( 您好!臺灣時間:2021/03/05 00:09
字體大小: 字級放大   字級縮小   預設字形  


論文名稱(外文):Analysis of Anti-sagging/Leveling Properties of Paints by Rheological Measurements
指導教授(外文):Hua, Chi-Chung
口試委員(外文):Mao,Ching-FongJiang, Bing-Rui
外文關鍵詞:CoatingThixotropyAnti-saggingLevelingRheological AnalysisUreaResin Solution
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Sagging-controlled agent (SCA) plays a key role in assuring the performance and quality of painting materials. Although there had been some reports on the analysis schemes for anti-sagging and leveling evaluation, few or no studies were devoted to exploring the effects of altered rheological properties during baking after the spraying of a paint. In this research, resin solutions made of urea molecules synthesized by five different diisocyanate isomers with benzyl amine in polyester solution medium are considered as the model SCAs. These resin solutions, along with two of their counterpart model paint systems which selectively add hardner or titanium dioxide, are investigated using time- and temperature-sweep rheological characterizations. The goal is to mimic the baking procedure of real paints while monitoring their anti-sagging and leveling behaviors. The results indicate that, in contrast with the three-step stress experiment carried out at ambient temperature that has proven effective for discriminating the anti-sagging but not leveling performance of the model SCAs, the temporal and non-isothermal rheological characterizations noted above show promising ability to discriminate anti-sagging and leveling properties at one time, and the results for the model SCAs are in excellent agreement with those of their counterpart paint systems. The strategy and analysis schemes proposed herein are expected to greatly facilitate the early identification of potential resin samples and urea molecule designs that would serve as excellent SCAs.
謝辭 i
摘要 ii
Abstract iiii
圖目錄 viii
第1章 緒論 1
第2章 實驗部分 5
2-1 實驗藥品與配置 5
2-2 流變實驗 6
2-2-1 儀器設備 6
2-2-2 預剪切處理 (pre-shearing) 7
2-2-3 實際噴塗測試 8
2-2-4 振幅掃描 (amplitude sweep) 9
2-2-5 三階段應力實驗 (3-step tests) 9
2-2-6 溫度掃描 (temperature sweep) 10
2-2-7 時間掃描 (time sweep) 10
第3章 結果與討論 11
3-1 實際噴塗測試 11
3-1-1 噴塗抗流掛情形 11
3-1-2 噴塗流平性情形 12
3-2 五種不同樹脂樣品之抗流掛與流平性質分析 14
3-2-1 振幅掃描 14
3-2-2 三階段應力測試 17
3-2-3 溫度掃描 18
3-3 非等溫條件下硬化劑交聯反應對抗流掛與流平性質影響之分析….. 27
3-3-1 溫度時間掃描 27
3-4 非等溫條件下白漆交聯反應對抗流掛與流平性質影響之分析 31
3-4-1 溫度時間掃描 32
第4章 結論 36
參考文獻 38
附錄A 42
A-1 不同頻率 (a) 0.1 Hz (b) 40 Hz 下 TDI、IPDI 與聚脂樹脂清漆樣品硬化劑交聯反應之溫度時間掃描圖譜 42
附錄B 45
B-1 不同頻率 (a) 0.1 Hz (b) 40 Hz 下 MDI 與 IPDI 白漆樣品硬化劑交聯反應之溫度時間掃描圖譜 45

1.Bodzay, B.; Bocz, K.; Barkai, Z.; Marosi, G., Influence of rheological additives on char formation and fire resistance of intumescent coatings. Polym. Degrad. Stab. 2011, 96 (3), 355-362.
2.Buck, R. D., Some applications of rheology to the treatment of panel paintings. Stud. Conserv. 1972, 17 (1), 1-11.
3.Patel, P.; Russel, W., The rheology of polystyrene latices phase separated by dextran. Journal of Rheology 1987, 31 (7), 599-618.
4.Chhabra, R. P.; Richardson, J. F., Non-Newtonian flow and applied rheology: engineering applications. Butterworth-Heinemann: 2011.
5.Christ, U.; Bittner, A., Rheology control of organic coatings with new hydrophobic silicas. Prog. Org. Coat. 1994, 24 (1-4), 29-41.
6.Saalah, S.; Abdullah, L. C.; Aung, M. M.; Salleh, M. Z.; Biak, D. R. A.; Basri, M.; Jusoh, E. R.; Mamat, S., Colloidal stability and rheology of jatropha oil-based waterborne polyurethane (JPU) dispersion. Prog. Org. Coat. 2018, 125, 348-357.
7.Zhang, H. H.; Niu, R.; Guan, X. B.; Xu, D. H.; Shi, T. F., Rheological properties of waterborne polyurethane paints. Chinese Journal of Polymer Science 2015, 33 (12), 1750-1756.
8.Bhavsar, R.; Raj, R.; Parmar, R., Studies of sedimentation behaviour of high pigmented alkyd primer: A rheological approach. Prog. Org. Coat. 2013, 76 (5), 852-857.
9.Svanholm, T.; Molenaar, F.; Toussaint, A., Associative thickeners: Their adsorption behaviour onto latexes and the rheology of their solutions. Prog. Org. Coat. 1997, 30 (3), 159-165.
10.Deka, A.; Dey, N., Rheological studies of two component high build epoxy and polyurethane based high performance coatings. J. Coat. Technol. Res. 2013, 10 (3), 305-315.
11.Bhavsar, R.; Shreepathi, S., Evolving empirical rheological limits to predict flow-levelling and sag resistance of waterborne architectural paints. Prog. Org. Coat. 2016, 101, 15-23.
12.Hajas, J.; Woocker, A. In Modified ureas: An interesting opportunity to control rheology of liquid coatings, Macromolecular Symposia, Wiley Online Library: 2002; pp 215-224.
13.Servais, C.; Jones, R.; Roberts, I., The influence of particle size distribution on the processing of food. J. Food Eng. 2002, 51 (3), 201-208.
14.Kim, D.; Lee, D. G.; Kim, J. C.; Lim, C. S.; Kong, N. S.; Kim, J. H.; Jung, H. W.; Noh, S. M.; Park, Y. I., Effect of molecular weight of polyurethane toughening agent on adhesive strength and rheological characteristics of automotive structural adhesives. Int. J. Adhes. Adhes. 2017, 74, 21-27.
15.Laba, D., The flow of cosmetics and toiletries. COSMETIC SCIENCE AND TECHNOLOGY SERIES 1993, 1-1.
16.Edali, M.; Esmail, M. N.; Vatistas, G. H., Rheological properties of high concentrations of carboxymethyl cellulose solutions. J. Appl. Polym. Sci. 2001, 79 (10), 1787-1801.
17.Lau, H. C.; Bhattacharya, S. N.; Field, G. J., Influence of rheological properties on the sagging of polypropylene and ABS sheet for thermoforming applications. Polymer Engineering and Science 2000, 40 (7), 1564-1570.
18.Gao, T.; Gillispie, G. J.; Copus, J. S.; Pr, A. K.; Seol, Y. J.; Atala, A.; Yoo, J. J.; Lee, S. J., Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach. Biofabrication 2018, 10 (3), 034106.
19.Cohu, O.; Magnin, A., The levelling of thixotropic coatings. Prog. Org. Coat. 1996, 28 (2), 89-96.
20.Lu, C. F., Latex paint rheology and performance properties. Ind. Eng. Chem. Prod. Res. Dev. 1985, 24 (3), 412-417.
21.Molenaar, F.; Svanholm, T.; Toussaint, A., Rheological behaviour of latexes in-can and during film drying. Prog. Org. Coat. 1997, 30 (3), 141-158.
22.Cui, C.; Guo, X.; Han, Z.; Shi, J.; Sun, Z.; Duan, S.; Liu, B.; Lin, Z. In Research and Application of Solvent-Free Internal Drag Reducing Epoxy Coating for Non-Corrosive Gas Transmission Service, IOP Conference Series: Earth and Environmental Science, IOP Publishing: 2019; p 022055.
23.Mardis, W. S., Organoclay rheological additives: past, present and future. J. Am. Oil Chem. Soc. 1984, 61 (2), 382-387.
24.Ettlinger, M.; Ladwig, T.; Weise, A., Surface modified fumed silicas for modern coatings. Prog. Org. Coat. 2000, 40 (1-4), 31-34.
25.Kroon, G., Associative behavior of hydrophobically modified hydroxyethyl celluloses (HMHECs) in waterborne coatings. Prog. Org. Coat. 1993, 22 (1-4), 245-260.
26.Lade Jr, R. K.; Song, J.-O.; Musliner, A. D.; Williams, B. A.; Kumar, S.; Macosko, C. W.; Francis, L. F., Sag in drying coatings: Prediction and real time measurement with particle tracking. Prog. Org. Coat. 2015, 86, 49-58.
27.Grüneberger, F.; Künniger, T.; Zimmermann, T.; Arnold, M., Rheology of nanofibrillated cellulose/acrylate systems for coating applications. Cellulose 2014, 21 (3), 1313-1326.
28.Dimas, B., Development of urea formaldehyde and polystyrene waste as copolymer binder for emulsion paint formulation. Journal of Toxicology and Environmental Health Sciences 2014, 6 (3), 75-88.
29.Osemeahon, S. A.; Barminas, J. T., Study of some physical properties of urea formaldehyde and urea proparaldehyde copolymer composite for emulsion paint formulation. International Journal of the Physical Sciences 2007, 2 (7), 169-177.
30.Vallejo, P. P.; Lopez, B. L.; Murillo, E. A., Hyperbranched phenolic-alkyd resins with high solid content. Prog. Org. Coat. 2015, 87, 213-221.
31.Bosma, M.; Brinkhuis, R.; Coopmans, J.; Reuvers, B., The role of sag control agents in optimizing the sag/leveling balance and a new powerful tool to study this. Prog. Org. Coat. 2006, 55 (2), 97-104.
32.van Esch, J. H.; Schoonbeek, F.; de Loos, M.; Kooijman, H.; Spek, A. L.; Kellogg, R. M.; Feringa, B. L., Cyclic bis‐urea compounds as gelators for organic solvents. Chemistry–A European Journal 1999, 5 (3), 937-950.
33.Allix, F.; Curcio, P.; Pham, Q. N.; Pickaert, G.; Jamart-Gregoire, B., Evidence of intercolumnar pi-pi stacking interactions in amino-acid-based low-molecular-weight organogels. Langmuir 2010, 26 (22), 16818-27.
34.Terech, P.; Smith, W. G.; Weiss, R. G., Small-angle scattering study of aqueous gels of sodium lithocholate. Journal of the Chemical Society, Faraday Transactions 1996, 92 (17), 3157-3162.
35.Nagasawa, J. i.; Matsumoto, H.; Yoshida, M., Highly efficient and specific gelation of ionic liquids by polymeric electrolytes to form ionogels with substantially high gel–sol transition temperatures and rheological properties like self-standing ability and rapid recovery. ACS Macro Lett. 2012, 1 (9), 1108-1112.
36.Ewoldt, R. H.; Johnston, M. T.; Caretta, L. M., Experimental challenges of shear rheology: how to avoid bad data. In Complex fluids in biological systems, Springer: 2015; pp 207-241.
37.Sato, J.; Breedveld, V., Evaporation blocker for cone-plate rheometry of volatile samples. Appl. Rheol. 2005, 15 (6), 390-397.
38.Billotte, C.; Carreau, P. J.; Heuzey, M. C., Rheological characterization of a solder paste for surface mount applications. Rheol. Acta 2006, 45 (4), 374-386.
39.Chen, D. T.; Weeks, E. R.; Crocker, J. C.; Islam, M. F.; Verma, R.; Gruber, J.; Levine, A. J.; Lubensky, T. C.; Yodh, A. G., Rheological microscopy: local mechanical properties from microrheology. Phys Rev Lett 2003, 90 (10), 108301.
40.Otsubo, Y.; Amari, T.; Watanabe, K.; Nakamichi, T., Rheological Behavior of High‐solid Coatings during Thermal Curing. Journal of Rheology 1987, 31 (3), 251-269.

電子全文 電子全文(網際網路公開日期:20250819)
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔