跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 03:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉信宏
研究生(外文):LIU, XIN-HUNG
論文名稱:海綿石墨烯/磁性粉體複合物製備與應用於煙幕干擾紅外線/毫米波之研究
論文名稱(外文):Preparation of Sponge Graphene / Magnetic Composite and Application in Smoke Screen Interfering with Infrared / Millimeter Wave
指導教授:吳國輝吳國輝引用關係
指導教授(外文):WU, GUO-HUI
口試委員:吳國輝賴耀祥汪成斌胡國瑞王哲釧
口試委員(外文):WU, GUO-HUILai Yew-ShyangWANG, CHEN-BINHu, Kuo-JuiWang Je-Chung
口試日期:2020-05-14
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:83
中文關鍵詞:還原氧化石墨烯Fe3O4毫米波
外文關鍵詞:reduced graphene oxideFe3O4millimeter wave
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用改良式悍馬法(Hummers)、共沉澱法及低溫水熱還原的方式製備氧化石墨烯(GO)、四氧化三鐵(Fe3O4),及還原氧化石墨烯(rGO),並將四氧化三鐵(Fe3O4)插層於還原氧化石墨烯(rGO)中。透過FT-IR、XRD、Raman、TEM、VSM及XPS等儀器進行檢測,探究複合物微觀結構、磁性能、元素變化及官能基的相互作用,確認成功還原及插層,製備出具有磁性之還原氧化石墨烯/四氧化三鐵(rGO/Fe3O4)複合物,最後透過冷凍乾燥技術,形成具有海綿形狀之還原氧化石墨烯/四氧化三鐵(rGO/Fe3O4)複合物。
利用製備不同比例之rGO/Fe3O4(1:1、1:2、2:1)複合物,混摻矽橡膠(RTV-615)製成毫米波吸收膠片(15×15×0.2 cm3),研究內容不同介質及材料比例之電磁吸收特性。同時,也製備PE膠片(15×15×0.1 cm3)及動態煙箱,測試其在紅外線熱顯像儀下遮蔽熱源成像情形。結果表明,rGO/Fe3O4複合物有很好的電磁波吸收及紅外線屏蔽效能,形成具有良好的光譜遮蔽性能。此複合材料除了可強化抗紅外線遮蔽效果,並具有毫米波干擾效能外,亦可作為干擾紅外線/毫米波的煙幕材料或吸收材料。
In this study, graphene oxide (GO), triiron tetroxide (Fe3O4), and reduced graphene oxide (rGO) were prepared by the modified Hummers method, co-precipitation method and low-temperature hydrothermal synthesis, and an intercalating hybrid of sandwich-like rGO/Fe3O4 was created. FT-IR, XRD, Raman, TEM, VSM and XPS were used to investigate the microstructure, magnetic properties, elemental changes, and functional group interactions of the compound. The analysis results confirmed successful reduction and intercalation, and a magnetic rGO/Fe3O4 compound was generated. Freeze-drying revealed a sponge-shaped compound.
Next, hybrid composites with different ratios of rGO/Fe3O4 (1:1, 1:2, 2:1) were prepared and mixed with silicone rubber compound RTV-615 to produce millimeter-wave-absorbing films (15 × 15 × 0.2 cm3), and their electromagnetic absorption properties were studied. Additionally, PE film (15 × 15 × 0.1 cm3) was prepared, and dynamic smoke pattern testing was performed using a thermal imager to analyze the shielding effect on the heat source. The results showed that the rGO/Fe3O4 composites had an excellent electromagnetic wave absorption and infrared shielding efficiency, suggesting that the composites have good spectral masking properties. In addition to enhancing the infrared shielding and millimeter wave interference properties, the composites could be prepared as new materials for obscuring infrared and millimeter waves.

誌謝
摘要
Abstract
目錄
表目錄
圖目錄
1.緒論
1.1 前言
1.2 研究動機
1.3 研究目的
1.3.1 吸收頻段寬頻化
1.3.2 厚度薄重量輕
1.3.3 吸收性能強
2.文獻回顧
2.1 石墨烯簡介
2.1.1 石墨烯的特性
2.1.2 石墨烯的製備
2.2 還原氧化石墨烯/磁性粉體的發展與應用
2.2.1 還原氧化石墨烯/Fe3O4製備與吸波性能
2.2.2 石墨烯/其他材料製備與吸波性能
3.實驗
3.1 實驗藥品與材料
3.2 實驗儀器及裝置
3.3 實驗製備流程及步驟
3.3.1 氧化石墨烯(1 克)製備
3.3.2 四氧化三鐵(1 克)製備
3.3.3 還原氧化石墨烯/四氧化三鐵水凝膠製備
3.3.4 聚乙烯(PE)複合遮蔽膠片製備
3.3.5 矽橡膠(RTV)複合遮蔽膠片製備
3.3.6 煙箱測試製備
3.4 實驗量測方法
3.4.1 紅外線熱成像量測
3.4.2 電磁波吸收原理及測試方法
4.結果與討論
4.1rGO/Fe3O4 特徵分析
4.1.1 TEM 分析
4.1.2 VSM 分析
4.1.3 XRD 分析
4.1.4 Raman 分析
4.1.5 FT-IR 分析
4.1.6 XPS 分析
4.2 紅外線熱成像測試分析
4.2.1 靜態膠片測試
4.2.2 動態煙箱測試
4.3 微波反射損失測試分析
5.結論
參考文獻
自傳
[1]蘇紫雲、曾怡碩,2018,“2018 國防科技趨勢評估報告”,財團法人國防安全研究院,台灣,第61頁。
[2]洪御祥,2019,“海軍電子戰戰術戰法研討-以未來整備方向為例”,海軍學術雙月刊,第53卷,第2期,台灣,第69-86頁。
[3]王洋、張景旭、郭勁,2006,“光電對抗技術”,紅外與激光工程,第35卷,增刊,第164-168頁。
[4]孟建華、楊桂琴、嚴樂美、王秀宇,2004,“吸波材料研究進展”,磁性材料及器件,第35卷,第4期,第11-14頁。
[5]鄒振寧、冷鋒、周云,2004,“光電對抗技術和裝備現狀評析”,電光與控制,第11卷,第3期,第30-34頁。
[6]呂興軍、武應瑞、李航、李威,2018,“基於石墨烯吸波材料的研究進展”,材料科學,第8卷,第3期,第222-234頁。
[7]郭小芳、王長征、吳世洋,2010,“吸波材料的研究現狀與發展趨勢”,甘肅冶金,第32卷,第4期,第47-52頁。
[8]張衛東、馮小雲、孟秀蘭,2000,“國外隱身材料研究進展”,宇航材料工藝,第3期,第1-10頁。
[9]徐洪敏、鄭威、王小兵、齊燕燕,2014,“雷達吸波結構材料及新型吸收劑的研究進展”,宇航材料工藝,第6期,第1-4頁。
[10]姚中、姚麗姜、虞維揚,2004,“吸波材料的發展與應用”,上海鋼研,第4期。
[11]胡耀娟、金娟、張卉、吳萍、蔡稱心,2010,石墨烯的製備、功能化及在化學中的應用,物理化學學報,第26卷,第8期,第2073-2086頁。
[12]Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S., 2010, “Graphene and Graphene Oxide Synthesis, Properties, and Applications”, Advanced Materials, Volume22, Issue35, pp. 3906-3924.
[13]楊全紅,2011,“夢想照進現實”—從富勒烯,碳納米管到石墨烯,新型炭材料,第26卷,第1期,第1-4頁。
[14]趙遠、黃偉九,2011,石墨烯及其複合材料的製備及性能研究進展,重慶理工大學學報(自然科學),第25卷,第7期,第64-70頁。
[15]李漢清、劉振宇、趙霞,2014,石墨烯技術產業現狀及發展建議,情報探索,第2期(總196 期),第52-56頁。
[16]Dacheng Wei, and Yunqi Liu, 2010, “Controllable Synthesis of Graphene and Its Applications”, Advanced Materials, Volume 22, Issue 30, pp. 3225-3241.
[17]Bonaccorso, F., Lombardo, A., Hasan, T., Sun, Z., Colombo, L., & Ferrari, A. C., 2012, “Production and processing of graphene and 2d crystals”, Materials Today, Volume 15, Issue 12, pp. 564-589.
[18]W. Kern and G.L. Schnable, 1979, “Low-Pressure Chemical Vapor Deposition for Very Large-Scale integration Processing-A Review”, IEEE Transactions on Electron Devices, Volume 26, Issue 4, pp. 647-657.
[19]任文才、高力波、馬來鵬、成會明,2011,石墨烯的化學氣相沉積法製備,新型炭材料,第26卷,第1期,第71-80頁。
[20]Li X, Cai W, Colombo L and, Ruoff RS, 2009, “Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling”, Nano Lett, Volume 9, Issue 12, pp. 4268-4272.
[21]Yu Lin Zhong, Zhiming Tian, George P. Simon and Dan Li, 2015, “Scalable production of graphene via wet chemistry: progress and challenge”, Materials Today, Volume 18, Number 2, pp. 73-78.
[22]Seung Ryul Na, Ji Won Suk, Li Tao, Deji Akinwande, Rodney S. Ruoff, Rui Huang, and Kenneth M, 2015, “Liechti Selective Mechanical Transfer of Graphene from Seed Copper Foil Using Rate Effects”, ACS Nano, Volume 9, Number 2, pp. 1325-1335.
[23]王霖,田林海,尉國棟,高鳳梅,鄭金桔,楊為佑,2011,石墨烯外延生長及其器件應用研究進展,無機材料學報,第26卷,第10期,第1009-1019頁。
[24]Walt A.de Heer, Claire Berger, Xiaosong Wu, Phillip N. First, Edward H. Conrad, Xuebin Li, Tianbo Li, Michael Sprinkle, Joanna Hass, Marcin L. Sadowski, Marek Potemski, and Gérard Martinez, 2007, “Epitaxial graphene”, Solid State Communications, Volume 143, Issues 1–2, pp. 92-100.
[25]Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS, 2006, “Graphene-based composite materials”, Nature, Volume 442, pp. 282-286.
[26]Paulchamy B, Arthi G and Lignesh BD, 2015, “A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial”, Journal of Nanomedicine & Nanotechnology, Volume 6, Issue 1, pp. 1-4.
[27]Ling Sun, Bunshi Fugetsu, 2013, “Mass production of graphene oxide from expanded graphite”, Materials Letters, Volume 109, pp. 207-210.
[28]William S. Hummers Jr. and Richard E. Offeman , 1958, “Preparation of Graphitic Oxide”, Journal of the American Chemical Society, Volume 80, Issue 6, pp. 1339-1339.
[29]Benjamin Collins Brodie, 1859, “On the atomic weight of graphite”, Royal Society, Volume 149, pp. 249-259.
[30]L. Staudenmaier, 1898, “Verfahren zur Darstellung der Graphitsäure”, European Journal of Inorganic Chemistry, Volume 31, Issue 2, pp.1481-1487.
[31]Hyeon‐Jin Shin, Ki Kang Kim, Anass Benayad, Seon‐Mi Yoon, Hyeon Ki Park, In‐Sun Jung, Mei Hua Jin, Hae‐Kyung Jeong, Jong Min Kim, Jae‐Young Choi and Young Hee Lee, 2009, “Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance”, Advanced Functional Materials, Volume19, Issue12, pp. 1987-1992.
[32]Peter Steurer, Rainer Wissert, Ralf Thomann and Rolf Mülhaupt, 2009, “Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide, Macromolecular Rapid Communications”, Special Issue: Dedicated to the 30th Anniversary of Macromolecular Rapid Communications, Volume30, Issue4‐5, pp. 316-327.
[33]Ming Zhou, Yuling Wang, Yueming Zhai, Junfeng Zhai, Wen Ren, Fuan Wang and Shaojun Dong Prof, 2009, “Controlled Synthesis of Large‐Area and Patterned Electrochemically Reduced Graphene Oxide Films”, Chemistry - A European Journal, Volume15, Issue25, pp. 6116-6120.
[34]https://www.researchgate.net/publication/313349881_shimoxicailiaojianjie20160420
[35]Yang, Y., Zhao, Y., Sun, S., Zhang, X., Duan, L., Ge, X., & Lü, W., 2016, “Self-assembled three-dimensional graphene/Fe3O4 hydrogel for efficient pollutant adsorption and electromagnetic wave absorption”, Materials Research Bulletin, Volume 73, pp. 401-408.
[36]Zhang, Q., Du, Z., Huang, X., Zhao, Z., Guo, T., Zeng, G., & Yu, Y., 2019, “Tunable microwave absorptivity in reduced graphene oxide functionalized with Fe3O4 nanorods”, Applied Surface Science, Volume 473, pp. 706-714.
[37]Liu, Y., Lu, M., Wu, K., Yao, S., Du, X., Chen, G., Zhang, Q., Liang, L. and Lu, M., 2019, “Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@Fe3O4”, Composites Science and Technology, Volume 174, pp. 1-10.
[38]Zheng, Y., Wang, X., Wei, S., Zhang, B., Yu, M., Zhao, W., & Liu, J., 2017, “ Fabrication of porous graphene-Fe3O4 hybrid composites with outstanding microwave absorption performance”, Composites: Part A, Volume 95, pp. 237-247.
[39]Sun Qilong, Sun Lei, Cai Yingying, Ye Wei, Xu Sijun, Ji Tao and Yuan Guoqiuc , 2019, “ Fe3O4-intercalated reduced graphene oxide nanocomposites with enhanced microwave absorption properties”, Ceramics International, Volume 45, Issue 15, pp. 18298-18305.
[40]Quan, L., Qin, F. X., Estevez, D., Wang, H., & Peng, H. X., 2017, “Magnetic graphene for microwave absorbing application: Towards the lightest graphene-based absorber”, Carbon, Volume 125, pp. 630-639.
[41]Zhu, L., Zeng, X., Li, X., Yang, B., & Yu, R., 2017, “Hydrothermal synthesis of magnetic Fe3O4/graphene composites with good electromagnetic microwave absorbing performances”, Journal of Magnetism and Magnetic Materials, Volume 426, pp. 114-120.
[42]Zhang, H., Hong, M., Chen, P., Xie, A., & Shen, Y., 2016, “3D and ternary rGO/MCNTs/Fe3O4 composite hydrogels: Synthesis, characterization and their electromagnetic wave absorption properties”, Journal of Alloys and Compounds, Volume 665, pp. 381-387.
[43]Yang, Y., Xia, L., Zhang, T., Shi, B., Huang, L., Zhong, B., Zhang, X., Wang, H., Zhang, J. and Wen, G., 2018, “Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance”, Chemical Engineering Journal, Volume 352, pp. 510-518.
[44]Song, C., Yin, X., Han, M., Li, X., Hou, Z., Zhang, L., & Cheng, L., 2017, “Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties”, Carbon, Volume 116, pp. 50-58.
[45]Luo, J., Shen, P., Yao, W., Jiang, C., & Xu, J., 2016, Synthesis, “Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites”, nanoscale Research Letters, pp. 1-14.
[46]Shu, R., Li, W., Zhou, X., Tian, D., Zhang, G., Gan, Y., Shi, J. and He, J., 2018,” Facile preparation and microwave absorption properties of RGO/MWCNTs/ZnFe2O4 hybrid nanocomposites”, Journal of Alloys and Compounds, Volume 743, pp. 163-174.
[47]Fan, Q., Zhang, L., Xing, H., Wang, H., & Ji, X., 2020, “Microwave absorption and infrared stealth performance of reduced graphene oxide-wrapped Al flake”, Journal of Materials Science Materials in Electronics, Volume 31, pp. 1-12.
[48]Ma, C., Yang, K., Wang, L. and Wang, X., 2017, “Facile synthesis of reduced graphene oxide/Fe3O4 nanocomposite film”, Journal of Applied Biomaterials & Functional Materials, 15(Suppl. 1).
[49]Jiaming Wu, Zhengmao Ye, Wenxiu Liu, Zhifang Liu and Juan Chen, 2017, “The effect of GO loading on electromagnetic wave absorption properties of Fe3O4/reduced graphene oxide hybrids”, Ceramics International, Volume 43, Issue 16, pp. 13031-14544.
[50]Liang, C.-L., Liu, Y., Bao, R.-Y., Luo, Y., Yang, W., Xie, B.-H. and Yang, M.-B., 2016, “Effects of Fe3O4 loading on the cycling performance of Fe3O4/rGO composite anode material for lithium ion batteries”, Journal of Alloys and Compounds, Volume 678, pp. 80–86.
[51]Madhuvilakku, R., Alagar, S., Mariappan, R. and Piraman, S., 2017, “Green one-pot synthesis of flowers-like Fe3O4/rGO hybrid nanocomposites for effective electrochemical detection of riboflavin and low-cost supercapacitor applications”, Sensors and Actuators B: Chemical, Volume 253, pp. 879-892.
[52]In Kyu Moon, Junghyun Lee, Rodney S. Ruoff and Hyoyoung Lee, 2010, “Reduced graphene oxide by chemical graphitization”, Nature Communications, Volume 1, Issue 6, pp. 1-6.
[53]Behzad Dehghanzad, Mir Karim Razavi Aghjeh, Omid Rafeie, Akram Tavakolic and Amin Jameie Oskooie, 2016, “Synthesis and characterization of graphene and functionalized graphene via chemical and thermal treatment methods”, RSC Advances, Volume 6, Issue 5, pp. 3578–3585.
[54]Huai-Liang Xu, Hong Bi, and Ruey-Bin Yang, 2012, “Enhanced microwave absorption property of bowl-like Fe3O4 hollow spheres/reduced graphene oxide composites”, Journal of Applied Physics, Volume 111, Issue 7.
[55]Wang, X., Liu, Y., Arandiyan, H., Yang, H., Bai, L., Mujtaba, J., Wang, Q., Liu, S., Sun, H., 2016, “Uniform Fe3O4 microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries”, Applied Surface Science, Volume 389, pp. 240-246.
[56]Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T. and Ruoff, R. S., 2007, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, Volume 45, Issue 7, pp. 1558-1565.
[57]Meng Zong, Ying Huang, Yang Zhao, Xu Sun, Chunhao Qu, Didi Luo and Jiangbo Zheng, 2013, Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO–Fe3O4 composites, RSC Advances, Volume 3, Issue 45, Pages 23638-23648.
[58]Ţucureanu, V., Matei, A., and Avram, A. M, 2016, “FTIR Spectroscopy for Carbon Family Study”, Critical Reviews in Analytical Chemistry, Volume 46, Issue 6, Pages 502–520.
[59]Zhang, J., Xu, Y., Liu, Z., Yang, W., and Liu, J, 2015,” A highly conductive porous graphene electrode prepared via in situ reduction of graphene oxide using Cu nanoparticles for the fabrication of high performance supercapacitors”, RSC Advances, Volume 5, Issue 67, pp. 54275–54282.
[60]Al Nafiey, A., Addad, A., Sieber, B., Chastanet, G., Barras, A., Szunerits, S., and Boukherroub, R, 2017,” Reduced graphene oxide decorated with Co3O4 nanoparticles (rGO-Co3O4 ) nanocomposite: A reusable catalyst for highly efficient reduction of 4-nitrophenol, and Cr(VI) and dye removal from aqueous solutions”, Chemical Engineering Journal, Volume 322, pp. 375-384.
[61]Dashairya, L., Sharma, M., Basu, S., and Saha, P, 2018, “Enhanced dye degradation using hydrothermally synthesized nanostructured Sb2S3 /rGO under visible light irradiation”, Journal of Alloys and Compounds, Volume 735, pp. 234-245.
[62]Yang, K., Peng, H., Wen, Y., and Li, N, 2010,” Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles”, Applied Surface Science, Volume 256, Issue 10, pp. 3093-3097.
[63]Nurul Hidayah Ahmad Safee, Md. Pauzi Abdullah and Mohamed Rozali Othman, 2010, “Carboxymethyl chitosan-Fe3O4 nanoparticles: Synthesis and characterization”, The Malaysian Journal of Analytical Sciences, Volume 14, Issue 2, pp. 63-68.
[64]Tan, C., Gao, N., Deng, Y., Deng, J., Zhou, S., Li, J., & Xin, X., 2014, “Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate”, Journal of Hazardous Materials, Volume 276, pp. 452-460.
[65]Drewniak, S., Muzyka, R., Stolarczyk, A., Pustelny, T., Kotyczka-Morańska, M., & Setkiewicz, M, 2016, “Studies of Reduced Graphene Oxide and Graphite Oxide in the Aspect of Their Possible Application in Gas Sensors”, Sensors, Volume 16, Issue 1.
[66]Cheng Zou, Jing Hu, Yanjie Su, Feng Shao, Zejun Tao, Tingting Huo, Zhihua Zhou, Nantao Hu, Zhi Yang, Eric Siu-Wai Kong and Yafei Zhang, 2019, “Three-Dimensional Fe3O4@Reduced Graphene Oxide Heterojunctions for High-Performance Room-Temperature NO2 Sensors”, Frontiers in Materials, Volume 6, pp. 1–12
[67]Rojas, J. V., Toro-Gonzalez, M., Molina-Higgins, M. C., & Castano, C. E., 2016, “Facile radiolytic synthesis of ruthenium nanoparticles on graphene oxide and carbon nanotubes”, Materials Science and Engineering: B, Volume 205, pp. 28-35.
[68]Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S., & Atieh, M. A., 2019, “XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods”, Ceramics International, Volume 45, Issue 11, pp. 14439-14448.
[69]曾澤華、李詩純、劉渝、徐金江、周元林,2017,純水中氧化石墨烯的超聲裁剪及機理研究,高等學校化學學報,第38卷,第1期,第20-27頁。
[70]Zhan, Y., Wang, J., Zhang, K., Li, Y., Meng, Y., Yan, N., Wei, W. Peng, F., and Xia, H., 2018, “Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network”, Chemical Engineering Journal, Volume 344, pp. 184-193.
[71]Lesiak, B., Rangam, N., Jiricek, P., Gordeev, I., Tóth, J., Kövér, L., M. Mohai and Borowicz, P., 2019, “Surface Study of Fe3O4 Nanoparticles Functionalized With Biocompatible Adsorbed Molecules”, Frontiers in Chemistry, Volume 7, pp. 1-16.
[72]Grosvenor, A. P., Kobe, B. A., Biesinger, M. C. and McIntyre, N. S., 2004, “Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds”, Surface and Interface Analysis, Volume36, Issue12, pp. 1564-1574.
[73]Wang, H., Liang, T., Xu, D., Liao, K., Gong, Y., Wang, R., He, B., Gong, Y. and Yan, C., 2018, “High-Energy Flexible Quasi-Solid-State Lithium-Ion Capacitors Enabled by Freestanding rGO-Encapsulated Fe3O4 Nanocube anode and Holey rGO Film Cathode”, Nanoscale, Volume 10, Issue 37, pp. 1-11.
[74]Kong, L., Yin, X., Zhang, Y., Yuan, X., Li, Q., Ye, F., Cheng, L. and Zhang, L., 2013, “Electromagnetic Wave Absorption Properties of Reduced Graphene Oxide Modified by Maghemite Colloidal Nanoparticle Clusters”, The Journal of Physical Chemistry C, Volume 117, Issue 38, pp. 19701-19711.
[75]Xu, L. and Wang, J., 2012,” Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles”, Applied Catalysis B: Environmental, Volumes 123–124, pp. 117-126.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top