1.Zhou P. and Wang M., Carbon dioxide emissions allocation: A review, Ecological Economics, 125, 47-59 (2016).
2.De C. H. and Benson S. M., Carbon Dioxide Capture and Storage: Issues and Prospects., Annual Review of Environment and Resources, 39, 243-270(2014).
3.Chianese D. S., Rotz C. A., amd Richard T. L., Simulation of carbon dioxide emission from dairy farms to assess greenhouse gas reduction strategies, Transactions of the ASABE, 52(4), 1301-1312(2009).
4.Tseng S. C. and Hung S. W., A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management, Journal of Environmental Management, 133, 315-322(2014).
5.Arcoumanis C., Bae C., Crookes R., and Kinoshita E., The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review, Fuel, 87, 1014-1030(2008).
6.Ogawa T., Inoue N., Shikada T., and Ohno Y., Direct dimethyl ether synthesis, Journal of Natural Gas Chemistry, 12, 219-227(2003).
7.Cheng C., Zhang H., Ying W., and Fang D., Intrinsic kinetics of one-step dimethyl ether synthesis from hydrogen-rich synthesis gas over bi-functional catalyst, Korean Journal of Chemical Engineering, 28, 1511-1517(2011).
8.鍾鼎文,「晶圓廠濕蝕刻機台排水分流系統與氟系廢水處理設施
效能評估研究」,碩士論文,交通大學,新竹(2008)。
9.姚洋羽,「離子交換法處理含氫氟酸與氟矽酸的半導體廢水之研究」,碩士論文,元智大學,新竹(2003)。10.Tetsu T., Fujimi C., and Atsushi O., Semiconductor manufacturing system and method for waste liquid collection, United States Patent, 8234013B2 (2012).
11.Ji Y., Yufeng C., Limei C., Yuling G., and Jinping J., Development and field-scale optimization of a honeycomb zeolite rotor concentrator/recuperative oxidizer for the abatement of volatile organic carbons from semiconductor industry, Environmental Science and Technology, 46(1), 441-446 (2012).
12.Ting Z., Sylvain G. C., Ilia I., Kenneth L. K. Jr., Istvan R., and Fan Z., Nanocrystals for electronic and optoelectronic applications, Journal of Nanomaterials, Volume 2012, Article ID 392742, 2 pages (2012).
13.Van M., and Joëlle P., Method for removing organic contaminants from a semiconductor surface, European Patent, 0867924B1 (2011).
14.李茂松、廖啟鐘、張王冠、邵信、倪慎如、李天菴,「積體電路產業氫氟酸廢水結晶處理整合回收技術」,1998工程實務研討會論文集(1998)。
15.張可翰,「以氧化鈣移除氟氣的反應動力研究」,碩士論文,高雄應用科技大學,高雄(2008)。16.李珊如,「高科技產業氟化鈣污泥做為水泥生料之可行性研究」,碩士論文,交通大學,新竹(2002)。
17.Wei T. L. and Kung C. L., Application of reutilization technology to calcium fluoride sludge from semiconductor manufacturers, Journal of the Air and Waste Management Association, 61, 85-91 (2011).
18.Nadjib D., Saleh A., Hakim L., Drouiche M., Tarik O., and Norredine G., Fluoride removal from pretreated photovoltaic wastewater by electrocoagulation: an investigation of the effect of operational parameters, Procedia Engineering, 33, 385-391 (2012).
19.Rube´n A., Aurora G., and Angel I., Fluoride recovery in a fluidized bed: crystallization of calcium fluoride on silica sand, Industrial and Engineering Chemistry Research, 45, 796-802 (2006).
20.Aldaco R., Garea A., and Irabien A., Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor, Water Research, 41, 810-818 (2007).
21.Roger N., Surendra K., and James B., Fluoride removal system, United States Patent, 5403495 (1995).
22.Drouichea N., Ghaffourb N., Lounicic H., Mameric N., Maallemia A., and Mahmoudid H., Electrochemical treatment of chemical mechanical polishing wastewater: removal of fluoride-sludge characteristics-operating cost, Desalination, 223, 134-142 (2008).
23.黃奕叡,「廢棄物焚化灰渣熱熔之研究」,碩士論文,成功大學,台南(2002)。24.劉惠如,「鹼法回收煉鋼集塵灰鋅金屬之研究」,碩士論文,高雄應用科技大學,高雄(2008)。
25.Ouellet L., Migeault G., and Li J., Anhydrous HF release process for MEMS devices, European Patent, 1700822B1 (2009).
26.Le Van Mae R., Vo N. T. C., Sjiariel B., Lee L., and Denesb G., Mesoporous aluminosilicates: preparation from Ca-A zeolite by treatment with ammonium fluorosilicate, Journal of Materials Chemistry, 2(6), 595-599 (1992).
27.Le Van Mao R., John A. L., Bernard S., and Cooper H. L., Mesoporous aluminosilicates prepared from zeolites by treatment with ammonium fluorosilicate, Journal of Materials Chemistry, 3(6), 679-683 (1993).
28.劉雅鈞,「築爐員工游離二氧化矽暴露評估與健康效應評估」,碩士論文,成功大學,台南(2002)。
29.賴眉諭,「TiO2在增進鉑、鈀金屬沸石抗硫性上所扮演的角色」,碩士論文,中正大學,嘉義(2004)。30.陳威裕,「鑄造業游離二氧化矽危害預防」,工安技術論壇,3-7 (2007)。
31.Larisa P. D., Viaseslav S. R., and Alexandre S. B., Elaboration of nanometric amorphous silica from quartz-based minerals using the fluorination method, Journal of Fluorine Chemistry, 132, 1067-1071 (2011).
32.Sung K. C., Furen F. F., and Allen J. B., Electrodeposition of crystalline and photoactive silicon directly from silicon dioxide nanoparticles in molten CaCl2, Angewandte Chemie International Edition, 51, 12740-12744 (2012).
33.Karl A. and Gunter T., Process for converting silicon dioxide containing waste flue dust to crystalline zeolitic molecular sieves of type A, United States Patent, US4310496 (1982).
34.Xinmei L., Liang L., Tingting Y., and Zifeng Y., Zeolite Y synthesized with FCC spent catalyst fines: particle size effect on catalytic reactions, Journal of Porous Materials, 19, 133-139 (2012).
35.Emmanuelle G., Eric S., and Sylvie L., Dual zeolite catalyst comprising a group VIII metal and a group IIIA metal, and its use in isomerization of aromatic C8 compounds, United States Patent, 8183172B2 (2012).
36.Eric J., George P., Corma A., and Martinez C., Modified zeolite catalyst, European Patent, 2269734A1 (2011).
37.陳科良,「以透明MFI 沸石製作抗反射膜」,碩士論文,中央大學,桃園(2006)。
38.藍友聰,「於陶瓷纖維紙上合成ZSM-5與Au/CeO2沸石及反應性測試」,碩士論文,中央大學,桃園(2006)。39.劉凱,「沸石吸附型沸石雙功能材料之吸脫附/沸石催化可行性研究」,碩士論文,交通大學,新竹(2010)。40.邱鵬格,彭禹祥,郭昭吟,「沸石批覆二氧化鈦之管柱系統處理水中偶氮染料之研究」,雲林科技大學,雲林(2009)。
41.蔡尚恬,王奕凱,蔡振章,「鑄造業游離二氧化矽危害預防」,中國化學會,第六十五卷,第四期(2007)。
42.Franck M., Christian S., and Gérard F., Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic-organic microporous solids: CrIII(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x, Chemical Communications, 8, 822-823 (2002).
43.McBain C., Jungheum Y., Tae S. B., Jung D. K., Sunghun L., and Gun H. L., Antireflective silica nanoparticle array directly deposited on flexible polymer substrates by chemical vapor deposition, Nanoscale, 4, 7221-7230 (2012).
44.網址
https://sites.google.com/site/b9805135/fei-hui
45.網址
http://www.taipower.com.tw/content/new_info/new_info-e13-2.aspx?LinkID=15
46.網址
https://greennet.taipower.com.tw/Page_CircularEconomy_Plant.aspx
47.Cobianu C. and Pavelescu C., Silane oxidation study: analysis of data for SiO2 films deposited by low temperature chemical vapour deposition, Thin Solid Films, 117, 211-216 (1984).
48.David N., John M., Sam S., Cissy L., Salvador P., Kenneth S., and John A., Thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process, United States Patent, 5354715 (1994).
49.Qi Z., Daniel S. and Valanoor N., Chemical route derived bismuth ferrite thin films and nanomaterials, Journal of Materials Chemistry C, 4, 4092-4124 (2016)
50.Plummer J. D., Silicon VLSI technology fundamentals, Practice and Modeling, ISBN-13: 978-0130850379 (2000).
51.Davinder S. B., Andrew J. S., Ivan P. P., and Andrew J. D., Zeolite films: a new synthetic approach, Journal of Materials Chemistry A, 1, 1388-1393 (2013).
52.Yingwei L. and Ralph T. Y., Significantly enhanced hydrogen storage in metal-organic frameworks via spillover, Journal of the American Chemical Society, 128, 726-727 (2006).
53.柯賢文,「未來的氫能經濟」,科學發展,399,68-75 (2006)。
54.Bellussi G. and Pollesel P., Industrial applications of zeolite catalysts: production and uses of light olefins, Studies in Surface Science and Catalysis, 158, 1201-1212 (2005).
55.Makoto M., Heterogeneous catalysis of mixed oxides perovskite and heteropoly catalysts, Studies in Surface Science and Catalysis, 176, 1-181 (2013).
56.Jurgen C., Zeolite membranes: from the laboratory scale to technical applications, Adsorption, 11, 215-227 (2005).
57.Wiley V. V. G. and Co K., Zeolites and catalysis, Angewandte Chemie International Edition, 50, 5425-5426 (2011).
58.Sterling H. F. and Swann R. C. G, Chemical vapour deposition promoted by discharge, Solid State Eletronics, 8, 653-654 (1965).
59.Dorin D., Virginie B., Jean N. C., Yun F. L., Hervé R., Serge B., Robert S., Andreas K., Catherine H. V., Philippe A., François O., and Catherine D., Organic grafting on Si for interfacial SiO2 growth inhibition during chemical vapor deposition of HfO2, Chemical of Materials, 24, 3135-3142 (2012).
60.Ralph T. Y, Measures of oxygen consumption and work capacity, Journal of the American Chemical Society, 128, 823-829 (2008).
61.“一般及事業廢棄物最終處置技術”,行政院環境保護署環境保護人員訓練所,中壢市(2011)。
62.Edward C. and Maurice G., Co-disposal pollution control method, United States Patent, 4726710 (1988).
63.Edward C. and Maurice G., Co-disposal Pollution control method II, United States Patent, 4946311 (1990).
64.Philip M., Solid waste management and disposal systems at mills and refineries, Environmental & Earth Sciences, 21, 1-9 (2004).
65.Amutha R. D., Boccaccini A.R., Deegan D., and Cheeseman C.R., Air pollution control residues from waste incineration: current UK situation and assessment of alternative technologies, Waste Management, 28, 2279-2292 (2008).
66.Marjorie J., Introduction to municipal solid waste incineration, Air and Waste Management Association Annual Meeting, 1-32, New York (2002).
67.Kevin B. J., Leslie F. R., and Sharon M. S., Leaching of elements from bottom ash, economizer fly ash, and fly ash from two coal-fired power plants, International Journal of Coal Geology, 94, 337-348 (2012).
68.Anjali G. and Arvind K. N. Assessment of mineral sequestration of landfill CO2 achievable using alkaline waste residues, European Journal of Scientific Research, 73, 480-488 (2012).
69.Gomez E., Rani D. A., Cheeseman C. Deegan R. D., Wise, M., and Boccaccini A. R., Thermal plasma technology for the treatment of wastes: a critical review, Journal of Hazardous Materials, 161, 614-626 (2009).
70.南部科學工業園區事業廢棄物再利用許可申請書
71.網址
http://www.innolux.com/Pages/TW/CSR/LOVE/Green_Operations/Environmental_Impact_Reduction_TW.html
72.Hans W. K., The composition of the continental crust, Ingerson Lecture, 1217-1232 (1995).
73.Robert W. and Edith M., Crystalline silica, United States Patent, 4061724 (1977).
74.EPA ambient levels and noncancer health effects of inhaled crystalline and amorphous silica, Health Issue Assessment (1996).
75.IARC Monographs on the evaluation of carcinogenic risks to humans, International Agency for Research on Cancer, 68, 41-53 (2009).
76.游離二氧化矽之物理化學性質之研究,「勞工安全衛生研究報告」,行政院勞工委員會勞工安全衛生研究所(1995)。
77.游離二氧化矽粉塵濃度測定參考比對,「勞工安全衛生研究報告」,行政院勞工委員會勞工安全衛生研究所(1996)。
78.Kyeong H. E., Cheong H. K., Hyoung J., and Choi Y. S., Pulmonary hemorrhage with progressive massive fibrosis in a silicosis patient: an autopsy case, Korean Journal of Legal Medicine, 36, 186-189 (2012).
79.Srivastava S., Pasipanodya J. G., Meek C., Leff R., and Gumbo T., Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability, Journal of Infectious Diseases, 204, 1951-1959 (2011).
80.Chee C. B., Sester M., Zhang W., and Lange C., Diagnosis and treatment of latent infection with mycobacterium tuberculosis, Respirology, 18, 205-216 (2011).
81.Spieth P. M., Guldner A., and Abreu M. G., Chronic obstructive pulmonary disease, Current Opinion in Anaesthesiology, 25, 24-29 (2012).
82.Priyanka R. and Mishra R.M., Economic impact due to automobile air pollution linked diseases in Rewa, International Journal of Computational Engineering Research, 3, 17-22 (2013).
83.Michael N., Ambient air quality and the health of communities around chirano gold mines limited, Global Advanced Research Journal of Physical and Applied Sciences, 12, 30-35 (2011).
84.Leung C. C., Yu I. T. S., and Chen W., Silicosis, The Lancet, 379, 2008-2018 (2012).
85.Higuchi K., Koriyama C., and Akiba S., Increased mortality of respiratory diseases, including lung cancer, in the Area with large amount of ashfall from mount sakurajima volcano, Journal of Environmental and Public Health, Volume 2012, Article ID 257831, 4 pages (2012).
86.Muir D. C. F., Julian J. A., Shannon H. S., Verma D. K., Sebestyen A., and Charles D. B., Silica exposure and silicosis among ontario hardrock miners-III analysis and risk estimates, American Journal of Industrial Medicine, 16, 29-43 (1989).
87.Kyle S. and DavidB., Silicosis among gold miners exposure response analysis and risk assessment, American Journal of Public Health, 12, 85-88 (1995).
88.Susan L. H., Karen K. S., Mary A. D., and Atrick H. N., Silica exposure in anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and lupus nephritis, Journal of the American Society of Nephrology, 12, 134-142 (2001).
89.Iraj M., Aboulfath L., Behzad B., Naser A., Reza M., and Mohammadreza D., Pericardial plaque: a unique complication of silicosis, Industrial Health, 49, 122-125 (2011).
90.Patrick H., Occupational lung disease & pulmonary function testing, Pulmonary Function testing, 331, 25-30 (1990).
91.Nagayama S., Kajihara K., and Kanamura K., Synthesis of nanocrystalline LaF3 doped silica glasses by hydrofluoric acid catalyzed sol-gel process, Materials Science and Engineering: B, 177, 510-514 (2012).
92.Kirkpatrick J. J. R., Enion D. S., and Burd D. A. R., Hydrofluoric acid burns: a review, Butterworth Heinemann, 21, 483-493 (1995).
93.李茂松,「半導體工業中含氟廢水處理技術發展」,化工技術」,7卷第12期(1999)。
94.莊子傑,「以溶解空氣浮除法處理半導體製造業含氟廢水之研究」,碩士論文,國立台灣科技大學,台北(2001)。95.許明華、馬念和、阮國棟,「氟化物水污染處理技術及管理策略」,工業污染防治,第30期(1996)。
96.黃崇真,「以沉澱浮除法處理半導體製造業含氟廢水之研究」,碩士論文,國立台灣科技大學,台北(1998)。97.劉覲銘,「逆滲透與離子交換法處理半導體氫氟酸廢水之研究」,碩士論文,元智大學,桃園(2001)。98.張明發,「半導體業含氟廢水處理之研究」,碩士論文,國立台灣科技大學,台北(2002)。99.陳嘉和,「流體化床結晶技術在含氟廢水處理之應用」,碩士論文,長庚大學,桃園(2001)。100.黃志彬、邵信、江萬豪、邱顯盛、烏春梅、李谷蘭,「新竹科學園區半導體及光電製造業廢水處理設施績效提昇輔導計畫」,國立交通大學環境工程所(2001)。
101.郭哲榮、魏善修、陳建清、吳忠杰,「含氟廢水處理成本降低與SS改善案例探討」,52 (2003)。
102.謝政宏,「晶圓廠含氟廢水加藥模式之探討」,碩士論文,國立交通大學,新竹(2006)。103.Won C. H., Choi J., and Chung J., Evaluation of optimal reuse system for hydrofluoric acid wastewater, Journal of Hazardous Materials, 239-240, 110-117 (2012).
104.阮國棟,「氟化物之污染特性及處理技術」,工業技術污染防制,第29期(1989)。
105.Mustapha H., Frangoise P., Jean M., Jacqueline S., and Claude G., Fluoride removal from diluted solutions by donnan dialysis with anion-exchange membranes, Desalination, 122, 53-62 (1999).
106.Jane H. and Liu J. C., Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer, Water Research, 33, 3403-3412 (1999).
107.Emamjomeh M. M. and Sivakumar M., Fluoride removal by a continuous flow electrocoagulation reactor, Journal of Environmental Management, 90, 1204-1212 (2009).
108.Rube A., Aurora G., and Angel I., Fluoride recovery in a fluidized bed: crystallization of calcium fluoride on silica sand, Industrial & Engineering Chemistry Research, 45, 796-802 (2006).
109.Aldaco R., Garea A., and Irabien A., Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor, Water Research, 41, 810-818 (2007).
110.Jain S. and Jayaram R. V., Removal of fluoride from contaminated drinking water using unmodified and aluminium hydroxide impregnated blue lime stone waste, Separation Science and Technology, 44, 1436-1451 (2009).
111.Nobuhiro M., Matagoro M., Toshiro F., and Tadahiro O., Advanced fluorite regeneration technology to recover spent fluoride chemicals drained from semi-conductor manufacturing process, Institute of Electron, 79, 363-373 (1996).
112.Wanhyup K., Eun I. K., and Joo Y. P., Fluoride removal capacity of cement paste, Desalination, 202, 38-44 (2007).
113.Michael C., Systemic effects of fluoridation, JOM, 27, 123-130, (2012).
114.Debabrata M., Ashish K., and William N., Chemical treatment for improved performance of reverse osmosis membranes, Desalination, 104, 239-249 (1996).
115.林何印,「超濾與逆滲透薄膜程序處理及回收工業廢水之研究」,碩士論文,國立中央大學,桃園(2005)。
116.Allan Z., Forrester J. D., and David H., The crystal structure of sodium fluosilicate, Acta Crystallographica, 17, 1408-1412 (1964).
117.Krasiński M. J., Krasińska K. R., and Ulanowski Z., Investigation of growth kinetics and morphology of sodium fluorosilicate ice-analogue crystals in solutions and gels, Crystal Research and Technology, 42, 1237-1242 (2007).
118.Krasiński M. J. and Prywer J., Growth morphology of sodium fluorosilicate crystals and its analysis in base of relative growth Rates, Journal of Crystal Growth, 303, 105-109 (2007).
119.林良專,「以氨水捕捉二氧化碳之吸收與資源再利用研究-以攪拌槽吸收器探討吸收與結晶現象」,碩士論文,龍華科技大學,桃園(2008)。
120.Li J. R., Sculley J., and Zhou H. C., Metal-organic frameworks for separations, Chemical Reviews, 112, 869-932 (2012).
121.Roddy D., Making a viable fuel cell industry happen in the tees valley, Fuel Cells Bulletin, 12, 10-12 (2004).
122.蔡宏彬,「M2(BDC)2dabco系列金屬-有機架構物之合成、特性鑑定及其儲氫能力之研究」,碩士論文,元智大學,桃園(2012)。123.Suh M. P., Park H. J., Prasad T. K., and Lim D. W., Hydrogen storage in metal-organic frameworks, Chemical Reviews, 112, 782-835 (2012).
124.Kenneth S., The use of nitrogen adsorption for the characterisation of porous materials, Physicochemical and Engineering Aspects, 187-188 (2001).
125.Ramírez A., Sierra L.,Mesa M., and Restrepo J., Simulation of nitrogen adsorption-desorption isotherms hysteresis as an effect of pore connectivity, Chemical Engineering Science, 60, 4702-4708 (2005).
126.Ustinov E. A. and Do D. D., Comparison of nitrogen adsorption at 77 K on non-porous silica and pore aall of MCM-41 materials by means of density functional theory, Journal of Colloid and Interface Science, 297, 480-488 (2006).
127.網址
https://zh.wikipedia.org/zh-tw/%E6%B2%B8%E7%9F%B3
128.林錕松、簡子婷、蔡宗晏、蔡宏彬及劉宇杰,「沸石薄膜之種類特性、合成方法及其在分離過濾技術之應用」,化工技術,第18卷,第10期(2010)。
129.Anh P., Christian J., Ferando J., Carolyn B., Michael O., and Omar M., Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Journal of the American Chemical Society, 43, 58-67 (2010).
130.Breck D.W., Zeolite molecular sieves, Wiley, 22, 152-163 (1974).
131.Corma A., Nemeth L.T., Renz M., and Valencia S., Sn-zeolite beta as a heterogeneous chemoselective catalyst for baeyer-villiger oxidations, Nature, 412, 423-425 (2001).
132.Hollander M. A., Wissink M., Makkee M., and Moulijn J.A., Gasoline conversion: reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts, Applied Catalysis A: General, 223, 85-102 (2002).
133.Taguchi A. and Schüth F., Ordered mesoporous materials in catalysis, Microporous and Mesoporous Materials, 77, 1-45 (2005).
134.黃昱源及吳嘉文,「無用之用的奈米孔洞材料」,科學發展,第513期(2015)。
135.Radhakrishnan R., Gubbins K. E., and Sliwinska B. M., Effect of the fluid-wall interaction on freezing of confined fluids: toward the development of a global phase diagram, The Journal of Chemical Physics, 112, 11048-11056 (2000).
136.Kitagawa S., Kitaura R., and Noro S., Functional porous coordination polymers, Angewandte Chemie International Edition, 43, 2334-2375 (2004).
137.Noro S. I., Kitagawa S., Akutagawa T., and Nakamura T., Coordination polymers constructed from transition metal ions and organic n-containing heterocyclic ligands: crystal structures and microporous properties, Progress in Polymer Science, 34, 240-279 (2009).
138.Dongyuan Z., Jianglin F., Qisheng H., Nicholas M., Glenn H. F., Bradley F. C., and Stucky G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 279, 548-552 (1998).
139.Dongyuan Z., Qisheng H., Jianglin F., Bradley F. C., and Stucky G. D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, Journal of the American Chemical Society, 120, 6024-6036 (1998).
140.Stebe M. J., Emo M., Forny L. F. A., Metlas K. L., Pezron I., and Blin J. L., Triblock siloxane copolymer surfactant: template for spherical mesoporous silica with a hexagonal pore ordering, Langmuir, 29, 1618-1626 (2013).
141.Imperor C. M., Davidson P., and Davidson A., Existence of a microporous corona around the mesopores of silica-based Zr-SBA-15 materials templated by triblock copolymers, Journal of the American Chemical Society, 122, 11925-11933 (2000).
142.Michal K., Mietek J., Chang H. K., and Ryong R., Characterization of the porous structure of Zr-SBA-15, Chemistry of Materials, 12, 1961-1968 (2000).
143.Patrick S. W., Wayne W. L., Peidong Y., David I. M., Lettow J. S., Jackie Y. Y., and Galen D. S., Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores, Chemistry of Materials, 12, 686-696 (2000).
144.Lettow J. S., Yong J. H., Patrick S. W., Peidong Y., Dongyuan Z., Galen D. S., and Jackie Y. Y., Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas, Langmuir, 16, 8291-8295 (2000).
145.網址
https://zh.wikipedia.org/zh-tw/%E6%B0%9F%E7%A1%85%E9%85%B8%E9%92%A0
146.網址
https://zh.wikipedia.org/zh-tw/%E6%B0%9F%E7%A1%85%E9%85%B8%E9%92%A0
147.Stickle W. F., Sobol P. E., and Bomben K. D., Handbook of X-ray photoelectron apectroscopy, Eden Prairie, Perkin Elmer (1992).
148.Aylin A., Julien K., Peter M., Christian H., Emma M. B., Magnus O., Impact of the morphological and chemical properties of copper-zirconium-SBA-15 catalysts on the conversion and selectivity in carbon dioxide hydrogenation, Journal of Colloid and Interface Science, 546, 163-173(2019).
149.謝志誠,巫廷璽,吳敬揚,張馬丁,劉安琪,周楚洋,周呈霙,陳力騏「利用HZSM-5沸石觸媒將含水乙醇催化轉製成汽油」,農業機械學刊,第一期(2010)。
150.Hollander M.A., Wissink M., Makkee M., and Moulijn J.A., Gasoline conversion: reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts, Applied Catalysis A:General, 223, 85-102 (2002).
151.Liu Z., Liu L., Song H., Wang C., Xing W., and Yan Z., Hierarchical SAPO-11 preparation in the presence of glucose, Materials Letters, 154, 116-119 (2015).
152.Liu Y., Cui X., Han L., Yu Z., and Liu X., Role of fluoride ions in synthesis and isomerization performance of superfine SAPO-11 zeolite, Microporous and Mesoporous Materials, 198, 230-235 (2014).
153.Beulah G., Anibal S., and Joaquin L. B., Theoretical study of the CO catalytic oxidation on Au/SAPO‐11 zeolite, International Journal of Quantum Chemistry, 110, 2573-2582 (2010).
154.Binnig G., Rohrer H., Gerber C., and Weibel E., Surface studies by scanning tunneling microscopy, Physical Review Letters, 49, 57-60 (1982).
155.Madejova J., FTIR Techniques in clay mineral studies, Vibrational Spectroscopy, 31, 1-10 (2003).
156.Stickle W. F., Sobol P. E., and Bomben K. D., Handbook of X-ray photoelectron spectroscopy, Eden Prairie, Perkin Elmer (1995).
157.Krantz W. B., Greenberg A. R., Kujundzic E., Yeo A., and Hosseini S. S., Evapoporometry: a novel technique for determining the poresize distribution of membranes, Journal of Membrane Science, 438, 153-166 (2013).
158.北京大學化學學院中級儀器實驗室,「低溫靜態容量法測定固體比表面和孔徑分布」,比表面孔分布儀操作手冊,1,1-20 (2012).
159.Rouquerol F., Rouquerol J., and Sing K., Adsorption by powders and porous solids, principles, methodology and applications, Academic Press, 124, 234-139 (1999).
160.Bleisteiner B., Dispersive raman instruments, HORIBA Scientific (2009).
161.Chunqing L., Microporous UZM-5 inorganic zeolite membranes for gas, vapor, and liquid separations, European Patent, EP2688664A2 (2014).
162.Omar M. Y., Carbon dioxide capture and storage using open frameworks, European Patent, EP2437867A2 (2012).
163.Wenyih F. L., MCM-22 family molecular sieve composition, United States Patent, US7846418B2 (2010).
164.Sayari A., Materials, methods and systems for selective capture of CO2 at High Pressure, Canada Patent, CA2682892A1 (2011).
165.Jennifer W., Sorbents for carbon dioxide capture, United States Patent, US9155996B2 (2015).
166.Yongjun L., Adsorbent and its preparation method, China Patent, CN105478082A (2016).
167.網址
https://pixels.com/featured/dimethyl-ether-molecule-molekuulscience-photo-library.html
168.蔡信行,「二甲醚(DME)國際發展趨勢研析」,石油市場雙周報,專題分析報導(2008)
169.Shoucang S., Pui S. C., Fengxi C., and Reginald B. H. T., Submicron Particles of SBA-15 Modified with MgO as Carriers for Controlled Drug Delivery, Chemical & pharmaceutical bulletin, 55(7) 985—991 (2007).
170.Phan H. H., Nguyen T. N., and Le Q. D., Synthesis of mesoporous Cr/ZSM-5 and W-Cr/ZSM-5 zeolite catalysts for oxidation of unsaturated fatty acid, AIP Advances, 7, 105311 (2017).
171.吳秉諺,「用ZSM-5 和β沸石在陶瓷海綿和粉末在汽相醚苯醯化的比較」,碩士論文,龍華科技大學,桃園(2020)。172.Zhang P., Liu H., Yue Y., Zhu H., Bao X., Direct synthesis of hierarchical SAPO-11 molecular sieve with enhanced hydroisomerization performance, Fuel Processing Technology, 179, 72-85 (2018).
173.林錕松、江昭龍及于思涵,「利用高效率新穎觸媒催化二氧化碳生成甲醇、二甲醚及碳酸二甲酯之應用技術」,台灣化學工程學會,第63卷,第1期(2016)。
174.Yan Z., Yixiang S., Shuang L., Yi Y., and Ningsheng C., Elevated temperature hydrogen/carbon dioxide separation process simulation by integrating elementary reaction model of hydrotalcite adsorbent, International Journal of Hydrogen Energy, 39(8), 3771-3779 (2014).
175.Soonchul K., Adsorbent for Carbon Dioxide, Method of preparing the aame, and capture module for carbon dioxide, United States Patent, US9242225B2 (2016).
176.網址
https://kknews.cc/news/9l89538.html
177.網址
https://read01.com/ByOKmK.html
178.Jame R. J., Process for the conversion of carbon dioxide to methanol, United States Patent, US9133074B2 (2015).
179.Emily B. C., Reducing carbon dioxide to products, European Patent, EP2823090A1 (2015).
180.Felix S., Catalysts for the reduction of carbon dioxide to methanol, European Patent, EP2680964A2 (2014).
181.Murakami N., Catalysts for methanol production, method for producing same, and method for producing methanol, China Patent, CN104379255A (2015).
182.Fong L., Catalysts for synthesising methanol by hydrogenation of carbon dioxide as well as preparation method and application thereof, China Patent, CN103252241B (2015).
183.Hsiousui D., Methanol catalyst synthesized by carbon dioxide hydrogenation, preparation method and application thereof, China Patent, CN105013492A (2015).
184.二甲醚價格走勢:
http://www.sunsirs.com/uk/prodetail-684.html (2020.10)