(100.26.179.251) 您好!臺灣時間:2021/04/14 08:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇建又
研究生(外文):Su, Chien-You
論文名稱:利用光散射及流變探討多成份溶液系統之多尺度結構與動態特徵
論文名稱(外文):Utilizing Optical Scattering and Rheological Characterizations in Investigating Multiscale Structural and Dynamic Features of Multicomponent Solution Systems
指導教授:華繼中
指導教授(外文):Hua, Chi-Chung
口試委員:華繼中毛慶豐康敦彥陳靜誼陳蓉瑤
口試委員(外文):Hua, Chi-ChungMao, Ching-FengKang, Dun-YenChen, Ching-YiChen, Jung-Yao
口試日期:2019-07-19
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:136
中文關鍵詞:混摻高分子高分子複合材料共軛高分子高分子電解質奈米管溶劑品質
外文關鍵詞:Polymer BlendPolymer CompositeConjugated PolymerPolyelectrolyteNanotubeSolvent Quality
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
由多成份前驅溶液製作而成之功能性複合材料已廣泛使用於日常生活中的各式產品,且於現今之產業創新上扮演日益重要的角色。相較於單成份溶液系統,多成份溶液系統之應用可經由適當的主(功能性)分子與客分子之組合,達成不同實際使用上之需求。客分子的運用大多依循以下兩種基本原則:一、改善主分子溶液之缺點,如分散性或加工性不佳;二、與主分子生成特定之(物理)交互作用,產生加乘效應與理想之溶液性質。然而確立理想溶液性質以及產出最佳效能之產品所應具備的條件(如成份、濃度、混摻比例等)目前仍為一艱鉅的任務。為此在我們過去的研究中,建立有效且泛用之分析模式以達到多成份溶液系統解析與最佳化的目的,並了解其中蘊含之物理意義,這些目標對於未來的科學與科技發展皆扮演重要的角色。
本論文涵蓋三種不同類型之多成份溶液系統之深入探討,藉此說明如何結合流變、散射、顯微影像分析技術以及介電量測等方法,用以協助解析聚集體狀態、主-客分子之交互作用、以及結構–效能兩者間的關聯性,並依據上述結果之推論,對於相似溶液材料系統之最佳化建立更新與更深入的認識。相關研究之詳盡內容將於後續章節中完整呈現,以下為具體的研究項目名稱: 一、聚2-甲氧基-5-(2-乙基-己氧基)對苯乙烯/聚甲基丙烯酸甲酯於溶液態及薄膜態之聚集體性質探討。二、雙親性高分子電解質於純溶劑及混摻溶劑介質中之溶液性質探討。三、單壁氧化鋁矽奈米管/聚乙烯醇水溶液之性質探討。在論文的最後我們歸納各研究主題之核心發現與啟示,並提供研究多成份溶液系統之未來展望。

Functional composite materials produced from multicomponent precursor solutions have found widespread applications in our daily lives and play increasingly important role in the industrial innovations nowadays. Compared with the usual, single-component, solution systems, the utilization of a multicomponent solution can help meet various practical requirements through proper combinations of the host (functional) and guest molecules. The use of guest molecules follows two basic principles: (1) to improve the downside of the host molecules, for example, poor dispersion or processing capabilities; (2) to foster favorable (physical) interactions with the host molecule that produce synergetic effects and desirable solution properties. In general, however, it remains a challenging task to forecast optimum conditions (e.g., species, concentration, and blending ratio) that would warrant desirable solution properties and the best performance of the end product. Thus, establishing useful and generalizable guidelines in our continual search for optimized multicomponent solution systems as well as understanding the working physics is of scientific and technological importance.
In this dissertation, in-depth investigations on three distinct multicomponent solution systems are utilized to demonstrate how a comprehensive combination of rheological, optical scattering, microscopic, and dielectric characterizations can help resolve the aggregation state, host-guest molecule interactions, and eventual structure-performance relationship that, together, provide enlightening new insights into the solution optimization scheme of like materials. These studies are described in great detail in the following text under the titles of (1) aggregation properties of MEHPPV/PMMA in solution and thin film, (2) solution properties of amphiphilic polyelectrolyte in pure- and mixed-solvent media, and (3) properties of single-walled aluminosilicate nanotube/poly(vinyl alcohol) aqueous dispersions. Afterwards, future outlooks that stem from the central observations and implications of these studies are provided in the end of this dissertation.

Abstract I
Abstract (in Chinese) III
Acknowledgments V
Table of Contents VII
List of Figures X
List of Tables XIX
Chapter 1 Overview 1
Chapter 2 Experimental Schemes 5
2.1 Light Scattering Analyses (DLS/DDLS/SLS) 5
2.2 Small-Angle Scattering (SALS/SAXS) 7
2.3 Rheological Measurements 7
2.4 Ac Conductivity Analysis 8
2.5 Flow-Birefringence Measurement 9
2.6 Electrospinning and Morphological Characterization of Nanofibers 9
Chapter 3 Aggregation Properties of MEH-PPV/ PMMA Blends in Solution and Thin Film 11
3.1 Introduction 13
3.2 Materials and Sample Preparation 16
3.3 Results and Discussion 18
3.3.1 Fixed Total Polymer Concentration 18
3.3.2 Fixed MEH-PPV Concentration 29
3.3.3 Physical Interpretation of the Interactions Between MEH-PPV Aggregate and PMMA Coil 36
3.4 Conclusion 39
Chapter 4 Solution Properties of Imidazolium-Based Amphiphilic Polyelectrolyte in Pure- and Mixed-Solvent Media 41
4.1 Introduction 42
4.2 Materials and Sample Preparation 45
4.3 Rheological Features 47
4.4 Dynamic Light Scattering Analyses 50
4.5 Multiscale Structural Characterizations 56
4.6 Conclusion 66
Chapter 5 Properties of Single-Walled Aluminosilicate Nanotube/Poly(vinyl alcohol) Aqueous Dispersions 68
5.1 Introduction 70
5.2 Materials and Sample Preparation 72
5.2.1 Synthesis of AlSiNT 72
5.2.2 Preparation of AlSiNT/PVA Dispersions 74
5.3 Results and Discussion 75
5.3.1 Properties of PVA and AlSiNT Dispersions 75
5.3.2 Rheological Features of AlSiNT/PVA Dispersions 83
5.3.3 Electrospinnability and Fiber Morphology of PVA Solutions and AlSiNT/PVA Dispersions 93
5.4 Conclusions 99
Chapter 6 Conclusions and Outlook 100
Appendix A 101
Appendix B 109
References 119
List of Publications 136

1.C.-Y. Su and C.-C. Hua, Aggregation Properties of MEH-PPV/PMMA Blends in Solution and Thin Film, J. Polym. Res., 2016, 24, 12.
2.H. L. Chou, S. Y. Hsu and P. K. Wei, Light Emission in Phase Separated Conjugated and Non-Conjugated Polymer Blends, Polymer, 2005, 46, 4967-4970.
3.G. He, Y. Li, J. Liu and Y. Yang, Enhanced Electroluminescence Using Polystyrene as a Matrix, Appl. Phys. Lett., 2002, 80, 4247-4249.
4.N. A. Iyengar, B. Harrison, R. S. Duran, K. S. Schanze and J. R. Reynolds, Morphology evolution in nanoscale light-emitting domains in MEH-PPV/PMMA blends, Macromolecules, 2003, 36, 8978-8985.
5.C.-Y. Su, H.-L. Yi, L.-D. Tsai, M.-C. Chen and C.-C. Hua, Solution Properties of Imidazolium-Based Amphiphilic Polyelectrolyte in Pure- and Mixed-Solvent Media, Phys. Chem. Chem. Phys., 2019, 21, 3960-3969.
6.C. K. Lee, C. C. Hua and S. A. Chen, Hybrid Solvents Incubated π−π Stacking in Quenched Conjugated Polymer Resolved by Multiscale Computation, Macromolecules, 2011, 44, 320-324.
7.M.-C. Chen, W.-C. Hung, A.-C. Su, S.-H. Chen and S.-A. Chen, Nanoscale Ordered Structure Distribution in Thin Solid Film of Conjugated Polymers: Its Significance in Charge Transport Across the Film and in Performance of Electroluminescent Device, J. Phys. Chem. B, 2009, 113, 11124-11133.
8.M. Zheng, F. Bai and D. Zhu, Photophysical Process of MEH-PPV Solution, J. Photochem. Photobiol., A, 1998, 116, 143-145.
9.N. Ananthakrishnan, G. Padmanaban, S. Ramakrishnan and J. R. Reynolds, Tuning Polymer Light-Emitting Device Emission Colors in Ternary Blends Composed of Conjugated and Nonconjugated Polymers, Macromolecules, 2005, 38, 7660-7669.
10.M. Granström and O. Inganäs, White Light Emission from a Polymer Blend Light Emitting Diode, Appl. Phys. Lett., 1996, 68, 147-149.
11.M. Grell, D. D. C. Bradley, G. Ungar, J. Hill and K. S. Whitehead, Interplay of Physical Structure and Photophysics for a Liquid Crystalline Polyfluorene, Macromolecules, 1999, 32, 5810-5817.
12.L. Kergoat, N. Battaglini, L. Miozzo, B. Piro, M.-C. Pham, A. Yassar and G. Horowitz, Use of Poly(3-hexylthiophene)/Poly(methyl methacrylate) (P3HT/PMMA) Blends to Improve the Performance of Water-Gated Organic Field-Effect Transistors, Org. Electron., 2011, 12, 1253-1257.
13.A. Marletta, V. C. Gonçalves and D. T. Balogh, Effect of Temperature on Emission of MEH–PPV/PS Solid-State Solution, J. Lumin., 2006, 116, 87-93.
14.M. Yan, L. J. Rothberg, E. W. Kwock and T. M. Miller, Interchain Excitations in Conjugated Polymers, Phys. Rev. Lett., 1995, 75, 1992-1995.
15.H. J. Jung, Y. J. Park, S. H. Choi, J. M. Hong, J. Huh, J. H. Cho, J. H. Kim and C. Park, Thin Film Fabrication of PMMA/MEH-PPV Immiscible Blends by Corona Discharge Coating and Its Application to Polymer Light Emitting Diodes, Langmuir, 2007, 23, 2184-2190.
16.A. R. Chun, S. H. Kim, M. S. Kim, C. G. Kim, S. J. Lee, T. W. Kwon, D. K. Park, S. J. Cho, J. G. Lee, S. H. Lee, Z. X. Guo and H. S. Woo, Enhanced Quantum Efficiency in Polymer Light-Emitting Diode with Water Soluble Non-Conjugated Polymer, Synth. Met., 2008, 158, 876-878.
17.M. Granström, M. Berggren, O. Inganäs, M. R. Andersson, T. Hjertberg and O. Wennerström, Phase Separation of Conjugated Polymers — Tools for New Functions in Polymer LEDs, Synth. Met., 1997, 85, 1193-1194.
18.C. S. Chao, W. T. Whang and K. R. Chuang, Significant Improvement on the Electroluminescence Characteristics of MEH-PPV by Blending with PMMA, J. Polym. Res., 2000, 7, 175-183.
19.G. Zhang and C. Wu, Reentrant Coil-to-Globule-to-Coil Transition of a Single Linear Homopolymer Chain in a Water/Methanol Mixture, Phys. Rev. Lett., 2001, 86, 822-825.
20.G. Zhang and C. Wu, The Water/Methanol Complexation Induced Reentrant Coil-to-Globule-to-Coil Transition of Individual Homopolymer Chains in Extremely Dilute Solution, J. Am. Chem. Soc., 2001, 123, 1376-1380.
21.C. Penu, G.-H. Hu, A. Fernandez, P. Marchal and L. Choplin, Rheological and Electrical Percolation Thresholds of Carbon Nanotube/Polymer Nanocomposites, Polym. Eng. Sci., 2012, 52, 2173-2181.
22.S. Marceau, P. Dubois, R. Fulchiron and P. Cassagnau, Viscoelasticity of Brownian Carbon Nanotubes in PDMS Semidilute Regime, Macromolecules, 2009, 42, 1433-1438.
23.Q. Zhang, D. R. Lippits and S. Rastogi, Dispersion and Rheological Aspects of SWNTs in Ultrahigh Molecular Weight Polyethylene, Macromolecules, 2006, 39, 658-666.
24.F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer and K. I. Winey, Nanotube Networks in Polymer Nanocomposites:  Rheology and Electrical Conductivity, Macromolecules, 2004, 37, 9048-9055.
25.D. Wu, T. Shi, T. Yang, Y. Sun, L. Zhai, W. Zhou, M. Zhang and J. Zhang, Electrospinning of Poly(trimethylene terephthalate)/Carbon Nanotube Composites, Eur. Polym. J., 2011, 47, 284-293.
26.Q. Zhang, F. Fang, X. Zhao, Y. Li, M. Zhu and D. Chen, Use of Dynamic Rheological Behavior to Estimate the Dispersion of Carbon Nanotubes in Carbon Nanotube/Polymer Composites, J. Phys. Chem. B, 2008, 112, 12606-12611.
27.Y. H. Wen, P. C. Lin, C. C. Hua and S. A. Chen, Dynamic Structure Factor for Large Aggregate Clusters with Internal Motions: A Self-Consistent Light-Scattering Study on Conjugated Polymer Solutions, J. Phys. Chem. B, 2011, 115, 14369-14380.
28.R. H. Guo, C. H. Hsu, C. C. Hua and S. A. Chen, Colloidal Aggregate and Gel Incubated by Amorphous Conjugated Polymer in Hybrid-Solvent Medium, J. Phys. Chem. B, 2015, 119, 3320-3331.
29.B. Chu, Laser Light Scattering: Basic Principles and Practice, Dover Publications, New York, 2007.
30.S. W. Provencher, A Constrained Regularization Method for Inverting Data Represented by Linear Algebraic or Integral Equations, Comput. Phys. Commun., 1982, 27, 213-227.
31.P. L. Frattini and G. G. Fuller, Note: A Note on Phase‐Modulated Flow Birefringence: A Promising Rheo‐Optical Method, J. Rheol., 1984, 28, 61-70.
32.J.-S. Jiang, PhD, National Chung Cheng University, 2019.
33.M. T. Bernius, M. Inbasekaran, J. O'Brien and W. Wu, Progress with light-emitting polymers, Adv. Mater., 2000, 12, 1737-1750.
34.J. Liu, Y. Shi, L. Ma and Y. Yang, Device Performance and Polymer Morphology in Polymer Light Emitting Diodes: the Control of Device Electrical Properties and Metal/Polymer Contact, J. Appl. Phys., 2000, 88, 605-609.
35.L. Akcelrud, Electroluminescent Polymers, Prog. Polym. Sci., 2003, 28, 875-962.
36.B. J. Schwartz, Conjugated Polymers as Molecular Materials: How Chain Conformation and Film Morphology Influence Energy Transfer and Interchain Interactions, Annu. Rev. Phys. Chem., 2003, 54, 141-172.
37.J. Li, T. Sano, Y. Hirayama and K. Shibata, White Polymer Light Emitting Diodes with Multi-Layer Device Structure, Synth. Met., 2009, 159, 36-40.
38.Y. C. Li, C. Y. Chen, Y. X. Chang, P. Y. Chuang, J. H. Chen, H. L. Chen, C. S. Hsu, V. A. Ivanov, P. G. Khalatur and S. A. Chen, Scattering Study of the Conformational Structure and Aggregation Behavior of a Conjugated Polymer Solution, Langmuir, 2009, 25, 4668-4677.
39.C. C. Hua, C. Y. Kuo and S. A. Chen, Controlling Bulk Aggregation State in Semiconducting Conjugated Polymer Solution, Appl. Phys. Lett., 2008, 93, 123303.
40.D. Wang, Y. Yuan, Y. Mardiyati, C. Bubeck and K. Koynov, From single chains to aggregates, how conjugated polymers behave in dilute solutions, Macromolecules, 2013, 46, 6217-6224.
41.P. K. Choudhury, D. Bagchi and R. Menon, π-Conjugation and Conformation in a Semiconducting Polymer: Small Angle X-Ray Scattering Study, J. Phys.: Condens. Matter, 2009, 21, 195801.
42.W. C. Ou-Yang, C. S. Chang, H. L. Chen, C. S. Tsao, K. Y. Peng, S. A. Chen and C. C. Han, Micellelike Aggregates in Solutions of Semirigid Hairy-Rod Polymers, Phys. Rev. E, 2005, 72, 031802.
43.J. H. Chen, C. W. Chiu, L. C. Chen, S. Y. Lai and C. C. Lee, Conformational Structure and Aggregation Behavior of Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] in Toluene/Nonane Solutions, Polymer, 2012, 53, 4843-4854.
44.S. H. Chen, A. C. Su, C. S. Chang, H. L. Chen, D. L. Ho, C. S. Tsao, K. Y. Peng and S. A. Chen, Aging of Poly(2-methoxy-5-(2‘-ethylhexyloxy)-1,4-phenylenevinylene)/Toluene Solutions and Subsequent Effects on Luminescence Behavior of Cast Films, Langmuir, 2004, 20, 8909-8915.
45.T.-Q. Nguyen, V. Doan and B. J. Schwartz, Conjugated Polymer Aggregates in Solution: Control of Interchain Interactions, J. Chem. Phys., 1999, 110, 4068-4078.
46.R. Traiphol, P. Sanguansat, T. Srikhirin, T. Kerdcharoen and T. Osotchan, Spectroscopic Study of Photophysical Change in Collapsed Coils of Conjugated Polymers:  Effects of Solvent and Temperature, Macromolecules, 2006, 39, 1165-1172.
47.R. Traiphol, N. Charoenthai, T. Srikhirin, T. Kerdcharoen, T. Osotchan and T. Maturos, Chain Organization and Photophysics of Conjugated Polymer in Poor Solvents: Aggregates, Agglomerates and Collapsed Coils, Polymer, 2007, 48, 813-826.
48.R. Traiphol and N. Charoenthai, Effects of Conformational Change and Segmental Aggregation on Photoemission of Illuminophores in Conjugated Polymer MEH-PPV: Blue Shift Versus Red Shift, Synth. Met., 2008, 158, 135-142.
49.K. M. Coakley and M. D. McGehee, Conjugated Polymer Photovoltaic Cells, Chem. Mater., 2004, 16, 4533-4542.
50.G. Yu, K. Pakbaz and A. J. Heeger, Semiconducting Polymer Diodes: Large Size, Low Cost Photodetectors with Excellent Visible‐Ultraviolet Sensitivity, Appl. Phys. Lett., 1994, 64, 3422-3424.
51.C. Ton-That, M. R. Phillips and T.-P. Nguyen, Blue Shift in the Luminescence Spectra of MEH-PPV Films Containing ZnO Nanoparticles, J. Lumin., 2008, 128, 2031-2034.
52.C. Ran, M. Wang, W. Gao, J. Ding, Y. Shi, X. Song, H. Chen and Z. Ren, Study on Photoluminescence Quenching and Photostability Enhancement of MEH-PPV by Reduced Graphene Oxide, J. Phys. Chem. C, 2012, 116, 23053-23060.
53.J. Huang, G. Li, E. Wu, Q. Xu and Y. Yang, Achieving High-Efficiency Polymer White-Light-Emitting Devices, Adv. Mater., 2006, 18, 114-117.
54.J. Liu, Y. Shi and Y. Yang, Improving the Performance of Polymer Light-Emitting Diodes Using Polymer Solid Solutions, Appl. Phys. Lett., 2001, 79, 578-580.
55.Y. Zhang, Q. Hou and Y. Q. Mo, High-Efficiency Red Polymer Light-Emitting Diodes Based on Optimizing Blend Polymer Host, Synth. Met., 2009, 159, 1234-1237.
56.J. Zou, J. Liu, H. Wu, W. Yang, J. Peng and Y. Cao, High-Efficiency and Good Color Quality White Light-Emitting Devices Based on Polymer Blend, Org. Electron., 2009, 10, 843-848.
57.J. Holt, S. Singh, T. Drori, Y. Zhang and Z. V. Vardeny, Optical Probes of π-Conjugated Polymer Blends with Strong Acceptor Molecules, Phys. Rev. B, 2009, 79, 195210.
58.S. N. Hsieh, T. Y. Kuo, P. C. Hsu, T. C. Wen and T. F. Guo, Study of Polymer Blends on Polymer Light-Emitting Diodes, Mater. Chem. Phys., 2007, 106, 70-73.
59.E. Moons, Conjugated Polymer Blends: Linking Film Morphology to Performance of Light Emitting Diodes and Photodiodes, J. Phys.: Condens. Matter, 2002, 14, 12235.
60.P. Lee, W. C. Li, B. J. Chen, C. W. Yang, C. C. Chang, I. Botiz, G. Reiter, T.-L. Lin, J. Tang and A. C.-M. Yang, Massive Enhancement of Photoluminescence Through Nanofilm Dewetting, ACS Nano, 2013, 7, 6658-6666.
61.I. Botiz, P. Freyberg, C. Leordean, A.-M. Gabudean, S. Astilean, A. C.-M. Yang and N. Stingelin, Enhancing the Photoluminescence Emission of Conjugated MEH-PPV by Light Processing, ACS Appl. Mater. Interfaces, 2014, 6, 4974-4979.
62.I. Botiz, P. Freyberg, C. Leordean, A.-M. Gabudean, S. Astilean, A. C.-M. Yang and N. Stingelin, Emission Properties of MEH-PPV in Thin Films Simultaneously Illuminated and Annealed at Different Temperatures, Synth. Met., 2015, 199, 33-36.
63.J. E. Martin, Polymer Self-Diffusion: Dynamic Light Scattering Studies of Isorefractive Ternary Solutions, Macromolecules, 1984, 17, 1279-1283.
64.Z. Sun and C. H. Wang, Quasielastic Light Scattering from Semidilute Ternary Polymer Solutions of Polystyrene and Poly(methyl methacrylate) in Benzene, Macromolecules, 1996, 29, 2011-2018.
65.Y. Zhang, M. Xiang, M. Jiang and C. Wu, Laser-Light-Scattering Studies on the Complexation between Poly(styrene-co-4-vinylphenol) and Isorefractive Poly(ethyl methacrylate) in Toluene, Macromolecules, 1997, 30, 2035-2041.
66.T.-Q. Nguyen, R. C. Kwong, M. E. Thompson and B. J. Schwartz, Improving the Performance of Conjugated Polymer-Based Devices by Control of Interchain Interactions and Polymer Film Morphology, Appl. Phys. Lett., 2000, 76, 2454-2456.
67.S. Quan, F. Teng, Z. Xu, L. Qian, T. Zhang, D. Liu, Y. Hou, Y. Wang and X. Xu, Temperature Dependence of Photoluminescence in MEH-PPV Blend Films, J. Lumin., 2007, 124, 81-84.
68.R. F. Cossiello, L. Akcelrud and T. D. Z. Atvars, Solvent and Molecular Weight Effects on Fluorescence Emission of MEH-PPV, J. Braz. Chem. Soc., 2005, 16, 74-86.
69.I. Teraoka, in Polymer Solutions, John Wiley & Sons, Inc., New York, 2002, DOI: 10.1002/0471224510.ch3, pp. 167-275.
70.C. C. Han and A. Z. Akcasu, in Scattering and Dynamics of Polymers, John Wiley & Sons (Asia) Pte Ltd, Singapore, 2011, DOI: 10.1002/9780470824849.ch4, pp. 211-316.
71.S. Sarzi Sartori, S. De Feyter, J. Hofkens, M. Van der Auweraer, F. De Schryver, K. Brunner and J. W. Hofstraat, Host Matrix Dependence on the Photophysical Properties of Individual Conjugated Polymer Chains, Macromolecules, 2003, 36, 500-507.
72.S. Onda, H. Kobayashi, T. Hatano, S. Furumaki, S. Habuchi and M. Vacha, Complete Suppression of Blinking and Reduced Photobleaching in Single MEH-PPV Chains in Solution, J. Phys. Chem. Lett., 2011, 2, 2827-2831.
73.C. C. Hua, C. J. Lin, Y. H. Wen and S. A. Chen, Stabilization of Bulk Aggregation State in Semiconducting Polymer Solutions, J. Polym. Res., 2011, 18, 793-800.
74.H. L. Wagner, The Mark–Houwink–Sakurada relation for poly(methyl methacrylate), J. Phys. Chem. Ref. Data, 1987, 16, 165-173.
75.W.-M. Kulicke and C. Clasen, Viscosimetry of Polymers and Polyelectrolytes, Springer Berlin Heidelberg, Germany, 2004.
76.G. Merle, M. Wessling and K. Nijmeijer, Anion Exchange Membranes for Alkaline Fuel Cells: A Review, J. Membr. Sci., 2011, 377, 1-35.
77.M. A. Hickner, A. M. Herring and E. B. Coughlin, Anion Exchange Membranes: Current Status and Moving Forward, J. Polym. Sci., Part B: Polym. Phys., 2013, 51, 1727-1735.
78.J. Ran, L. Wu, Y. He, Z. Yang, Y. Wang, C. Jiang, L. Ge, E. Bakangura and T. Xu, Ion Exchange Membranes: New Developments and Applications, J. Membr. Sci., 2017, 522, 267-291.
79.Y.-J. Wang, J. Qiao, R. Baker and J. Zhang, Alkaline Polymer Electrolyte Membranes for Fuel Cell Applications, Chem. Soc. Rev., 2013, 42, 5768-5787.
80.S. S. He, A. L. Strickler and C. W. Frank, A Semi-Interpenetrating Network Approach for Dimensionally Stabilizing Highly-Charged Anion Exchange Membranes for Alkaline Fuel Cells, ChemSusChem, 2015, 8, 1472-1483.
81.S. Banerjee, S. Ray, S. Maiti, K. K. Sen, U. Bhattacharyya, S. Kaity and A. Ghosh, Interpenetrating Polymer Network (IPN): A Novel Biomaterial, Int. J. Appl. Pharm., 2010, 2, 28-34.
82.M. Shivashankar and B. K. Mandal, A Review on Interpenetrating Polymer Network, Int. J. Pharm. Pharm. Sci., 2012, 4, 1-7.
83.J. Pan, C. Chen, Y. Li, L. Wang, L. Tan, G. Li, X. Tang, L. Xiao, J. Lu and L. Zhuang, Constructing Ionic Highway in Alkaline Polymer Electrolytes, Energy Environ. Sci., 2014, 7, 354-360.
84.D. Guo, A. N. Lai, C. X. Lin, Q. G. Zhang, A. M. Zhu and Q. L. Liu, Imidazolium-Functionalized Poly(arylene ether sulfone) Anion-Exchange Membranes Densely Grafted with Flexible Side Chains for Fuel Cells, ACS Appl. Mater. Interfaces, 2016, 8, 25279-25288.
85.S. S. He and C. W. Frank, Facilitating Hydroxide Transport in Anion Exchange Membranes via Hydrophilic Grafts, J. Mater. Chem. A, 2014, 2, 16489-16497.
86.J. Ran, L. Wu, Q. Ge, Y. Chen and T. Xu, High Performance Anion Exchange Membranes Obtained Through Graft Architecture and Rational Cross-Linking, J. Membr. Sci., 2014, 470, 229-236.
87.E. A. Weiber and P. Jannasch, Ion Distribution in Quaternary-Ammonium-Functionalized Aromatic Polymers: Effects on the Ionic Clustering and Conductivity of Anion-Exchange Membranes, ChemSusChem, 2014, 7, 2621-2630.
88.Y. He, L. Wu, J. Pan, Y. Zhu, X. Ge, Z. Yang, J. Ran and T. Xu, A Mechanically Robust Anion Exchange Membrane with High Hydroxide Conductivity, J. Membr. Sci., 2016, 504, 47-54.
89.J. Pan, L. Zhu, J. Han and M. A. Hickner, Mechanically Tough and Chemically Stable Anion Exchange Membranes from Rigid-Flexible Semi-Interpenetrating Networks, Chem. Mater., 2015, 27, 6689-6698.
90.D. Guo, Y. Z. Zhuo, A. N. Lai, Q. G. Zhang, A. M. Zhu and Q. L. Liu, Interpenetrating Anion Exchange Membranes Using Poly(1-Vinylimidazole) as Bifunctional Crosslinker for Fuel Cells, J. Membr. Sci., 2016, 518, 295-304.
91.A. N. Lai, D. Guo, C. X. Lin, Q. G. Zhang, A. M. Zhu, M. L. Ye and Q. L. Liu, Enhanced Performance of Anion Exchange Membranes via Crosslinking of Ion Cluster Regions for Fuel Cells, J. Power Sources, 2016, 327, 56-66.
92.M. Tanaka, K. Fukasawa, E. Nishino, S. Yamaguchi, K. Yamada, H. Tanaka, B. Bae, K. Miyatake and M. Watanabe, Anion Conductive Block Poly(arylene ether)s: Synthesis, Properties, and Application in Alkaline Fuel Cells, J. Am. Chem. Soc., 2011, 133, 10646-10654.
93.Y. He, J. Si, L. Wu, S. Chen, Y. Zhu, J. Pan, X. Ge, Z. Yang and T. Xu, Dual-Cation Comb-Shaped Anion Exchange Membranes: Structure, Morphology and Properties, J. Membr. Sci., 2016, 515, 189-195.
94.L. Liu, X. Chu, J. Liao, Y. Huang, Y. Li, Z. Ge, M. A. Hickner and N. Li, Tuning the Properties of Poly(2,6-dimethyl-1,4-phenylene oxide) Anion Exchange Membranes and Their Performance in H2/O2 Fuel Cells, Energy Environ. Sci., 2018, 11, 435-446.
95.D. Dong, X. Wei, J. B. Hooper, H. Pan and D. Bedrov, Role of Cationic Groups on Structural and Dynamical Correlations in Hydrated Quaternary Ammonium-Functionalized Poly(p-Phenylene Oxide)-Based Anion Exchange Membranes, Phys. Chem. Chem. Phys., 2018, 20, 19350-19362.
96.M. A. Vandiver, B. R. Caire, T. P. Pandey, Y. Li, S. Seifert, A. Kusoglu, D. M. Knauss, A. M. Herring and M. W. Liberatore, Effect of Hydration on the Mechanical Properties and Ion Conduction in a Polyethylene-b-Poly(vinylbenzyl trimethylammonium) Anion Exchange Membrane, J. Membr. Sci., 2016, 497, 67-76.
97.H. A. Kostalik, T. J. Clark, N. J. Robertson, P. F. Mutolo, J. M. Longo, H. D. Abruña and G. W. Coates, Solvent Processable Tetraalkylammonium-Functionalized Polyethylene for Use as an Alkaline Anion Exchange Membrane, Macromolecules, 2010, 43, 7147-7150.
98.K. J. T. Noonan, K. M. Hugar, H. A. Kostalik, E. B. Lobkovsky, H. D. Abruña and G. W. Coates, Phosphonium-Functionalized Polyethylene: A New Class of Base-Stable Alkaline Anion Exchange Membranes, J. Am. Chem. Soc., 2012, 134, 18161-18164.
99.T.-H. Tsai, S. P. Ertem, A. M. Maes, S. Seifert, A. M. Herring and E. B. Coughlin, Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers, Macromolecules, 2015, 48, 655-662.
100.M. Zhang, H. K. Kim, E. Chalkova, F. Mark, S. N. Lvov and T. C. M. Chung, New Polyethylene Based Anion Exchange Membranes (PE–AEMs) with High Ionic Conductivity, Macromolecules, 2011, 44, 5937-5946.
101.S. P. Ertem, T.-H. Tsai, M. M. Donahue, W. Zhang, H. Sarode, Y. Liu, S. Seifert, A. M. Herring and E. B. Coughlin, Photo-Cross-Linked Anion Exchange Membranes with Improved Water Management and Conductivity, Macromolecules, 2016, 49, 153-161.
102.A. C. Tibbits, L. E. Mumper, C. J. Kloxin and Y. S. Yan, A Single-Step Monomeric Photo-Polymerization and Crosslinking via Thiol-Ene Reaction for Hydroxide Exchange Membrane Fabrication, J. Electrochem. Soc., 2015, 162, F1206-F1211.
103.J. Won, Y. S. Kang, H. C. Park and U. Y. Kim, Light Scattering and Membrane Formation Studies on Polysulfone Solutions in NMP and in Mixed Solvents of NMP and Ethyl Acetate, J. Membr. Sci., 1998, 145, 45-52.
104.Y. Amamoto, H. Otsuka, A. Takahara and K. Matyjaszewski, Changes in Network Structure of Chemical Gels Controlled by Solvent Quality through Photoinduced Radical Reshuffling Reactions of Trithiocarbonate Units, ACS Macro Lett., 2012, 1, 478-481.
105.K. J. Henderson and K. R. Shull, Effects of Solvent Composition on the Assembly and Relaxation of Triblock Copolymer-Based Polyelectrolyte Gels, Macromolecules, 2012, 45, 1631-1635.
106.L. Ghimici, M. Nichifor and B. Wolf, Ionic Polymers Based on Dextran: Hydrodynamic Properties in Aqueous Solution and Solvent Mixtures, J. Phys. Chem. B, 2009, 113, 8020-8025.
107.A.-H. Vesterinen, J. Rich and J. Seppälä, Synthesis and Solution Rheology of Poly[(stearyl methacrylate)-stat-([2-(methacryloyloxy)ethyl] trimethyl ammonium iodide)], J. Colloid Interface Sci., 2010, 351, 478-484.
108.W. Essafi, W. Raissi, A. Abdelli and F. Boué, Metastability of Large Aggregates and Viscosity, and Stability of The Pearl Necklace Conformation After Organic Solvent Treatment Of Aqueous Hydrophobic Polyelectrolyte Solutions, J. Phys. Chem. B, 2014, 118, 12271-12281.
109.P. Loh, G. R. Deen, D. Vollmer, K. Fischer, M. Schmidt, A. Kundagrami and M. Muthukumar, Collapse of Linear Polyelectrolyte Chains in a Poor Solvent: When Does a Collapsing Polyelectrolyte Collect its Counterions?, Macromolecules, 2008, 41, 9352-9358.
110.W. Essafi, M.-N. Spiteri, C. Williams and F. Boue, Hydrophobic Polyelectrolytes in Better Polar Solvent. Structure and Chain Conformation As Seen by SAXS and SANS, Macromolecules, 2009, 42, 9568-9580.
111.W. Essafi, A. Abdelli, G. Bouajila and F. Boué, Behavior of Hydrophobic Polyelectrolyte Solution in Mixed Aqueous/Organic Solvents Revealed by Neutron Scattering and Viscosimetry, J. Phys. Chem. B, 2012, 116, 13525-13537.
112.W. Essafi, N. Haboubi, C. Williams and F. Boué, Weak Temperature Dependence of Structure in Hydrophobic Polyelectrolyte Aqueous Solution (PSSNa): Correlation between Scattering and Viscosity, J. Phys. Chem. B, 2011, 115, 8951-8960.
113.M. N. Spiteri, C. E. Williams and F. Boué, Pearl-Necklace-Like Chain Conformation of Hydrophobic Polyelectrolyte:  a SANS Study of Partially Sulfonated Polystyrene in Water, Macromolecules, 2007, 40, 6679-6691.
114.US Pat., US Patent Application 15/135851, 2017.
115.A. Pal and R. K. Bhardwaj, Excess Molar Volumes and Viscosities for Binary Mixtures of 2-Propoxyethanol and of 2-Isopropoxyethanol with 2-Pyrrolidinone, N-Methyl-2-pyrrolidinone, N,N-Dimethylformamide, and N,N-Dimethylacetamide at 298.15 K, J. Chem. Eng. Data, 2002, 47, 1128-1134.
116.C. Yang, W. Xu and P. Ma, Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several Temperatures, J. Chem. Eng. Data, 2004, 49, 1794-1801.
117.Q. Pu and S. B. Chen, Clustering Effect on the Viscosity of Nondilute Sodium Polystyrenesulfonate Solutions, Langmuir, 2003, 19, 4034-4036.
118.H. H. Winter and F. Chambon, Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel Point, J. Rheol., 1986, 30, 367-382.
119.T. A. Waigh, R. Ober, C. E. Williams and J.-C. Galin, Semidilute and Concentrated Solutions of a Solvophobic Polyelectrolyte in Nonaqueous Solvents, Macromolecules, 2001, 34, 1973-1980.
120.K. Nishi, S. Tochioka, T. Hiroi, T. Yamada, K. Kokado, T.-H. Kim, E. P. Gilbert, K. Sada and M. Shibayama, Structural Analysis of Lipophilic Polyelectrolyte Solutions and Gels in Low-Polar Solvents, Macromolecules, 2015, 48, 3613-3621.
121.T. M. Aminabhavi and B. Gopalakrishna, Density, Viscosity, Refractive Index, and Speed of Sound in Aqueous Mixtures of N,N-Dimethylformamide, Dimethyl Sulfoxide, N,N-Dimethylacetamide, Acetonitrile, Ethylene Glycol, Diethylene Glycol, 1,4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and 2-Ethoxyethanol at 298.15 K, J. Chem. Eng. Data, 1995, 40, 856-861.
122.J. George and N. V. Sastry, Densities, Viscosities, Speeds of Sound, and Relative Permittivities for Water + Cyclic Amides (2-Pyrrolidinone, 1-Methyl-2-pyrrolidinone, and 1-Vinyl-2-pyrrolidinone) at Different Temperatures, J. Chem. Eng. Data, 2004, 49, 235-242.
123.M. Sedlák, What Can Be Seen by Static and Dynamic Light Scattering in Polyelectrolyte Solutions and Mixtures?, Langmuir, 1999, 15, 4045-4051.
124.Z. Cao and G. Zhang, Insight into Dynamics of Polyelectrolyte Chains in Salt-Free Solutions by Laser Light Scattering and Analytical Ultracentrifugation, Polymer, 2014, 55, 6789-6794.
125.M. Sedlák, Dynamic Light Scattering from Binary Mixtures of Polyelectrolytes. I. Influence of Mixing on the Fast and Slow Polyelectrolyte Mode Behavior, J. Chem. Phys., 1997, 107, 10799-10804.
126.B. D. Ermi and E. J. Amis, Domain Structures in Low Ionic Strength Polyelectrolyte Solutions, Macromolecules, 1998, 31, 7378-7384.
127.M. Sedlák, Generation of Multimacroion Domains in Polyelectrolyte Solutions by Change of Ionic Strength or pH (Macroion Charge), J. Chem. Phys., 2002, 116, 5256-5262.
128.H. Nie, M. Li, R. Bansil, Č. Koňák, M. Helmstedt and J. Lal, Structure and Dynamics of a Pentablock Copolymer of Polystyrene-Polybutadiene in a Butadiene-Selective Solvent, Polymer, 2004, 45, 8791-8799.
129.C. Konak, G. Fleischer, Z. Tuzar and R. Bansil, Dynamics of Solutions of Triblock Copolymers in a Selective Solvent: Effect of Varying Copolymer Concentration, J. Polym. Sci., Part B: Polym. Phys., 2000, 38, 1312-1322.
130.E. V. Korchagina and O. E. Philippova, Multichain Aggregates in Dilute Solutions of Associating Polyelectrolyte Keeping a Constant Size at the Increase in the Chain Length of Individual Macromolecules, Biomacromolecules, 2010, 11, 3457-3466.
131.H. L. Yi, C. H. Wu, C. I. Wang and C. C. Hua, Solvent-Regulated Mesoscale Aggregation Properties of Dilute PBTTT-C14 Solutions, Macromolecules, 2017, 50, 5498-5509.
132.A. Y. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules, AIP Press, New York, 1994.
133.S. K. Filippov, A. V. Lezov, O. Y. Sergeeva, A. S. Olifirenko, S. B. Lesnichin, N. S. Domnina, E. A. Komarova, M. Almgren, G. Karlsson and P. Štepanek, Aggregation of Dextran Hydrophobically Modified by Sterically-Hindered Phenols in Aqueous Solutions: Aggregates vs. Single Molecules, Eur. Polym. J., 2008, 44, 3361-3369.
134.L. Liu, T. Wang, C. Liu, K. Lin, Y. Ding, G. Liu and G. Zhang, Mechanistic Insights into Amplification of Specific Ion Effect in Water–Nonaqueous Solvent Mixtures, J. Phys. Chem. B, 2013, 117, 2535-2544.
135.E. Josef and H. Bianco-Peled, Conformation of a Natural Polyelectrolyte in Semidilute Solutions with no Added Salt, Soft Matter, 2012, 8, 9156-9165.
136.E. Buhler and F. Boué, Chain Persistence Length and Structure in Hyaluronan Solutions:  Ionic Strength Dependence for a Model Semirigid Polyelectrolyte, Macromolecules, 2004, 37, 1600-1610.
137.J. Combet, P. Lorchat and M. Rawiso, Salt-Free Aqueous Solutions of Polyelectrolytes: Small Angle X-ray and Neutron Scattering Characterization, Eur. Phys. J.: Spec. Top., 2012, 213, 243-265.
138.B. Hammouda, A New Guinier-Porod Model, J. Appl. Crystallogr., 2010, 43, 716-719.
139.P. Sharp and V. A. Bloomfield, Light Scattering from Wormlike Chains with Excluded Volume Effects, Biopolymers, 1968, 6, 1201-1211.
140.S. W. Cranford and M. J. Buehler, Variation of Weak Polyelectrolyte Persistence Length through an Electrostatic Contour Length, Macromolecules, 2012, 45, 8067-8082.
141.M. Muthukumar, 50th Anniversary Perspective: A Perspective on Polyelectrolyte Solutions, Macromolecules, 2017, 50, 9528-9560.
142.S. Popa-Nita, C. Rochas, L. David and A. Domard, Structure of Natural Polyelectrolyte Solutions: Role of the Hydrophilic/Hydrophobic Interaction Balance, Langmuir, 2009, 25, 6460-6468.
143.A. V. Dobrynin, M. Rubinstein and S. P. Obukhov, Cascade of Transitions of Polyelectrolytes in Poor Solvents, Macromolecules, 1996, 29, 2974-2979.
144.Y. S. Vygodskii, A. S. Shaplov, E. I. Lozinskaya, K. A. Lyssenko, D. G. Golovanov, I. A. Malyshkina, N. D. Gavrilova and M. R. Buchmeiser, Conductive Polymer Electrolytes Derived from Poly(norbornene)s with Pendant Ionic Imidazolium Moieties, Macromol. Chem. Phys., 2008, 209, 40-51.
145.F. Bordi, C. Cametti, T. Gili, S. Sennato, S. Zuzzi, S. Dou and R. H. Colby, Solvent Quality Influence on the Dielectric Properties of Polyelectrolyte Solutions: A Scaling Approach, Phys. Rev. E, 2005, 72, 031806.
146.F. Bordi, C. Cametti, S. Sennato, S. Zuzzi, S. Dou and R. H. Colby, Dielectric Scaling in Polyelectrolyte Solutions with Different Solvent quality in the Dilute Concentration Regime, Phys. Chem. Chem. Phys., 2006, 8, 3653-3658.
147.W. O. Yah, K. Yamamoto, N. Jiravanichanun, H. Otsuka and A. Takahara, Imogolite Reinforced Nanocomposites: Multifaceted Green Materials, Materials, 2010, 3, 1709.
148.M. Suzuki and K. Inukai, in Inorganic and Metallic Nanotubular Materials, ed. T. Kijima, Springer-Verlag Berlin Heidelberg, 2010, vol. 117, ch. 12.
149.A. C. Lopes, P. Martins and S. Lanceros-Mendez, Aluminosilicate and Aluminosilicate Based Polymer Composites: Present Status, Applications and Future Trends, Prog. Surf. Sci., 2014, 89, 239-277.
150.Y. Lvov and E. Abdullayev, Functional Polymer–Clay Nanotube Composites with Sustained Release of Chemical Agents, Prog. Polym. Sci., 2013, 38, 1690-1719.
151.D.-Y. Kang, N. A. Brunelli, G. I. Yucelen, A. Venkatasubramanian, J. Zang, J. Leisen, P. J. Hesketh, C. W. Jones and S. Nair, Direct Synthesis of Single-Walled Aminoaluminosilicate Nanotubes with Enhanced Molecular Adsorption Selectivity, Nat. Commun., 2014, 5, 3342.
152.C. H. Lam, A.-C. Yang, H.-Y. Chi, K.-Y. Chan, C.-C. Hsieh and D.-Y. Kang, Microwave-Assisted Synthesis of Highly Monodispersed Single-Walled Alunminosilicate Nanotubes, ChemistrySelect, 2016, 1, 6212-6216.
153.D.-Y. Kang, J. Zang, E. R. Wright, A. L. McCanna, C. W. Jones and S. Nair, Dehydration, Dehydroxylation, and Rehydroxylation of Single-Walled Aluminosilicate Nanotubes, ACS Nano, 2010, 4, 4897-4907.
154.N. Donkai, H. Inagaki, K. Kajiwara, H. Urakawa and M. Schmidt, Dilute Solution Properties of Imogolite, Die Makromolekulare Chemie, 1985, 186, 2623-2638.
155.L. Guimaraes, Y. N. Pinto, M. P. Lourenco and H. A. Duarte, Imogolite-Like Nanotubes: Structure, Stability, Electronic and Mechanical Properties of the Phosphorous and Arsenic Derivatives, Phys. Chem. Chem. Phys., 2013, 15, 4303-4309.
156.M. P. Lourenço, L. Guimarães, M. C. da Silva, C. de Oliveira, T. Heine and H. A. Duarte, Nanotubes With Well-Defined Structure: Single- and Double-Walled Imogolites, J. Phys. Chem. C, 2014, 118, 5945-5953.
157.K.-H. Liou, N.-T. Tsou and D.-Y. Kang, Relationships Among the Structural Topology, Bond Strength, and Mechanical Properties of Single-Walled Aluminosilicate Nanotubes, Nanoscale, 2015, 7, 16222-16229.
158.E. Paineau, M.-E. M. Krapf, M.-S. Amara, N. V. Matskova, I. Dozov, S. Rouzière, A. Thill, P. Launois and P. Davidson, A Liquid-Crystalline Hexagonal Columnar Phase in Highly-Dilute Suspensions of Imogolite Nanotubes, Nat. Commun., 2016, 7, 10271.
159.K.-H. Liou and D.-Y. Kang, Defective Single-Walled Aluminosilicate Nanotubes: Structural Stability and Mechanical Properties, ChemNanoMat, 2016, 2, 189-195.
160.A.-C. Yang, Y.-S. Li, C. H. Lam, H.-Y. Chi, I. C. Cheng and D.-Y. Kang, Solution-Processed Ultra-Low-k Thin Films Comprising Single-Walled Aluminosilicate Nanotubes, Nanoscale, 2016, 8, 17427-17432.
161.K.-H. Liou, D.-Y. Kang and L.-C. Lin, Investigating the Potential of Single-Walled Aluminosilicate Nanotubes in Water Desalination, ChemPhysChem, 2017, 18, 179-183.
162.G. N. B. Baroña, M. Choi and B. Jung, High Permeate Flux of PVA/PSf Thin Film Composite Nanofiltration Membrane with Aluminosilicate Single-Walled Nanotubes, J. Colloid Interface Sci., 2012, 386, 189-197.
163.M. Boyer, E. Paineau, M. Bacia-Verloop and A. Thill, Aqueous Dispersion State of Amphiphilic Hybrid Aluminosilicate Nanotubes, Appl. Clay Sci., 2014, 96, 45-49.
164.Y. Kazuya, O. Hideyuki, W. Shin-Ichiro and T. Atsushi, Surface Modification of Aluminosilicate Nanofiber “Imogolite”, Chem. Lett., 2001, 30, 1162-1163.
165.K. Yamamoto, H. Otsuka, S.-I. Wada, D. Sohn and A. Takahara, Transparent Polymer Nanohybrid Prepared by in situ Synthesis of Aluminosilicate Nanofibers in Poly(vinyl alcohol) Solution, Soft Matter, 2005, 1, 372-377.
166.W. Ma, W. O. Yah, H. Otsuka and A. Takahara, Application of Imogolite Clay Nanotubes in Organic-Inorganic Nanohybrid Materials, J. Mater. Chem., 2012, 22, 11887-11892.
167.W. Ma, Y. Higaki and A. Takahara, in Developments in Clay Science, eds. P. Yuan, A. Thill and F. Bergaya, Elsevier, 2016, vol. 7, ch. 24, pp. 628-671.
168.K. Fujikura, H. Maeda, A. Obata, K. Inukai, K. Kato and T. Kasuga, Preparation and Rheological Characterization of Imogolite Hydrogels, J. Nanomater., 2014, 2014, 97-97.
169.Y. Tsujimoto, A. Yoshida, M. Kobayashi and Y. Adachi, Rheological Behavior of Dilute Imogolite Suspensions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 435, 109-114.
170.K. Shikinaka, K. Kaneda, S. Mori, T. Maki, H. Masunaga, Y. Osada and K. Shigehara, Direct Evidence for Structural Transition Promoting Shear Thinning in Cylindrical Colloid Assemblies, Small, 2014, 10, 1813-1820.
171.D.-Y. Kang, M. E. Lydon, G. I. Yucelen, C. W. Jones and S. Nair, Solution-Processed Ultrathin Aluminosilicate Nanotube–Poly(vinyl alcohol) Composite Membranes with Partial Alignment of Nanotubes, ChemNanoMat, 2015, 1, 102-108.
172.D.-Y. Kang, H. M. Tong, J. Zang, R. P. Choudhury, D. S. Sholl, H. W. Beckham, C. W. Jones and S. Nair, Single-Walled Aluminosilicate Nanotube/Poly(vinyl alcohol) Nanocomposite Membranes, ACS Appl. Mater. Interfaces, 2012, 4, 965-976.
173.E. Prokopová, P. Štern and O. Quadrat, Rheological Investigation of Aqueous Solutions of Poly(vinyl alcohol) during Ageing, Colloid. Polym. Sci., 1985, 263, 899-904.
174.P. Supaphol and S. Chuangchote, On the Electrospinning of Poly(vinyl alcohol) Nanofiber Mats: A Revisit, J. Appl. Polym. Sci., 2008, 108, 969-978.
175.H.-W. Gao, R.-J. Yang, J.-Y. He and L. Yang, Rheological Behaviors of PVA/H2O Solutions of High-Polymer Concentration, J. Appl. Polym. Sci., 2010, 116, 1459-1466.
176.N. Yang, J. L. Hutter and J. R. de Bruyn, Rheology and Structure of Poly(vinyl alcohol)-Poly(ethylene glycol) Blends during Aging, J. Rheol., 2013, 57, 1739-1759.
177.S. Chen and T. Kraus, Nanorod-Depolarized Dynamic Light Scattering in a Gelling Liquid, J. Phys. Chem. C, 2012, 116, 16766-16775.
178.R. Cush, P. S. Russo, Z. Kucukyavuz, Z. Bu, D. Neau, D. Shih, S. Kucukyavuz and H. Ricks, Rotational and Translational Diffusion of a Rodlike Virus in Random Coil Polymer Solutions, Macromolecules, 1997, 30, 4920-4926.
179.Z. Xiao, M. Gupta, G. Baltas, T. Liu, H. G. Chae and S. Kumar, Probe Diffusion of Single-Walled Carbon Nanotubes in Semidilute Solutions of Polyacrylonitrile Homo- and Copolymers: Effects of Topological Constraints and Polymer/Nanorod Interactions, Polymer, 2012, 53, 5069-5077.
180.M. Sánchez-Miranda, E. Sarmiento-Gómez and J. Arauz-Lara, Brownian Motion of Optically Anisotropic Spherical Particles in Polymeric Suspensions, Eur. Phys. J. E, 2015, 38, 1-6.
181.M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, Oxford, 1988.
182.T. Hiroi, S. Ata and M. Shibayama, Transitions of Aggregation States for Concentrated Carbon Nanotube Dispersion, J. Phys. Chem. C, 2016, 120, 5776-5782.
183.M. J. Solomon and P. T. Spicer, Microstructural Regimes of Colloidal Rod Suspensions, Gels, and Glasses, Soft Matter, 2010, 6, 1391-1400.
184.S. Broersma, Rotational Diffusion Constant of a Cylindrical Particle, J. Chem. Phys., 1960, 32, 1626-1631.
185.R. F. Kayser and H. J. Raveché, Bifurcation in Onsager's Model of the Isotropic-Nematic Transition, Phys. Rev. A, 1978, 17, 2067-2072.
186.E. K. Hobbie, Shear Rheology of Carbon Nanotube Suspensions, Rheol. Acta, 2010, 49, 323-334.
187.H. Hoshino, T. Ito, N. Donkai, H. Urakawa and K. Kajiwara, Lyotropic Mesophase Formation in PVA/Imogolite Mixture, Polym. Bull., 1992, 29, 453-460.
188.T. Chatterjee and R. Krishnamoorti, Rheology of Polymer Carbon Nanotubes Composites, Soft Matter, 2013, 9, 9515-9529.
189.P. Pötschke, T. D. Fornes and D. R. Paul, Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites, Polymer, 2002, 43, 3247-3255.
190.Y. Y. Huang, S. V. Ahir and E. M. Terentjev, Dispersion Rheology of Carbon Nanotubes in a Polymer Matrix, Phys. Rev. B, 2006, 73, 125422.
191.Y. S. Song, Rheological Characterization of Carbon Nanotubes/Poly(ethylene oxide) Composites, Rheol. Acta, 2006, 46, 231-238.
192.W. Lv, Q. Mei, M. Du, J. Xiao, W. Ye and Q. Zheng, Interaction between Poly(vinyl alcohol) and Layered Double Hydroxide (LDH) Particles with Different Topological Shape and Their Application in Electrospinning, J. Phys. Chem. C, 2016, 120, 14435-14443.
193.D. Bagheriasl, P. J. Carreau, B. Riedl, C. Dubois and W. Y. Hamad, Shear Rheology of Polylactide (PLA)–Cellulose Nanocrystal (CNC) Nanocomposites, Cellulose, 2016, 23, 1885-1897.
194.C. E. Meree, G. T. Schueneman, J. C. Meredith and M. L. Shofner, Rheological Behavior of Highly Loaded Cellulose Nanocrystal/Poly(vinyl alcohol) Composite Suspensions, Cellulose, 2016, 23, 3001-3012.
195.A. Ghanbari, M.-C. Heuzey, P. J. Carreau and M.-T. Ton-That, Morphological and Rheological Properties of PET/Clay Nanocomposites, Rheol. Acta, 2013, 52, 59-74.
196.D. W. Litchfield and D. G. Baird, The Rheology of High Aspect Ratio Nano-Particle Filled Liquids, Rheol. Rev., 2006, 2006, 1.
197.W. P. Cox and E. H. Merz, Correlation of Dynamic and Steady Flow Viscosities, J. Polym. Sci., 1958, 28, 619-622.
198.Y. H. Wen, H. C. Lin, C. H. Li and C. C. Hua, An Experimental Appraisal of the Cox–Merz Rule and Laun's Rule Based on Bidisperse Entangled Polystyrene Solutions, Polymer, 2004, 45, 8551-8559.
199.F. Snijkers and D. Vlassopoulos, Appraisal of the Cox-Merz Rule for Well-Characterized Entangled Linear and Branched Polymers, Rheol. Acta, 2014, 53, 935-946.
200.H. H. Winter, Three Views of Viscoelasticity for Cox–Merz Materials, Rheol. Acta, 2009, 48, 241-243.
201.M. Ansari, S. G. Hatzikiriakos, A. M. Sukhadia and D. C. Rohlfing, Rheology of Ziegler–Natta and Metallocene High-Density Polyethylenes: Broad Molecular Weight Distribution Effects, Rheol. Acta, 2011, 50, 17-27.
202.O. Ben-David, E. Nativ-Roth, R. Yerushalmi-Rozen and M. Gottlieb, Rheological Investigation of Single-Walled Carbon Nanotubes - Induced Structural Ordering in CTAB Solutions, Soft Matter, 2009, 5, 1925-1930.
203.D. Doraiswamy, A. N. Mujumdar, I. Tsao, A. N. Beris, S. C. Danforth and A. B. Metzner, The Cox–Merz Rule Extended: A Rheological Model for Concentrated Suspensions and Other Materials with a Yield Stress, J. Rheol., 1991, 35, 647-685.
204.W. Gleissle and B. Hochstein, Validity of the Cox–Merz Rule for Concentrated Suspensions, J. Rheol., 2003, 47, 897-910.
205.R. Guo, J. Azaiez and C. Bellehumeur, Rheology of Fiber Filled Polymer Melts: Role of Fiber-Fiber Interactions and Polymer-Fiber Coupling, Polym. Eng. Sci., 2005, 45, 385-399.
206.D. S. Bangarusampath, H. Ruckdäschel, V. Altstädt, J. K. W. Sandler, D. Garray and M. S. P. Shaffer, Rheology and Properties of Melt-Processed Poly(ether ether ketone)/Multi-Wall Carbon Nanotube Composites, Polymer, 2009, 50, 5803-5811.
207.C. C. Hua, Investigations on Several Empirical Rules for Entangled Polymers Based on a Self-Consistent Full-Chain Reptation Theory, J. Chem. Phys., 2000, 112, 8176-8186.
208.F. J. Galindo-Rosales, P. Moldenaers and J. Vermant, Assessment of the Dispersion Quality in Polymer Nanocomposites by Rheological Methods, Macromol. Mater. Eng., 2011, 296, 331-340.
209.D. Linton, P. Driva, B. Sumpter, I. Ivanov, D. Geohegan, C. Feigerle and M. D. Dadmun, The Importance of Chain Connectivity in the Formation of Non-Covalent Interactions between Polymers and Single-Walled Carbon Nanotubes and Its Impact on Dispersion, Soft Matter, 2010, 6, 2801-2814.
210.S. J. Veen, P. Versluis, A. Kuijk and K. P. Velikov, Microstructure and Rheology of Microfibril-Polymer Networks, Soft Matter, 2015, 11, 8907-8912.
211.H. Yang, Y. Chen and Z. Su, Microtubes via Assembly of Imogolite with Polyelectrolyte, Chem. Mater., 2007, 19, 3087-3089.
212.G. G. Fuller, Optical Rheometry, Annu. Rev. Fluid Mech., 1990, 22, 387-417.
213.G. G. Fuller, Optical Rheometry of Complex Fluids, Oxford University Press, New York, 1995.
214.G. Natale, N. K. Reddy, G. Ausias, J. Férec, M. C. Heuzey and P. J. Carreau, Rheo-Optical Response of Carbon Nanotube Suspensions, J. Rheol., 2015, 59, 499-524.
215.K. Shikinaka, Y. Koizumi, K. Kaneda, Y. Osada, H. Masunaga and K. Shigehara, Strain-Induced Reversible Isotropic–Anisotropic Structural Transition of Imogolite Hydrogels, Polymer, 2013, 54, 2489-2492.
216.K. Shikinaka, T. Yokoi, Y. Koizumi-Fujii, M. Shimotsuya and K. Shigehara, Robust Imogolite Hydrogels with Tunable Physical Properties, RSC Adv., 2015, 5, 46493-46500.
217.N. Noboru, Y. Tomoharu and S. Yosio, Development of a New Aqueous Solution Highly Sensitive to Flow Birefringence, Jpn. J. Appl. Phys., 1971, 10, 1034.
218.N. Noboru, Y. Tomoharu and S. Yoshio, Study of Rheological Properties of Polyvinyl Alcohol Aqueous Solution by Flow Birefringence, Jpn. J. Appl. Phys., 1969, 8, 283.
219.M. P. Lettinga, Z. Dogic, H. Wang and J. Vermant, Flow Behavior of Colloidal Rodlike Viruses in the Nematic Phase, Langmuir, 2005, 21, 8048-8057.
220.N. K. Reddy, J. Pérez-Juste, I. Pastoriza-Santos, P. R. Lang, J. K. G. Dhont, L. M. Liz-Marzán and J. Vermant, Flow Dichroism as a Reliable Method to Measure the Hydrodynamic Aspect Ratio of Gold Nanoparticles, ACS Nano, 2011, 5, 4935-4944.
221.D. Z. Gunes, R. Scirocco, J. Mewis and J. Vermant, Flow-Induced Orientation of Non-Spherical Particles: Effect of Aspect Ratio and Medium Rheology, J. Non-Newtonian Fluid Mech., 2008, 155, 39-50.
222.M. Ripoll, R. G. Winkler, K. Mussawisade and G. Gompper, Mesoscale Hydrodynamics Simulations of Attractive Rod-Like Colloids in Shear Flow, J. Phys.: Condens. Matter, 2008, 20, 404209.
223.Y.-G. Tao, W. K. den Otter and W. J. Briels, Kayaking and Wagging of Rods in Shear Flow, Phys. Rev. Lett., 2005, 95, 237802.
224.S. L. Shenoy, W. D. Bates, H. L. Frisch and G. E. Wnek, Role of Chain Entanglements on Fiber Formation during Electrospinning of Polymer Solutions: Good Solvent, Non-Specific Polymer–Polymer Interaction Limit, Polymer, 2005, 46, 3372-3384.
225.A. Koski, K. Yim and S. Shivkumar, Effect of Molecular Weight on Fibrous PVA Produced by Electrospinning, Mater. Lett., 2004, 58, 493-497.
226.J. C. J. F. Tacx, H. M. Schoffeleers, A. G. M. Brands and L. Teuwen, Dissolution Behavior and Solution Properties of Polyvinylalcohol as Determined by Viscometry and Light Scattering in DMSO, Ethyleneglycol and Water, Polymer, 2000, 41, 947-957.
227.H. Bang, M. Gopiraman, B.-S. Kim, S.-H. Kim and I.-S. Kim, Effects of pH on Electrospun PVA/Acid-Treated MWNT Composite Nanofibers, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 409, 112-117.
228.J. S. Jeong, J. S. Moon, S. Y. Jeon, J. H. Park, P. S. Alegaonkar and J. B. Yoo, Mechanical Properties of Electrospun PVA/MWNTs Composite Nanofibers, Thin Solid Films, 2007, 515, 5136-5141.
229.D. Gupta, M. Jassal and A. K. Agrawal, Electrospinning of Poly(vinyl alcohol)-Based Boger Fluids To Understand the Role of Elasticity on Morphology of Nanofibers, Ind. Eng. Chem. Res., 2015, 54, 1547-1554.
230.C. Tang, C. D. Saquing, J. R. Harding and S. A. Khan, In Situ Cross-Linking of Electrospun Poly(vinyl alcohol) Nanofibers, Macromolecules, 2010, 43, 630-637.
231.S. Basu, N. Gogoi, S. Sharma, M. Jassal and A. K. Agrawal, Role of Elasticity in Control of Diameter of Electrospun PAN Nanofibers, Fibers Polym., 2013, 14, 950-956.
232.J. H. Yu, S. V. Fridrikh and G. C. Rutledge, The Role of Elasticity in the Formation of Electrospun Fibers, Polymer, 2006, 47, 4789-4797.
233.H. Zhang, H. Liang, J. Wang and K. Li, in Z. Phys. Chem., 2007, vol. 221, p. 1061.
234.M. A. Rather, G. M. Rather, S. A. Pandit, S. A. Bhat and M. A. Bhat, Determination of Cmc of Imidazolium Based Surface Active Ionic Liquids through Probe-Less UV–Vis Spectrophotometry, Talanta, 2015, 131, 55-58.
235.J. des Cloizeaux, Form Factor of an Infinite Kratky-Porod Chain, Macromolecules, 1973, 6, 403-407.
236.M. Shimode, M. Mimura, H. Urakawa, S. Yamanaka and K. Kajiwara, Interaction between the Dyestuff Aggregates in Aqueous Solution, Sen'i Gakkaishi, 1996, 52, 301-309.
237.I. Dogsa, J. Štrancar, P. Laggner and D. Stopar, Efficient Modeling of Polysaccharide Conformations Based on Small-Angle X-ray Scattering Experimental Data, Polymer, 2008, 49, 1398-1406.
238.J. Teixeira, Small-Angle Scattering by Fractal Systems, J. Appl. Crystallogr., 1988, 21, 781-785.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔