Aldaco R., Garea A., and Irabien A., Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor, Water Research, 41, 810-818 (2007).
110.Jain S. and Jayaram R. V., Removal of fluoride from contaminated drinking water using unmodified and aluminium hydroxide impregnated blue lime stone waste, Separation Science and Technology, 44, 1436-1451 (2009).
111.Nobuhiro M., Matagoro M., Toshiro F., and Tadahiro O., Advanced fluorite regeneration technology to recover spent fluoride chemicals drained from semi-conductor manufacturing process, Institute of Electron, 79, 363-373 (1996).
112.Wanhyup K., Eun I. K., and Joo Y. P., Fluoride removal capacity of cement paste, Desalination, 202, 38-44 (2007).
113.Michael C., Systemic effects of fluoridation, JOM, 27, 123-130, (2012).
114.Debabrata M., Ashish K., and William N., Chemical treatment for improved performance of reverse osmosis membranes, Desalination, 104, 239-249 (1996).
115.林何印,「超濾與逆滲透薄膜程序處理及回收工業廢水之研究」,碩士論文,國立中央大學,桃園(2005)。
116.Allan Z., Forrester J. D., and David H., The crystal structure of sodium fluosilicate, Acta Crystallographica, 17, 1408-1412 (1964).
117.Krasiński M. J., Krasińska K. R., and Ulanowski Z., Investigation of growth kinetics and morphology of sodium fluorosilicate ice-analogue crystals in solutions and gels, Crystal Research and Technology, 42, 1237-1242 (2007).
118.Krasiński M. J. and Prywer J., Growth morphology of sodium fluorosilicate crystals and its analysis in base of relative growth Rates, Journal of Crystal Growth, 303, 105-109 (2007).
119.林良專,「以氨水捕捉二氧化碳之吸收與資源再利用研究-以攪拌槽吸收器探討吸收與結晶現象」,碩士論文,龍華科技大學,桃園(2008)。
120.Li J. R., Sculley J., and Zhou H. C., Metal-organic frameworks for separations, Chemical Reviews, 112, 869-932 (2012).
121.Roddy D., Making a viable fuel cell industry happen in the tees valley, Fuel Cells Bulletin, 12, 10-12 (2004).
122.蔡宏彬,「M2(BDC)2dabco系列金屬-有機架構物之合成、特性鑑定及其儲氫能力之研究」,碩士論文,元智大學,桃園(2012)。
123.Suh M. P., Park H. J., Prasad T. K., and Lim D. W., Hydrogen storage in metal-organic frameworks, Chemical Reviews, 112, 782-835 (2012).
124.Kenneth S., The use of nitrogen adsorption for the characterisation of porous materials, Physicochemical and Engineering Aspects, 187-188 (2001).
125.Ramírez A., Sierra L.,Mesa M., and Restrepo J., Simulation of nitrogen adsorption-desorption isotherms hysteresis as an effect of pore connectivity, Chemical Engineering Science, 60, 4702-4708 (2005).
126.Ustinov E. A. and Do D. D., Comparison of nitrogen adsorption at 77 K on non-porous silica and pore aall of MCM-41 materials by means of density functional theory, Journal of Colloid and Interface Science, 297, 480-488 (2006).
127.網址
https://zh.wikipedia.org/zh-tw/%E6%B2%B8%E7%9F%B3
128.林錕松、簡子婷、蔡宗晏、蔡宏彬及劉宇杰,「沸石薄膜之種類特性、合成方法及其在分離過濾技術之應用」,化工技術,第18卷,第10期(2010)。
129.Anh P., Christian J., Ferando J., Carolyn B., Michael O., and Omar M., Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Journal of the American Chemical Society, 43, 58-67 (2010).
130.Breck D.W., Zeolite molecular sieves, Wiley, 22, 152-163 (1974).
131.Corma A., Nemeth L.T., Renz M., and Valencia S., Sn-zeolite beta as a heterogeneous chemoselective catalyst for baeyer-villiger oxidations, Nature, 412, 423-425 (2001).
132.Hollander M. A., Wissink M., Makkee M., and Moulijn J.A., Gasoline conversion: reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts, Applied Catalysis A: General, 223, 85-102 (2002).
133.Taguchi A. and Schüth F., Ordered mesoporous materials in catalysis, Microporous and Mesoporous Materials, 77, 1-45 (2005).
134.黃昱源及吳嘉文,「無用之用的奈米孔洞材料」,科學發展,第513期(2015)。
135.Radhakrishnan R., Gubbins K. E., and Sliwinska B. M., Effect of the fluid-wall interaction on freezing of confined fluids: toward the development of a global phase diagram, The Journal of Chemical Physics, 112, 11048-11056 (2000).
136.Kitagawa S., Kitaura R., and Noro S., Functional porous coordination polymers, Angewandte Chemie International Edition, 43, 2334-2375 (2004).
137.Noro S. I., Kitagawa S., Akutagawa T., and Nakamura T., Coordination polymers constructed from transition metal ions and organic n-containing heterocyclic ligands: crystal structures and microporous properties, Progress in Polymer Science, 34, 240-279 (2009).
138.Dongyuan Z., Jianglin F., Qisheng H., Nicholas M., Glenn H. F., Bradley F. C., and Stucky G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 279, 548-552 (1998).
139.Dongyuan Z., Qisheng H., Jianglin F., Bradley F. C., and Stucky G. D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, Journal of the American Chemical Society, 120, 6024-6036 (1998).
140.Stebe M. J., Emo M., Forny L. F. A., Metlas K. L., Pezron I., and Blin J. L., Triblock siloxane copolymer surfactant: template for spherical mesoporous silica with a hexagonal pore ordering, Langmuir, 29, 1618-1626 (2013).
141.Imperor C. M., Davidson P., and Davidson A., Existence of a microporous corona around the mesopores of silica-based Zr-SBA-15 materials templated by triblock copolymers, Journal of the American Chemical Society, 122, 11925-11933 (2000).
142.Michal K., Mietek J., Chang H. K., and Ryong R., Characterization of the porous structure of Zr-SBA-15, Chemistry of Materials, 12, 1961-1968 (2000).
143.Patrick S. W., Wayne W. L., Peidong Y., David I. M., Lettow J. S., Jackie Y. Y., and Galen D. S., Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores, Chemistry of Materials, 12, 686-696 (2000).
144.Lettow J. S., Yong J. H., Patrick S. W., Peidong Y., Dongyuan Z., Galen D. S., and Jackie Y. Y., Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas, Langmuir, 16, 8291-8295 (2000).
145.網址
https://zh.wikipedia.org/zh-tw/%E6%B0%9F%E7%A1%85%E9%85%B8%E9%92%A0
146.網址
https://zh.wikipedia.org/zh-tw/%E6%B0%9F%E7%A1%85%E9%85%B8%E9%92%A0
147.Stickle W. F., Sobol P. E., and Bomben K. D., Handbook of X-ray photoelectron apectroscopy, Eden Prairie, Perkin Elmer (1992).
148.Aylin A., Julien K., Peter M., Christian H., Emma M. B., Magnus O., Impact of the morphological and chemical properties of copper-zirconium-SBA-15 catalysts on the conversion and selectivity in carbon dioxide hydrogenation, Journal of Colloid and Interface Science, 546, 163-173(2019).
149.謝志誠,巫廷璽,吳敬揚,張馬丁,劉安琪,周楚洋,周呈霙,陳力騏「利用HZSM-5沸石觸媒將含水乙醇催化轉製成汽油」,農業機械學刊,第一期(2010)。
150.Hollander M.A., Wissink M., Makkee M., and Moulijn J.A., Gasoline conversion: reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts, Applied Catalysis A:General, 223, 85-102 (2002).
151.Liu Z., Liu L., Song H., Wang C., Xing W., and Yan Z., Hierarchical SAPO-11 preparation in the presence of glucose, Materials Letters, 154, 116-119 (2015).
152.Liu Y., Cui X., Han L., Yu Z., and Liu X., Role of fluoride ions in synthesis and isomerization performance of superfine SAPO-11 zeolite, Microporous and Mesoporous Materials, 198, 230-235 (2014).
153.Beulah G., Anibal S., and Joaquin L. B., Theoretical study of the CO catalytic oxidation on Au/SAPO‐11 zeolite, International Journal of Quantum Chemistry, 110, 2573-2582 (2010).
154.Binnig G., Rohrer H., Gerber C., and Weibel E., Surface studies by scanning tunneling microscopy, Physical Review Letters, 49, 57-60 (1982).
155.Madejova J., FTIR Techniques in clay mineral studies, Vibrational Spectroscopy, 31, 1-10 (2003).
156.Stickle W. F., Sobol P. E., and Bomben K. D., Handbook of X-ray photoelectron spectroscopy, Eden Prairie, Perkin Elmer (1995).
157.Krantz W. B., Greenberg A. R., Kujundzic E., Yeo A., and Hosseini S. S., Evapoporometry: a novel technique for determining the poresize distribution of membranes, Journal of Membrane Science, 438, 153-166 (2013).
158.北京大學化學學院中級儀器實驗室,「低溫靜態容量法測定固體比表面和孔徑分布」,比表面孔分布儀操作手冊,1,1-20 (2012).
159.Rouquerol F., Rouquerol J., and Sing K., Adsorption by powders and porous solids, principles, methodology and applications, Academic Press, 124, 234-139 (1999).
160.Bleisteiner B., Dispersive raman instruments, HORIBA Scientific (2009).
161.Chunqing L., Microporous UZM-5 inorganic zeolite membranes for gas, vapor, and liquid separations, European Patent, EP2688664A2 (2014).
162.Omar M. Y., Carbon dioxide capture and storage using open frameworks, European Patent, EP2437867A2 (2012).
163.Wenyih F. L., MCM-22 family molecular sieve composition, United States Patent, US7846418B2 (2010).
164.Sayari A., Materials, methods and systems for selective capture of CO2 at High Pressure, Canada Patent, CA2682892A1 (2011).
165.Jennifer W., Sorbents for carbon dioxide capture, United States Patent, US9155996B2 (2015).
166.Yongjun L., Adsorbent and its preparation method, China Patent, CN105478082A (2016).
167.網址
https://pixels.com/featured/dimethyl-ether-molecule-molekuulscience-photo-library.html
168.蔡信行,「二甲醚(DME)國際發展趨勢研析」,石油市場雙周報,專題分析報導(2008)
169.Shoucang S., Pui S. C., Fengxi C., and Reginald B. H. T., Submicron Particles of SBA-15 Modified with MgO as Carriers for Controlled Drug Delivery, Chemical & pharmaceutical bulletin, 55(7) 985—991 (2007).
170.Phan H. H., Nguyen T. N., and Le Q. D., Synthesis of mesoporous Cr/ZSM-5 and W-Cr/ZSM-5 zeolite catalysts for oxidation of unsaturated fatty acid, AIP Advances, 7, 105311 (2017).
171.吳秉諺,「用ZSM-5 和β沸石在陶瓷海綿和粉末在汽相醚苯醯化的比較」,碩士論文,龍華科技大學,桃園(2020)。
172.Zhang P., Liu H., Yue Y., Zhu H., Bao X., Direct synthesis of hierarchical SAPO-11 molecular sieve with enhanced hydroisomerization performance, Fuel Processing Technology, 179, 72-85 (2018).
173.林錕松、江昭龍及于思涵,「利用高效率新穎觸媒催化二氧化碳生成甲醇、二甲醚及碳酸二甲酯之應用技術」,台灣化學工程學會,第63卷,第1期(2016)。
174.Yan Z., Yixiang S., Shuang L., Yi Y., and Ningsheng C., Elevated temperature hydrogen/carbon dioxide separation process simulation by integrating elementary reaction model of hydrotalcite adsorbent, International Journal of Hydrogen Energy, 39(8), 3771-3779 (2014).
175.Soonchul K., Adsorbent for Carbon Dioxide, Method of preparing the aame, and capture module for carbon dioxide, United States Patent, US9242225B2 (2016).
176.網址
https://kknews.cc/news/9l89538.html
177.網址
https://read01.com/ByOKmK.html
178.Jame R. J., Process for the conversion of carbon dioxide to methanol, United States Patent, US9133074B2 (2015).
179.Emily B. C., Reducing carbon dioxide to products, European Patent, EP2823090A1 (2015).
180.Felix S., Catalysts for the reduction of carbon dioxide to methanol, European Patent, EP2680964A2 (2014).
181.Murakami N., Catalysts for methanol production, method for producing same, and method for producing methanol, China Patent, CN104379255A (2015).
182.Fong L., Catalysts for synthesising methanol by hydrogenation of carbon dioxide as well as preparation method and application thereof, China Patent, CN103252241B (2015).
183.Hsiousui D., Methanol catalyst synthesized by carbon dioxide hydrogenation, preparation method and application thereof, China Patent, CN105013492A (2015).
184.二甲醚價格走勢:
http://www.sunsirs.com/uk/prodetail-684.html (2020.10)
電子全文 電子全文(網際網路公開日期:20251105)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊