( 您好!臺灣時間:2024/05/22 16:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Rapid screening technology combined with image processing softwares and smartphone APP for quantitative detection of melamine and pesticides
外文關鍵詞:lateral flow immunochromatographysmart phonecolorimetric methodrapid test stripmelaminecarbofuran
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
相較於傳統檢測模式(化學檢驗法及生化檢驗法),本研究開發了一種簡單操作、低成本、便於攜帶,智慧型手機化學分析APP之三聚氰胺及加保扶農藥即時檢測的比色傳感器、執行比色法並與相關軟體作比較。對三聚氰胺快篩試片以ImageJ軟體分析光密度檢測極限為0.40 ppm,而化學分析APP分析RGB值檢測極限為0.07 ppm;農藥快篩試片以加保扶為檢測樣品,以Photoshop軟體分析RGB值檢測極限為0.020 ppm,而化學分析APP分析RGB值檢測極限為0.018 ppm;其檢測極限均低於衛福部所訂定殘留容許量之標準,且手機化學分析APP具即時檢測及資訊傳輸處理之特性,可應用於食品安全、環境監測及國防安全等領域。

Pesticide residues are often found in agricultural products, and their toxicity, whether acute, long-term or chronic, has a great impact on both humans and the environment. Common pesticide residues often found to exceed the maximum residue levels (MRLs) include carbofuran, fipronil, profenofos, dimethomorph, oxamyl and carbendazim. In addition, unscrupulous food manufacturers have added melamine to milk powder, food, and animal feed in the past, causing serious food safety incidents. For the detection of pesticide or melamine residues, traditional chemical analysis can achieve accurate readings, but expensive equipment operated by well-trained personnel is required, and the process is time-consuming. Qualitative analysis, on the other hand, is simpler, quicker, and does not require professional personnel, being able to be used by anyone; however, it cannot be used for quantitative analysis.
In comparison with conventional detection methods (chemical and biochemical), we developed an easy-to-use, low-cost, portable chemical analysis device that runs using a smart phone App. This tool can perform colorimetric measurement to detect toxic substances in real time. In this study, we tested melamine and carbofuran as the target toxic agents, and used imaging software to determine the sensitivity of our device. For melamine, the rapid test strip analyzed by ImageJ was identified to have an optical density detection limit of 0.40 ppm, and the RGB value detection limit of the chemical analysis App was found to be 0.07 ppm. For carbofuran, Photoshop identified that the strip had an optical density detection limit of 0.020 ppm, and the RGB value detection limit of the App was found to be 0.018 ppm. These detection limits are all below the MRLs set by the Ministry of Health and Welfare of Taiwan, and the chemical analysis App can be used in the areas of food safety, environmental monitoring, and defense security.

謝辭 ii
摘要 iii
目錄 vi
表目錄 ix
圖目錄 x
1. 緒論 1
1.1 前言 1
1.2 研究動機及目的 1
1.3 研究方法 3
2. 文獻回顧 4
2.1 三聚氰胺及農藥殘留影響概述 4
2.2 三聚氰胺及農藥殘留檢測分析方法概述 5
2.3 比色法 6
2.3.1 比色法理論概述 6
2.3.2 比色法結合檢測技術之應用 8
2.3.3 固定光源及暗箱之應用 17
2.3.4 比色法結合智慧型手機檢測技術之應用 21
2.4 檢測極限概述 28
2.4.1 光密度分析檢測極限概述 28
2.4.2 比色法分析檢測極限概述 31
3. 實驗 35
3.1 實驗材料 35
3.2 實驗儀器與分析軟體 35
3.3 實驗步驟 36
3.3.1 手機拍照條件設定 36
3.3.2 不同環境光源下拍照 36
3.3.3 拍照環境設計 37
3.3.4 化學分析APP設計 37
3.3.5 三聚氰胺定量檢測 38
3.3.6 加保扶定量檢測 40
3.3.7 模擬樣品檢測 41
4. 結果與討論 43
4.1 不同環境光源下相對光密度分析 43
4.2 自製暗箱及光源優化分析 44
4.3 化學分析APP開發 47
4.4 三聚氰胺定量分析 52
4.5 加保扶定量分析 56
4.6 模擬樣品分析 61
5. 結論 64
參考文獻 66
自傳 70


[1] https://zh.wikipedia.org/wiki/三聚氰胺/三聚氰胺甲醛樹酯
[2] 衛生福利部,食品安全政策白皮書2016-2020,2016。
[3] https://zh.wikipedia.org/wiki/三聚氰胺
[4] 吳建志,2014,簡介動物農藥中毒的禍首-加保扶(carbofuran),獸醫專訊,第9期,第27-31頁。
[5] https://zh.wikipedia.org/wiki/比爾-朗伯定律
[6] https://kknews.cc/zh-tw/news/9z8vxpl.html.
[7] Afonso Filipe João, André Luiz Squissato, Gabriel M. Fernandes, Rafael M. Cardoso, Alex D. Batista, and Rodrigo A.A. Muñoz, 2019, “Iron (III) determination in bioethanol fuel using a smartphone-based device”, Microchemical Journal, Vol. 146, pp. 1134-1139.
[8] Zhai Xiaodong, Li Zhihua, Shi Jiyong, Huang Xiaowei, Sun Zongbao, Zhang Di, Zou Xiaobo, Sun Yue, Zhang Junjun, Melvin Holmes, Gong Yunyun, Megan Povey, and Wang Shaoyun, 2019, “A colorimetric hydrogen sulfide sensor based on gellan gum-silver nanoparticles bionanocomposite for monitoring of meat spoilage inintelligent packaging”, Food Chemistry, Vol. 290, pp. 135-143.
[9] Li Hongxia, Yan Xu, Lu Geyu, and Su Xingguang, 2018, “Carbon dot-based bioplatform for dual colorimetric and fluorometricsensing of organophosphate pesticides”, Sensors and Actuators B: Chemical, Vol. 260, pp. 563-570.
[10] D. Nanda Kumar, Kumar, J. Satija, N. Chandrasekaran, and A. Mukherjee, 2018, “Acetylcholinesterase-based inhibition screening through in situ synthesisof gold nanoparticles: Application for detection of nerve agent simulant”, Journal of Molecular Liquids, Vol. 249, pp. 623-628.
[11] Muhammad Shar Jhahan Khan, Wang Ya-Wen, Mathias O. Senge, and Peng Yu, 2018, “Sensitive fluorescence on-off probes for the fast detection of achemical warfare agent mimic”, Journal of Hazardous Materials, Vol. 342, pp. 10-19.
[12] Heo Gisu, Ramalingam Manivannan, Kim Hyorim and Son Young-A, 2019, “Liquid and gaseous state visual detection of chemical warfare agent mimic DCP by optical sensor”, Dyes and Pigments, Vol. 171, pp. 107712.
[13] Chen Gang, Fang Can, Chai Hui Hui, Zhou Ying, Li Wan Yun and Yua Ling, 2019, “Improved analytical performance of smartphone-based colorimetric analysisby using a power-free imaging box”, Sensors and Actuators B: Chemical, Vol. 281, pp. 253-261.
[14] Xiao Wei, Huang Caihong, Xu Fei, Yan Junjie, Bian Hongfen, Fu Qiangqiang, Xie Kaixin, Wang Lei and Tanga Yong, 2018, “A simple and compact smartphone-based device for the quantitative readout of colloidal gold lateral flow immunoassay strips”, Sensors and Actuators B: Chemical, Vol. 266, pp. 63-70.
[15] Yang Jung-Sik, Shin Joonchul, Choi Seoyeon, and Jung Hyo-Il, 2017, “Smartphone Diagnostics Unit (SDU) for the assessment of humanstress and inflammation level assisted by biomarker ink, fountain pen, and origami holder for strip biosensor”, Sensors and Actuators B: Chemical, Vol. 241, pp. 80-84.
[16] Choi Seoyeon, Kim Soocheol, Yang Jung-Sik, Lee Jung-Hyun, Joo Chulmin, and Jung Hyo-Il, 2014, “ Real-time measurement of human salivary cortisol for the assessment of psychological stress using a smartphone”, Sensing and Bio-Sensing Research, Vol. 2, pp. 8-11.
[17] Ali K. Yetisena, J.L. Martinez-Hurtado, Angel Garcia-Melendrez, Fernando da Cruz Vasconcellos and Christopher R. Lowe, 2014, “A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests”, Sensors and Actuators B: Chemical, Vol. 196, pp. 156-160.
[18] Clemence Sicard, Chad Glen, Brandon Aubie, Dan Wallace, Sana Jahanshahi-Anbuhi, Kevin Pennings, Glen T. Daigger, Robert Pelton, John D. Brennan and Carlos D.M. Filipe, 2015, “Tools for water quality monitoring and mapping using paper-based sensors and cell phones”, Water Research, Vol. 70, pp. 360-369.
[19] Yang Xin, Wang Yanru, Liu Wei, Zhang Yuhuan, Zheng Fangqing, Wang Shuaixing, Zhang Daohong and Wang Jianlong, 2016, “ A portable system for on-site quantification of formaldehyde in air based on G-quadruplex halves coupled with A smartphone reader”, Biosensors and Bioelectronics, Vol. 75, pp. 48-54.
[20] Hou Yafei, Wang Kan, Xiao Kun, Qin Weijian, Lu Wenting, Tao Wei and Cui Daxiang, 2017, “ Smartphone-Based Dual-Modality Imaging System for Quantitative Detection of Color or Fluorescent Lateral Flow Immunochromatographic Strips”, Nanoscale Research Letters, Vol. 12, pp. 1-13.
[21] Cao Yuanyuan, Liu Yingnan, Li Fan, Guo Shuwen, Shui Yuhang, Xue Hanyue, and Wang Li, 2019, “ Portable colorimetric detection of copper ion in drinking water via red beetpigment and smartphone”, Microchemical Journal, Vol. 150, pp. 104176.
[22] Noppharat Phadungcharoena, Prasopchai Patrojanasophon, Praneet Opanasopit, Tanasait Ngawhirunpat, Akhayachatra Chinsriwongkul, and Theerasak Rojanarata, 2019, “ Smartphone-based Ellman’s colourimetric methods for the analysis of Dpenicillamine formulation and thiolated polymer”, International Journal of Pharmaceutics, Vol. 558, pp. 120-127.
[23] Zhang G., Wang X., Zhi A., Bao Y., Yang Y., Qu M., Luo J., Li Q., Guo J., Wang Z., Yang J., Xing G., Chai S., Shi T., and Liu Q., 2008, “Development of a Lateral Flow Immunoassay Strip for Screening of Sulfamonomethoxine Residues”, Food Additives and Contaminants, Vol. 25(4), pp. 413-423.
[24] Liu Chunyan, Jia Qiaojuan, Yang Chunhui, Qiao Ruirui, Jing Lihong, Wang Libing, Xu Chuanlai, and Gao Mingyuan, 2011, “Lateral Flow Immunochromatographic Assay for Sensitive Pesticide Detection by Using Fe3O4 Nanoparticle Aggregates as Color Reagents”, Anal.Chem, Vol. 83(17), pp. 6778-6784.
[25] Amirmostafa Amirjani and Davoud Haghshenas Fatmehsari, 2018, “ Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles”, Talanta, Vol. 176, pp. 242-246.
[26] Fu Qiangqiang, Zhang Chunlei, Xie Jun, Li Zhaohui, Qu Lingbo, Cai Xiaoli, Ouyang Hui, Song Yang, Du Dan, Lin Yuehe, and Tang Yong, 2019, “ Ambient light sensor based colorimetric dipstick reader for rapid monitoring organophosphate pesticides on a smart phone”, Analytica Chimica Acta, Vol. 1092, pp. 126-131.
[27] https://www.fda.gov.tw/TC/siteListContent.aspx?sid=103&id=8406
[28] https://sheethub.com/data.fda.gov.tw/農藥殘留容許量標準_農藥殘留容許量標準/i/100/加保扶

第一頁 上一頁 下一頁 最後一頁 top