|
1. G. Kotsovolis and G. Komninos, “Awareness during anesthesia: how sure can we be that the patient is sleeping indeed?” Hippokratia, 2009, 13: 83–9. 2. A. Petsiti, V. Tassoudis, G. Vretzakit, D. Zacharoulis, K. Tepetes, G. Ganeli, et al. “Depth of anesthesia as a risk factor for perioperative morbidity,” Anesthesiol Res Pract, 2015,2015:829151. 3. J. C. Drummond, C. A. Brann, D. E. Perkins, and D. E. Wolfe, “A comparison of median frequency, spectral edge frequency, a frequency band power ratio, total power, and dominance shift in the determination of depth of anesthesia,” Acta Anaesthesiologica Scandinavica, 1991, 35(8), 693-699. 4. C. D. Kent, and K. B. Domino, “Depth of anesthesia,” Curr Opin Anaesthesiol, 2009, 22(6), 782-787. 5. M. Jeanne, R. Logier, J. D. Jonckheere and B. Tavernier, “Heart rate variability during total intravenous anesthesia: effects of nociception and analgesia,” Autonomic Neuroscience, 2009, 147(1), 91-96. 6. C. J. Pomfrett, S. Dolling, N. R. Anders, D. G. Glover, A. Bryan, and B. J. Pollard, “Delta sleep-inducing peptide alters bispectral index, the electroencephalogram and heart rate variability when used as an adjunct to isoflurane anesthesia,” European Journal of Anaesthesiology (EJA), 2009, 26(2), 128-134. 7. J. Bruhn, H. R#westeur055#pcke, and A. Hoeft, “Approximate entropy as an electroencephalographic measure of anesthetic drug effect during anesthesia,” Anaesthesiology 2000, 92, pp.715–726. 8. H. Vierti#westeur055#-Oja, V. Maja, M. S#westeur037#rkel#westeur037#, P. Talja, N. Tenkanen, H. Tolvanen-Laakso, M. Paloheimo, A. Vakkuri, A. Yli-Hankala, and P. Meril#westeur037#inen, “Description of the Entropy™ algorithm as applied in the Datex-Ohmeda S/5™ entropy module Acta Anaesthesiol,” Scand, 2004, 48, pp.154–61. 9. J.C. Sigl, and N.G. Chamoun, “An introduction to bispectral analysis for the electroencephalogram,” Journal of Clinical Monitoring, vol. 10, no. 6, 1994, pp.392–404. 10. L. C. Jameson and T. B. Sloan, “Using EEG to monitor anesthesia drug effects during surgery,” Journal of clinical monitoring and computing, 2006, 20(6), 445-472. 11. S.A. Taywade and R.D. Raut, “A review: EEG signal analysis with different methodologies,” in Proceedings of the National Conference on Innovative Paradigms in Engineering and Technology (NCIPET ’12), 2014, pp.29–31. 12. K. Kuizenga, JM. Wierda, and CJ. Kalkman, “Biphasic EEG changes in relation to loss of consciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane,” Br J Anaesth, 2001, 86, pp.354–360. 13. B. Boashash, M. Mesbah, and P. Golditz, “Time-Frequency Detection of EEG Abnormalities,” Amsterdam, The Netherlands: Elsevier, 2003, pp.663–669, ch15. 14. G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science Magazine, 2006, vol. 313, pp. 504-507. 15. L. Wei, Y. Lin, J. Wang, and Y. Ma, “Time-frequency convolutional neural network for automatic sleep stage classification based on single-channel EEG,” in 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), 2017, pp. 88–95. 16. H. Adeli, “Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals,” Comput. Biol. Med., Sep. 2017, vol. 100, pp. 270–278. 17. S. Tripathi, S. Acharya, R.D. Sharma, S. Mittal, and S. Bhattacharya, “Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset,” in Proc. IAAI, 2017, pp.4746–4752. 18. Z. Tang, C. Li, and S. Sun, “Single-trial EEG classification of motorimagery using deep convolutional neural networks,” Optik Int JLight Electron Opt, 2017, 130:11–18.
|