|
1.Bodzay, B.; Bocz, K.; Barkai, Z.; Marosi, G., Influence of rheological additives on char formation and fire resistance of intumescent coatings. Polym. Degrad. Stab. 2011, 96 (3), 355-362. 2.Buck, R. D., Some applications of rheology to the treatment of panel paintings. Stud. Conserv. 1972, 17 (1), 1-11. 3.Patel, P.; Russel, W., The rheology of polystyrene latices phase separated by dextran. Journal of Rheology 1987, 31 (7), 599-618. 4.Chhabra, R. P.; Richardson, J. F., Non-Newtonian flow and applied rheology: engineering applications. Butterworth-Heinemann: 2011. 5.Christ, U.; Bittner, A., Rheology control of organic coatings with new hydrophobic silicas. Prog. Org. Coat. 1994, 24 (1-4), 29-41. 6.Saalah, S.; Abdullah, L. C.; Aung, M. M.; Salleh, M. Z.; Biak, D. R. A.; Basri, M.; Jusoh, E. R.; Mamat, S., Colloidal stability and rheology of jatropha oil-based waterborne polyurethane (JPU) dispersion. Prog. Org. Coat. 2018, 125, 348-357. 7.Zhang, H. H.; Niu, R.; Guan, X. B.; Xu, D. H.; Shi, T. F., Rheological properties of waterborne polyurethane paints. Chinese Journal of Polymer Science 2015, 33 (12), 1750-1756. 8.Bhavsar, R.; Raj, R.; Parmar, R., Studies of sedimentation behaviour of high pigmented alkyd primer: A rheological approach. Prog. Org. Coat. 2013, 76 (5), 852-857. 9.Svanholm, T.; Molenaar, F.; Toussaint, A., Associative thickeners: Their adsorption behaviour onto latexes and the rheology of their solutions. Prog. Org. Coat. 1997, 30 (3), 159-165. 10.Deka, A.; Dey, N., Rheological studies of two component high build epoxy and polyurethane based high performance coatings. J. Coat. Technol. Res. 2013, 10 (3), 305-315. 11.Bhavsar, R.; Shreepathi, S., Evolving empirical rheological limits to predict flow-levelling and sag resistance of waterborne architectural paints. Prog. Org. Coat. 2016, 101, 15-23. 12.Hajas, J.; Woocker, A. In Modified ureas: An interesting opportunity to control rheology of liquid coatings, Macromolecular Symposia, Wiley Online Library: 2002; pp 215-224. 13.Servais, C.; Jones, R.; Roberts, I., The influence of particle size distribution on the processing of food. J. Food Eng. 2002, 51 (3), 201-208. 14.Kim, D.; Lee, D. G.; Kim, J. C.; Lim, C. S.; Kong, N. S.; Kim, J. H.; Jung, H. W.; Noh, S. M.; Park, Y. I., Effect of molecular weight of polyurethane toughening agent on adhesive strength and rheological characteristics of automotive structural adhesives. Int. J. Adhes. Adhes. 2017, 74, 21-27. 15.Laba, D., The flow of cosmetics and toiletries. COSMETIC SCIENCE AND TECHNOLOGY SERIES 1993, 1-1. 16.Edali, M.; Esmail, M. N.; Vatistas, G. H., Rheological properties of high concentrations of carboxymethyl cellulose solutions. J. Appl. Polym. Sci. 2001, 79 (10), 1787-1801. 17.Lau, H. C.; Bhattacharya, S. N.; Field, G. J., Influence of rheological properties on the sagging of polypropylene and ABS sheet for thermoforming applications. Polymer Engineering and Science 2000, 40 (7), 1564-1570. 18.Gao, T.; Gillispie, G. J.; Copus, J. S.; Pr, A. K.; Seol, Y. J.; Atala, A.; Yoo, J. J.; Lee, S. J., Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach. Biofabrication 2018, 10 (3), 034106. 19.Cohu, O.; Magnin, A., The levelling of thixotropic coatings. Prog. Org. Coat. 1996, 28 (2), 89-96. 20.Lu, C. F., Latex paint rheology and performance properties. Ind. Eng. Chem. Prod. Res. Dev. 1985, 24 (3), 412-417. 21.Molenaar, F.; Svanholm, T.; Toussaint, A., Rheological behaviour of latexes in-can and during film drying. Prog. Org. Coat. 1997, 30 (3), 141-158. 22.Cui, C.; Guo, X.; Han, Z.; Shi, J.; Sun, Z.; Duan, S.; Liu, B.; Lin, Z. In Research and Application of Solvent-Free Internal Drag Reducing Epoxy Coating for Non-Corrosive Gas Transmission Service, IOP Conference Series: Earth and Environmental Science, IOP Publishing: 2019; p 022055. 23.Mardis, W. S., Organoclay rheological additives: past, present and future. J. Am. Oil Chem. Soc. 1984, 61 (2), 382-387. 24.Ettlinger, M.; Ladwig, T.; Weise, A., Surface modified fumed silicas for modern coatings. Prog. Org. Coat. 2000, 40 (1-4), 31-34. 25.Kroon, G., Associative behavior of hydrophobically modified hydroxyethyl celluloses (HMHECs) in waterborne coatings. Prog. Org. Coat. 1993, 22 (1-4), 245-260. 26.Lade Jr, R. K.; Song, J.-O.; Musliner, A. D.; Williams, B. A.; Kumar, S.; Macosko, C. W.; Francis, L. F., Sag in drying coatings: Prediction and real time measurement with particle tracking. Prog. Org. Coat. 2015, 86, 49-58. 27.Grüneberger, F.; Künniger, T.; Zimmermann, T.; Arnold, M., Rheology of nanofibrillated cellulose/acrylate systems for coating applications. Cellulose 2014, 21 (3), 1313-1326. 28.Dimas, B., Development of urea formaldehyde and polystyrene waste as copolymer binder for emulsion paint formulation. Journal of Toxicology and Environmental Health Sciences 2014, 6 (3), 75-88. 29.Osemeahon, S. A.; Barminas, J. T., Study of some physical properties of urea formaldehyde and urea proparaldehyde copolymer composite for emulsion paint formulation. International Journal of the Physical Sciences 2007, 2 (7), 169-177. 30.Vallejo, P. P.; Lopez, B. L.; Murillo, E. A., Hyperbranched phenolic-alkyd resins with high solid content. Prog. Org. Coat. 2015, 87, 213-221. 31.Bosma, M.; Brinkhuis, R.; Coopmans, J.; Reuvers, B., The role of sag control agents in optimizing the sag/leveling balance and a new powerful tool to study this. Prog. Org. Coat. 2006, 55 (2), 97-104. 32.van Esch, J. H.; Schoonbeek, F.; de Loos, M.; Kooijman, H.; Spek, A. L.; Kellogg, R. M.; Feringa, B. L., Cyclic bis‐urea compounds as gelators for organic solvents. Chemistry–A European Journal 1999, 5 (3), 937-950. 33.Allix, F.; Curcio, P.; Pham, Q. N.; Pickaert, G.; Jamart-Gregoire, B., Evidence of intercolumnar pi-pi stacking interactions in amino-acid-based low-molecular-weight organogels. Langmuir 2010, 26 (22), 16818-27. 34.Terech, P.; Smith, W. G.; Weiss, R. G., Small-angle scattering study of aqueous gels of sodium lithocholate. Journal of the Chemical Society, Faraday Transactions 1996, 92 (17), 3157-3162. 35.Nagasawa, J. i.; Matsumoto, H.; Yoshida, M., Highly efficient and specific gelation of ionic liquids by polymeric electrolytes to form ionogels with substantially high gel–sol transition temperatures and rheological properties like self-standing ability and rapid recovery. ACS Macro Lett. 2012, 1 (9), 1108-1112. 36.Ewoldt, R. H.; Johnston, M. T.; Caretta, L. M., Experimental challenges of shear rheology: how to avoid bad data. In Complex fluids in biological systems, Springer: 2015; pp 207-241. 37.Sato, J.; Breedveld, V., Evaporation blocker for cone-plate rheometry of volatile samples. Appl. Rheol. 2005, 15 (6), 390-397. 38.Billotte, C.; Carreau, P. J.; Heuzey, M. C., Rheological characterization of a solder paste for surface mount applications. Rheol. Acta 2006, 45 (4), 374-386. 39.Chen, D. T.; Weeks, E. R.; Crocker, J. C.; Islam, M. F.; Verma, R.; Gruber, J.; Levine, A. J.; Lubensky, T. C.; Yodh, A. G., Rheological microscopy: local mechanical properties from microrheology. Phys Rev Lett 2003, 90 (10), 108301. 40.Otsubo, Y.; Amari, T.; Watanabe, K.; Nakamichi, T., Rheological Behavior of High‐solid Coatings during Thermal Curing. Journal of Rheology 1987, 31 (3), 251-269.
|