|
[1] 吳侑霖, “以深度學習結合影像分類實現自動駕駛系統,” 元智大學通訊工程學 系學位論文, 2018. [2] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classification using binary convolutional neural networks,” European Conference on Computer Vision, 2016. [3] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding,” arXiv preprint arXiv:1510.00149, 2015. [4] M. Courbariaux, I. Hubara, D. Soudry, and Y. B. Ran El-Yaniv, “Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or -1,” arXiv:1602.02830, 2016. [5] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients,” arXiv:1606.06160, 2016. [6] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta, and Z. Zhang, “Accelerating binarized convolutional neural networks with software-programmable fpgas,” Int’l Symp. on Field-Programmable Gate Arrays (FPGA), 2017. [7] Umuroglu, Yaman, Fraser, N. J, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vissers, “FINN: A Framework for Fast, Scalable Binarized Neural Network Inference, journal = Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, year = 2017, publisher = ACM,.” [8] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing fpgabased accelerator design for deep convolutional neural networks,” In Proc. ACM/SIGDA ISFPGA, 2015. 47 [9] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann: An ultra-low power convolutional neural network accelerator based on binary weights,” CoRR,abs/1606.05487, 2016. [10] H. Alemdar, N. Caldwell, V. Leroy, A. Prost-Boucle, and F. Petrot, “Ternary neural networks for resource-efficient ai applications,” CoRR,abs/1609.00222, 2016. [11] SI.Venieris and C.-S. Bouganis, “fpgaconvnet: A framework for mapping convolutional neural networks on fpgas,” 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2016. [12] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “Cnp:an fpga-based processor for convolutional networks,” IEEE, 2009. [13] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. Andreopoulos, D. J. Berg, J. L.McKinstry, T. Melano, D. R. Barch, and et al, “Convolutional networks for fast, energy-efficient neuromorphic computing,” CoRR, abs/1603.08270, 2016.
|