跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/09 09:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張懷文
研究生(外文):Huai-Wen Zhang
論文名稱:網路聲量對元智大學品牌行銷的影響
論文名稱(外文):The Impact of Internet Voice Volume on Yuan Ze University Marketing
指導教授:李捷李捷引用關係
指導教授(外文):Chieh-Lee
口試委員:鄭元杰周珈慶
口試委員(外文):Yuan-Jye TsengChoa-Ching Chou
口試日期:2019-06-11
學位類別:碩士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:89
中文關鍵詞:新媒體微電影機器學習Jieba分詞廣告生動性六度分離理論
外文關鍵詞:New MediaMicro FilmMechine LearningJiebaVividness EffectSix Degree of Separation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了瞭解是否能藉由微電影來為品牌做行銷,提高大眾對品牌的認識程度以及討論度,本研究分為兩個階段,第一階段利用爬蟲抓取在網路論壇中的討論文章、留言等數據,透過自然語言處理中Jieba分詞工具將留言及文章進行分詞,接著以機器學習中的支持向量機器(Vector Support Machine)及隨機森林(Random Forest)進行網路文章及留言的分析,最後針對幾項主要網路討論議題進行探討;第二階段針對品牌對外的宣傳媒介進行貼文的分析並針對分析結果提供建議。研究結果發現研究目標在網路上的討論聲量並不理想、知名度不高而在第二階段所得到的結果顯示人們在觀看貼文時,比起滿是文字的貼文,更覺得有影片的貼文更吸睛,提高了續看率,因此我們提出了透過拍攝微電影來比較品牌宣傳前後的網路聲量。研究結果表示利用微電影來宣傳是可以提高網路聲量,甚至提高了報名人數。在本篇研究中我們了解隨著媒體傳播型式的改變,消費者的購買模式也跟著改變,而消費者對廣告類型的接受程度也考驗著商人的行銷方式。
In order to understand whether it is possible to market for brands through micro-movies and to raise public awareness of the brand and discussion, the research is divided into two phases. The first phase uses crawlers to crawl discussion articles and messages in online forums. And other data, through the natural language processing in the Jieba word segmentation tool to segment the message and article, then use the support vector machine and random forest in machine learning to analyze the online articles and messages, and finally discuss several major online discussion topics. The second stage analyzes the post for the brand's external media and provides suggestions for the analysis results. The results of the study found that the research target's discussion volume on the Internet was not ideal, and the popularity was not high. The results obtained in the second stage showed that people were more likely to have a film when they viewed the post than the text-filled post. The post is more eye-catching and improves the renewal rate, so we proposed to compare the network volume before and after the brand promotion by shooting micro-movies. The results of the study indicate that the use of micro-movies to promote can increase the volume of the Internet and even increase the number of applicants. In this study, we understand that as the type of media communication changes, the consumer's buying pattern also changes, and the consumer's acceptance of the type of advertising also tests the merchant's marketing style.
摘要 I
致謝 II
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 4
第二章 文獻探討 5
2.1 六度分離理論(Six Degree of Separation) 5
2.2 Facebook商業行為 5
2.3 廣告的生動性(Vividness Effect) 6
2.4 微電影廣告的特徵 7
2.5 自然語言處理(Natural Language Processing) 8
2.6 機器學習(Machine Learning) 9
2.7 文字探勘(Text Mining) 10
第三章 研究方法 12
3.1 研究流程 12
3.2 資料蒐集 13
3.3 建立計算模型 17
3.4 假設檢定 18
3.5 文字探勘 20
3.6 自然語言處理 24
3.6.1 Jieba分詞 24
3.6.2 TF-IDF 26
3.7 機器學習 28
3.7.1 支持向量機(Support Vector Machine) 28
3.7.2 隨機森林(Random Forest) 31
3.8 微電影賽程設計 32
第四章 資料分析 34
4.1 網路論壇討論度分析 35
4.1.1 抓取數據 35
4.1.2 Jieba分詞 37
4.1.3 TF-IDF 38
4.1.4 支持向量機(SVM)及隨機森林(Random Forest) 38
4.1.5 論壇討論度分析結論 42
4.2 Facebook相關功能 46
4.3 洞察報告數據分析 57
4.3.1 數據集介紹 57
4.3.2 正常化數據(Normalization) 57
4.3.3 常態檢定 60
4.3.4 成對T檢定(Pair T-test) 62
4.3.5 無母數單因子分析(Nonparametric Statistics) 63
4.3.6 洞察報告分析結論 65
4.4 小結 65
4.5 微電影比賽後的討論 66
4.5.1 網路聲量面相比較 68
4.5.2 微電影賽後的影響 70
4.5.3 微電影賽後分析結論 75
第五章 結論 77
參考文獻 79
附錄 86
常態檢定 86
T檢定 87
無母數分析 88
線性迴歸 89
參考文獻
Appiah, O. (2006). Rich Media, poor Media: The Impact of Audio/Video vs. Text/Picture Testimonial Ads on Browsers' Evaluations of Commercial Web Sites and Online Products. Journal of Current Issues & Research in Advertising, 28(1), 73-86.
Bakhshandeh, R., Samadi, M., Azimifar, Z., & Schaeffer, J. (2011). Degrees of Separation in Social Networks. In Fourth Annual Symposium on Combinatorial Search.
Bambauer-Sachse, S., & Mangold, S. (2011). Brand Equity Dilution Through Negative Online Word-of-Mouth Communication. Journal of Retailing and Consumer Services, 18(1), 38-45.
Biocca, F. (1997). The Cyborg's Dilemma: Progressive Embodiment in Virtual Environments. Journal of computer-mediated communication, 3(2), JCMC324.
Bradley, A. P. (1997). The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning Algorithms. Pattern recognition, 30(7), 1145-1159.
Chaiken, S., & Eagly, A. H. (1983). Communication Modality as a Determinant of Persuasion: The Role of Communicator Salience. Journal of personality and social psychology, 45(2), 241.
Chang, H. W., Gao, Z. M., & Liu, C. L. (2005). A Preliminary Study on Chinese Base NP Detection using SVM. In Proceedings of the 17th Conference on Computational Linguistics and Speech Processing, 317-331.
Chang, J. K., Hsu, W. Y., Chen, T. C., & Hsu, H. H. (2016, July). Identification of Negative Comments on Internet Forums. In 2016 10th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), IEEE, 435-439.
Chen, H., Papazafeiropoulou, A., Chen, T.-K., Duan, Y., & Liu, H.-W. (2014). Exploring the Commercial Value of Social Networks: Enhancing Consumers’ Brand Experience Through Facebook pages. Journal of Enterprise Information Management, 27(5), 576-598.
Chen, T., & Chang, H.-C. (2017). The Effect of Narrative Transportation in Mini-Film Advertising on Reducing Counterarguing. International Journal of Electronic Commerce Studies, 8(1), 25-46.
Chen, T., & Lee, H.-M. (2014). Why Do We Share? The Impact of Viral Videos Dramatized to Sell: How Microfilm Advertising Works. Journal of Advertising Research, 54(3), 292-303.
Chou, Y. C., Chao, C. Y., & Yu, H. Y. (2019, February). A R#westeur042#sum#westeur042# Evaluation System Based on Text Mining. In 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), IEEE, 52-57.
Church, M., & Salam, A. F. (2010). Facebook, The Spice of Life?, ICIS, 212.
Churpek, M. M., Yuen, T. C., Winslow, C., Meltzer, D. O., Kattan, M. W., & Edelson, D. P. (2016). Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards. Critical Care Medicine, 44(2), 368.
Cooper, W. W., Seiford, L. M., & Tone, K. (2000). Data Envelopment Analysis. Handbook on Data Envelopment Analysis, 1st ed.; Cooper, WW, Seiford, LM, Zhu, J., Eds, 1-40.
Coyle, J. R., & Thorson, E. (2001). The Effects of Progressive Levels of Interactivity and Vividness in Web Marketing Sites. Journal of advertising, 30(3), 65-77.
Edunov, S., Diuk, C., Filiz, I. O., Bhagat, S., & Burke, M. (2016). Three and a Half Degrees of Separation. Research at Facebook.
Facebook. (2019). Retrieved from https://www.facebook.com/business/help/638274812874211. (May 15,2019)
Feldman, R., & Sanger, J. (2007). The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data: Cambridge University Press.
Garraty, J. A. (1959). The Application of Content Analysis to Biography and History. Trends in Content Analysis, 171-187.
Gibbons, J. D., & Fielden, J. D. G. (1993). Nonparametric Statistics: An Introduction, Sage.
Glazer, H. (2012). “Likes” are Lovely, But Do They Lead to More Logins?: Developing Metrics for Academic Libraries’ Facebook Pages. College & Research Libraries News, 73(1), 18-21.
Guo, B., Geng, Y., Ren, J., Zhu, L., Liu, Y., & Sterr, T. (2017). Comparative Assessment of Circular Economy Development in China’s Four Megacities: The Case of Beijing, Chongqing, Shanghai and Urumqi. Journal of Cleaner Production, 162, 234-246.
Hennig, T., Malthouse, E. C., Friege, C., Gensler, S., Lobschat, L., Rangaswamy, A., & Skiera, B. (2010). The Impact of New Media on Customer Relationships. Journal of Service Research, 13(3), 311-330.
Houk, K. M., & Thornhill, K. (2013). Using Facebook Page Insights Data to Determine Posting Best Practices in an Academic Health Sciences Library. Journal of Web Librarianship, 7(4), 372-388.
Kelly, B., Vandevijvere, S., Freeman, B., & Jenkin, G. (2015). New Media But Same Old Tricks: Food Marketing To Children In The Digital Age. Current Obesity Reports, 4(1), 37-45.
Kuang, W. (2018). Social Media in China. London: Palgrave Macmillan.
Kudo, T., & Matsumoto, Y. (2001, June). Chunking with Support Vector Machines. In Proceedings of the Second Meeting of the North American Chapter of the Association for Computational Linguistics on Language technologies, 1-8. Association for Computational Linguistics.
Li, H., Daugherty, T., & Biocca, F. (2002). Impact of 3-D Advertising on Product Knowledge, Brand Attitude, and Purchase Intention: The Mediating Role of Presence. Journal of Advertising, 31(3), 43-57.
Lister, M., Giddings, S., Dovey, J., Grant, I., & Kelly, K. (2008). New Media: A Critical Introduction. Routledge.
Maghsoudi, M. (2012). Major Facebook Insights Changes You Need to Know About! PostRocket Blog. Postrocket. com.
Mathwick, C., Wiertz, C., & De Ruyter, K. (2007). Social Capital Production in a Virtual P3 Community. Journal of Consumer Research, 34(6), 832-849.
Mccormack, J. (2014). Brief: Make a Bigger Impact by Saying Less. John Wiley & Sons.
McDonald, J. H. (2009). Handbook of biological statistics (Vol. 2, pp. 6-59). Baltimore, MD: Sparky House Publishing.
Milgram, S. (1967). Six Degrees of Separation. Psychology Today, 2, 60-64.
Moore, R. E. (2003). From Genericide to Viral Marketing: on ‘Brand’. Language & Communication, 23(3-4), 331-357.
Nie, N. H. (2001). Sociability, Interpersonal Relations, and the Internet: Reconciling Conflicting Findings. American Behavioral Scientist, 45(3), 420-435.
Pagemodo. (2019). Retrieved from https://www.pagemodo.com/. (May 5,2019)
Parikh, D., & Menon, V. (2019). Machine Learning Applied to Cervical Cancer Data.
Pitman, E. J. (1937). Significance Tests Which May be Applied to Samples From Any Populations. Supplement to The Journal of the Royal Statistical Society, 4(1), 119-130.
Powers, D. M. (2011). Evaluation: From Precision, Recall and F-measure to ROC, Informedness, Markedness and Correlation.
Rao, M. B., & Sivakumar, S. (2017). Value Marketing Strategy for After Sales Service of Select White Goods Using the Value Gap Model: An Assessment of Consumers in Delhi and Mumbai, India. South Asian Journal of Management, 24(4), 122-141.
Shao, J., Li, X., Morrison, A. M., & Wu, B. (2016). Social Media Micro-Film Marketing by Chinese Destinations: The Case of Shaoxing. Tourism Management, 54, 439-451.
Shu, W., & Chuang, Y. H. (2011). The Perceived Benefits of Six-Degree-Separation Social Networks. Internet Research, 21(1), 26-45.
Stauss, B. (2000). Using New Media for Customer Interaction: A Challenge for Relationship Marketing. In Relationship Marketing, 233-253, Berlin: Springer.
Steuer, J. S. (1995). Vividness and Source of Evaluation As Determinants of Social Responses Toward Mediated Representations of Agency.
Sullivan, D. (2001). Document Warehousing and Text Mining: Techniques for Improving Business Operations, Marketing, and Sales, John Wiley & Sons.
Tang, L., Huang, Q., Puntambekar, A., Vigfusson, Y., Lloyd, W., & Li, K. (2017). Popularity Prediction of Facebook Videos for Higher Quality Streaming. In 2017 Annual Technical Conference, 111-123.
Vafeiadis, T., Diamantaras, K. I., Sarigiannidis, G., & Chatzisavvas, K. C. (2015). A Comparison of Machine Learning Techniques for Customer Churn Prediction. Simulation Modelling Practice and Theory, 55, 1-9.
Van Buskirk, E. (2010). Gaming the System: How Marketers Rig the Social Media Machine. Wired. com, Retrieved on, 21.
Watts, D. J., Dodds, P. S., & Newman, M. E. (2002). Identity and Search in Social Networks. Science, 296(5571), 1302-1305.
Winer, R. S. (2001). A Framework for Customer Relationship Management. California Management Review, 43(4), 89-105.
Yang, H.-f., Chen, M.-l., & Zhen, Z. (2017). Analysis on Applicability of Common Chinese Word Segmentation Software in Literature Study of Traditional Chinese Medicine Text. DEStech Transactions on Computer Science and Engineering.
Ye, Z., & Zhong, Y. (2003). The Method Choice of Multi Index Quality Synthetic Evaluations. Zhejiang Statistics, 4(3), 24-25.
Zhang, Y. (2015). An Introduction to Python and Computer Programming. In An Introduction to Python and Computer Programming, 1-11, Springer.
Zhao, Y. (2018). The Analysis of Web Page Information Processing Based on Natural Language Processing. Paper presented at the 2018 International Symposium on Communication Engineering & Computer Science (CECS 2018).
Zheng, C., He, G., & Peng, Z. (2015). A Study of Web Information Extraction Technology Based on Beautiful Soup. JCP, 10(6), 381-387.
Zhou, T. (2012). Understanding Users’ Initial Trust in Mobile Banking: An Elaboration Likelihood Perspective. Computers in Human Behavior, 28(4), 1518-1525.
于重重, 操镭, 尹蔚彬, 张泽宇, & 郑雅. (2017). 吕苏语口语标注语料的自动分词方法研究. 计算机应用研究, 34(5), 1325-1328.
王长武. (2011). 微电影的传播特征與市场前景展望. 中国电影市场, 9, 23-24.
冯志伟. (1996). 自然语言的计算机处理: 上海外语敎育出版社.
吳學展. (2015). 解構 PTT:有自己的法律、法院和貨幣,沒被臉書淘 汰的 PTT 是臺灣民主化的重要推手. Retrieved from https://buzzorange.com/2015/11/12/ptt/. (May 10, 2019)
林思平. (2017). 網路八卦與真理政治: 批踢踢八卦板之閱聽人研究. 新聞學研究(133), 135-188.
苏金树, 张博锋, & 徐昕. (2006). 基于机器学习的文本分类技术研究进展.
陳怡廷, & 欒錦榮. (2012). 自然語言處理在口碑研究的應用. 中華傳播學刊(22), 259-289.
舒翔. (2013). 基于随机森林的目标跟踪算法研究 [D]. 合肥工业大学,
董师师, & 黄哲学. (2013). 随机森林理论浅析. 集成技术, 2(1), 1-7.
赖文辉, & 乔宇鹏. (2018). 基于词向量和卷积神经网络的垃圾短信识别方法. 计算机应用, 0-0.
蔡鑫, & 娄京生. (2017). 基于 LSTM 深度学习模型的中国电信官方微博用户情绪分析. 电信科学, 33(12), 136-141.
顏楷霖. (2018). 機器學習應用於試題之標記與分類. 臺灣大學生物產業機電工程學研究所學位論文, 1-70.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top