中文文獻
[1]. 王韋翔(2018),深度學習結合基因演算法在遊戲App的生命週期預測,元智大學,碩士論文英文文獻
[1.] Arabian-Hoseynabadi, H., Oraee, H., & Tavner, P. J. (2010). Failure modes and effects analysis (FMEA) for wind turbines. International Journal of Electrical Power & Energy Systems, 32(7), 817-824.
[2.] Aung, Y. Y., & Min, M. M. (2018, June). Hybrid Intrusion Detection System Using K-Means and Classification and Regression Trees Algorithms. In 2018 IEEE 16th International Conference on Software Engineering Research, Management and Applications (SERA) (pp. 195-199). IEEE.
[3.] Banik, P. P., Saha, R., & Kim, K. D. (2019, February). Fused Convolutional Neural Network for White Blood Cell Image Classification. In 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 238-240). IEEE.
[4.] Batayev, N. Gas Turbine Fault Classification Based on Machine Learning Supervised TechniQues. In 2018 14th International Conference on Electronics Computer and Computation (ICECCO) (pp. 206-212). IEEE.
[5.] Bâlc, C., Cretu, A., Iudean, D., Laslo, H., Enyedi, S., & Munteanu, R. (2018, May). Failure modes and effects analysis for an automatic level control system. In 2018 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR) (pp. 1-6). IEEE.
[6.] Bowles, J. B., & Peláez, C. E. (1995). Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis. Reliability Engineering & System Safety, 50(2), 203-213.
[7.] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
[8.] Carazas, F., & De Souza, G. (2009). Availability analysis of gas turbines used in power plants. International journal of Thermodynamics, 12(1), 28-37.
[9.] Carazas, F. J. G., Salazar, C. H., & Souza, G. (2011). Availability analysis of heat recovery steam generators used in thermal power plants. Energy, 36(6), 3855-3870.
[10.] Chiu, C., Ku, Y., Lie, T., & Chen, Y. (2011). Internet auction fraud detection using social network analysis and classification tree approaches. International Journal of Electronic Commerce, 15(3), 123-147.
[11.] Choubin, B., Moradi, E., Golshan, M., Adamowski, J., Sajedi-Hosseini, F., & Mosavi, A. (2019). An Ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of the Total Environment, 651, 2087-2096.
[12.] Feili, H. R., Akar, N., Lotfizadeh, H., Bairampour, M., & Nasiri, S. (2013). Risk analysis of geothermal power plants using Failure Modes and Effects Analysis (FMEA) techniQue. Energy Conversion and Management, 72, 69-76.
[13.] Ho, T. K. (1995, August). Random decision forests. In Proceedings of 3rd international conference on document analysis and recognition (Vol. 1, pp. 278-282). IEEE.
[14.] Jearaphun, P., & Tangjitsitcharoen, S. (2018). Reduction of Breakdown for Gas Turbine in Combined Cycle Power Plant. International Journal of Mechanical Engineering and Robotics Research, 7(6).
[15.] Karimi, F., Sultana, S., Babakan, A. S., & Suthaharan, S. (2019). An enhanced support vector machine model for urban expansion prediction. Computers, Environment and Urban Systems, 75, 61-75.
[16.] Li, X., Xi, H., Zhou, C., Gu, W., & Gao, T. (2018, October). Damage Degree Identification of Crane Girder Based on the Support Vector Machine. In 2018 Prognostics and System Health Management Conference (PHM-ChongQing) (pp. 920-924). IEEE.
[17.] Moazzen, Y., Çapar, A., Albayrak, A., Çalık, N., & Töreyin, B. U. (2019). Metaphase finding with deep convolutional neural networks. Biomedical Signal Processing and Control, 52, 353-361.
[18.] Noshad, Z., Javaid, N., Saba, T., Wadud, Z., Saleem, M. Q., Alzahrani, M. E., & Sheta, O. E. (2019). Fault Detection in Wireless Sensor Networks through the Random Forest Classifier. Sensors, 19(7), 1568.
[19.] Sarkar, A., Panja, S. C., & Das, D. (2015). Fault tree analysis of Rukhia gas turbine power plant. HKIE Transactions, 22(1), 32-56.
[20.] Sharma, R. K., Kumar, D., & Kumar, P. (2005). Systematic failure mode effect analysis (FMEA) using fuzzy linguistic modelling. International Journal of Quality & Reliability Management, 22(9), 986-1004.
[21.] Shipway, N. J., Barden, T. J., Huthwaite, P., & Lowe, M. J. S. (2019). Automated defect detection for fluorescent penetrant inspection using random forest. NDT & E International, 101, 113-123.
[22.] Xu, K., Tang, L. C., Xie, M., Ho, S. L., & Zhu, M. L. (2002). Fuzzy assessment of FMEA for engine systems. Reliability Engineering & System Safety, 75(1), 17-29.
[23.] Yang, H. D., & Xu, H. (2011, March). Reliability analysis of Gas turbine based on the failure mode and effect analysis. In 2011 Asia-Pacific Power and Energy Engineering Conference (pp. 1-4). IEEE.
[24.] Vigueras Zuniga, M. O. (2007). Analysis of gas turbine compressor fouling and washing on line.
[25.] Martin Leduc. (2001). The Gas Turbine. Retrieved from http://www.dieselduck.info/machine/01%20prime%20movers/gas_turbine/gas_turbine.htm (May 15,2019)