中文文獻
1. 工業生產統計指標
https://dmz26.moea.gov.tw/GMWeb/common/CommonQuery.aspx
2. 公開資訊觀測站
http://mops.twse.com.tw/mops/web/index
3. 王英銘(2005),自組非線性系統應用於濁度預測。國立成功大學碩士論文,台南市。取自https://hdl.handle.net/11296/jn3fy7。4. 余靜芳(2008),利用自組性演算法與基因演算法於混合實驗最佳化之研究。國立交通大學碩士論文,新竹市。取自https://hdl.handle.net/11296/pz7fjy。5. 林則孟(2006),CPFR協同規劃預測補給個案—力山企業集團,製商整合e化個案集,光華管理策進基金會出版,第3-42頁。
6. 林敬凱(2008),具多反應實驗設計最佳化演算法之研究。國立交通大學碩士論文,新竹市。取自https://hdl.handle.net/11296/njfv8a。
7. 信統電產股份有限公司.
http://www.solen.com.tw
8. 美國供應管理協會(ISM)製造業指數
(PMI).https://www.instituteforsupplymanagement.org/ISMReport/MfgROB.cfm?SSO=1
9. 張保隆(2011),生產管理,華泰文化。
10. 陳仕偉、劉曜竹(2004),領先指標對台灣景氣趨勢預測能力的評估,台灣經濟論衡,第2卷,第11期,第1-34頁。
11. 陳英豪(2005),應用自組性演算法建構企業信用評等模型。國立交通大學碩士論文,新竹市。取自https://hdl.handle.net/11296/w46j5f。12. 陳寬裕(2006),演化式支援向量迴歸於旅遊需求之預測。長榮大學博士論文,台南市。取自https://hdl.handle.net/11296/bpqjrc。13. 景氣指標查詢系統.
https://index.ndc.gov.tw/n/zh_tw#
14. 游翔百(2004),建構複合式信用評等模型。國立交通大學碩士論文,新竹市。取自https://hdl.handle.net/11296/4233f3。15. 黃建哲(2014),資料處理群集分析演算法應用於颱風移動路徑預測模式之探討。國立成功大學碩士論文,台南市。取自https://hdl.handle.net/11296/2pqe6d。16. 黃開義、陳銘崑、王孔政、田方治(2009),生產與作業管理,國立空中大學。
17. 劉欣姿(2012),領先指標預測能力之研究,經濟研究,第13期,第79-108頁。
英文文獻
1. Aburto, L. and Weber, R. (2007), Improved supply chain management based on hybrid demand forecasts, Applied Soft Computing, Vol. 7 No. 1, pp. 136-144.
2. Chang PC, Liu CH, Fan CY (2009), Data clustering and fuzzy neural network for sales forecasting: A case study in printed circuit board industry, Knowledge-Based Systems, pp 344–355.
3. Charles W. Chase (2009), Demand-Driven Forecasting: A Structured Approach to Forecasting.
4. Dipti Srinivasan (2008),Energy demand prediction using GMDH networks, Neurocomputing,Vol 72, pp.625-629.
5. Hamza, Ebi, C., Akay, D., Kutay, F., (2009), Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting, Expert Systems with Applications, 36, 3839-3844.
6. Colin.fraser (2016),
https://medium.com/@colin.fraser/data-science-for-business-leaders-picking-the-rig ht-kind-of-wrong-46a55465e2a4
7. J. D. Shepard (2004), A structured approach for product demand forecasting, Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC '04., Anaheim, CA, USA, 2004, pp. 1884-1888 Vol.3. doi: 10.1109/APEC.2004.1296124
8. Jim Sterne (2017), Artificial Intelligence for Marketing: Practical Applications.
9. Kuo, R.J. (2001), A sales forecasting system based on fuzzy neural network with initial weights generated by genetic algorithm, European Journal of Operational Research, 129, 496-517.
10. L. Anastasakis & N. Mort (2001), The Development of Self-Organization Techiniques in Modelling : A Review of The Group Method of Data Handing(GMDH), Department of Automatic Control & Systems Engineering, The University of Sheffield. Mappin St, Sheffield, S1 3JD, United Kingdom, Oct 2001.
11. Leontief, W. (1936), Quantitative input-output relations in the economic systems of the United States, Review of Economics and Statistics, Vol 18, pp.105-125.
12. Lewis, E.B., (1982), Control of body segment differentiation in Drosophila by the bithorax gene complex, Prog Clin Biol Res, pp. 269-88.
13. Lynn, (2017), https://kopu.chat/2017/06/09/big-data-spirit/
14. Min Qi, Guoqiang Peter Zhang (2001), An Investigation of Model Selection Criteria for Neural Network Time Series Forecasting, European Journal of Operational Research, vol.132. pp.666-680.
15. Raymond Findlay, FIEEE, Fang Liu (2006), Prediction of Ontario Hourly Load Demands and Neural Network Modeling Techniques, Electrical and Computer Engineering, pp. 372-375.
16. Takao, Shoichiro; Kondo, Sayaka; Ueno, Junji; Kondo, Tadashi (2018), Deep multi-layered GMDH-type neural network using revised heuristic self-organization and its application to medical image diagnosis of liver cancer, Artificial Life & Robotics, Vol. 23 Issue 1, p48-59.
17. VICS(2004),Collaborative Planning, Forecasting and Replenishment.
18. Yun-Hui Cheng, Liao, Hai-Wei and Yun-Shiow Chen (2006), Implementation of a Back-Propagation Neural Network for Demand Forecasting in a Supply Chain-A Practical Case Study, Service Operations and Logistics, and Informatics, pp.1036-1041.