(3.235.108.188) 您好!臺灣時間:2021/03/07 19:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪國湧
研究生(外文):洪國湧 Hung, Kuo-Yung
論文名稱:製備可充放電雙金屬硫化物之多孔氮碳觸媒材料及其於鋅空氣電池之應用
論文名稱(外文):Synthesis of Rechargeable Bimetal Sulfides N-doped Porous Carbon as Catalyst for Zinc–Air Battery
指導教授:李元堯 Li, Yuan-Yao
口試委員:薛康琳 Hsueh, Kan-Lin陳永松 Chen, Yong-Song
口試日期:2020-07-15
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:65
中文關鍵詞:雙功能觸媒鋅空氣電池多孔氮碳材料奈米碳管
外文關鍵詞:bifunctional catalystZn-air batterynitrogen-doped porous carboncarbon nanotube
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋅空氣電池被視為下一世代的儲能裝置,發展著重在具有高效能的氧還原反應(ORR)和析氧反應(OER)的觸媒,使電池擁有充放電的功能。本研究利用ZIF-67材料添加鐵成為雙金屬觸媒,所衍生(derived)製作出奈米碳管(CNT)分佈在表面的多孔氮碳觸媒形成具有非常好ORR特性的CNT-CoFe/NC觸媒,另外使用硫化策略成二硫化鈷(CoS2),製作具有非常好OER表現的CNT-CoS2 Fe/NC觸媒,因CNT提供此材料具有高導電性,多孔碳材母體(matrix)提供高效率的質傳性能,使得Zn-air電池有非常良好的ORR/OER表現,雙金屬多孔氮碳材料(CNT-CoFe/NC)在ORR表現的半波電位為0.814 V(Pt/C:0.805 V於0.1M KOH),極限電流密度為4.92 mA/cm2(Pt/C: 4.92 mA/cm2),二硫化鈷多孔氮碳材料(CNT-CoS2 Fe/NC)在OER表現上,於電流密度10 mA/cm2時電壓為1.637 V(RuO2:1.662 V),皆比貴金屬的表現都好,在Zn-air池的表現上,將CNT-CoFe/NC及CNT-CoS2 Fe/NC兩種觸媒混合的比電容為814 mAh/g(at 50 mA/cm2)非常接近理論電容(820 mAh/g),展現最大功率密度為245 mW/cm2 Pt/C+RuO2則為215 mW/cm2。充放電測試中於電流10 mA/cm2經過900小時後,充放電壓力差僅為0.68 V,低於商用Pt/C+RuO2觸媒的0.84 V,我們相信此新型觸媒可有效做為Zn-air電池的陰極材料。
Zinc-air batteries (ZAB) are regarded as the next generation of energy storage device. The study of ZAB mainly focuses on the development of catalysts with high efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) so that the battery is capable of conducting with charging and discharging processes. In this study, for ORR catalyst, Co Fe bimetal embed in porous nitrogen-doped carbon framework (CNT-CoFe/NC) is prepared by the carbonization of the synthesized compound consisting of zeolitic imidazolate framework (ZIF-67) as core and Fe doped ZIF-8 as shell. For the OER catalyst, CNT-CoS2 Fe/NC is formed by vulcanization at 400oC. The CNT-CoFe/NC demonstrates a superior ORR characteristic due to the bimetal and N functional group. In addition, the CNT on the framework provids a good electrical conductivity while the carbon framework matrix provids a porous skeleton which is beneficial for the mass transfer of electrolyte. In contrast, CNT-CoS2 Fe/NC demonstrates an excellent OER COS2, Fe-N, and Co-N compounds. In the ORR study, the CNT-Co Fe/NC shows a half-wave potential of 0.814 V at 0.1 M KOH (Pt/carbon: 0.805 V) while the limited current density is 4.92 mA/cm2 (Pt/ carbon: 4.92 mA/cm2). In OER performance, the potential of CNT-CoS2 Fe/NC is 1.637 V at current density of 10 mA/cm2 (RuO2: 1.662 V). In the ZAB study, the catalyst combing 50 wt% CNT-Co Fe/NC + 50 wt% CNT-CoS2 Fe/NC catalyst has a specific capacitance of 814 mAh/g (at 50 mA/cm2) which is very close to the theoretical capacitance (820 mAh/g) and maximum power density was 245W/cm2 (0.623V at 345 mA/cm2) while 215 mW/cm2(0.623 V at 345 mA/cm2) is obtained using the catalyst consisting 50 wt% Pt/C + 50 wt% RuO2. In the charge and discharge test, after 300 hours at a current of 10 mA/cm2, the voltage gap is only 0.68 V, which is much lower than the 0.84 V using the Pt/C + RuO2 catalyst.We believe that the novel CNT-Co Fe/NC + CNT-CoS2 Fe/NC can be used as an excellent catalyst in the zinc-air battery.
中文摘要 I
Abstract II
目錄 IV
圖目錄 V
第一章、緒論 1
第二章、實驗方法 6
第三章、結果與討論 10
第四章、結論 39
參考文獻 40
附錄 48

[1] P. Gu, M.B. Zheng, Q.X. Zhao, X. Xiao, H.G. Xue, H. Pang, Rechargeable zinc-air
batteries: a promising way to green energy, Journal of Materials Chemistry A 5(17)
(2017) 7651-7666.
[2] P.C. Pei, K.L. Wang, Z. Ma, Technologies for extending zinc-air battery's cyclelife: A
review, Applied Energy 128 (2014) 315-324.
[3] H.M. Xu, S.Q. Ci, Y.C. Ding, G.X. Wang, Z.H. Wen, Recent advances in precious
metal-free bifunctional catalysts for electrochemical conversion systems, Journal of
Materials Chemistry A 7(14) (2019) 8006-8029.
[4] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and
requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs,
Applied Catalysis B-Environmental 56(1-2) (2005) 9-35.
[5] F.Y. Cheng, J. Chen, Metal-air batteries: from oxygen reduction electrochemistry to
cathode catalysts, Chemical Society Reviews 41(6) (2012) 2172-2192.
[6] X.G. Fu, Y.R. Liu, X.P. Cao, J.T. Jin, Q. Liu, J.Y. Zhang, FeCo-N-x embedded
graphene as high performance catalysts for oxygen reduction reaction, Applied
Catalysis B-Environmental 130 (2013) 143-151.
[7] P. Tan, B. Chen, H.R. Xu, H.C. Zhang, W.Z. Cai, M. Ni, M.L. Liu, Z.P. Shao, Flexible
Zn- and Li-air batteries: recent advances, challenges, and future perspectives, Energy
& Environmental Science 10(10) (2017) 2056-2080.
[8] Q. Wang, L. Shang, R. Shi, X. Zhang, Y.F. Zhao, G.I.N. Waterhouse, L.Z. Wu, C.H.
Tung, T.R. Zhang, NiFe Layered Double Hydroxide Nanoparticles on Co,N-Codoped
Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc-Air
Batteries, Advanced Energy Materials 7(21) (2017).
[9] C. Guan, A. Sumboja, W.J. Zang, Y.H. Qian, H. Zhang, X.M. Liu, Z.L. Liu, D. Zhao,
S.J. Pennycook, J. Wang, Decorating Co/CoNx nanoparticles in nitrogen-doped
carbon nanoarrays for flexible and rechargeable zinc-air batteries, Energy Storage
Materials 16 (2019) 243-250.
[10] B. Li, H.G. Xue, H. Pang, Q. Xu, Porous phosphorus-rich CoP3/CoSnO2 hybrid
57
nanocubes for high-performance Zn-air batteries, Science China-Chemistry.
[11] W.H. Niu, Z. Li, K. Marcus, L. Zhou, Y.L. Li, R.Q. Ye, K. Liang, Y. Yang, Surface-
Modified Porous Carbon Nitride Composites as Highly Efficient Electrocatalyst for
Zn-Air Batteries, Advanced Energy Materials 8(1) (2018).
[12] Y.J. Zhong, X.M. Xu, W. Wang, Z.P. Shao, Recent Advances in Metal-Organic
Framework Derivatives as Oxygen Catalysts for Zinc-Air Batteries, Batteries &
Supercaps 2(4) (2019) 272-289.
[13] T.T. Wang, Z.K. Kou, S.C. Mu, J.P. Liu, D.P. He, I.S. Amiinu, W. Meng, K. Zhou,
Z.X. Luo, S. Chaemchuen, F. Verpoort, 2D Dual-Metal Zeolitic-Imidazolate-
Framework-(ZIF)-Derived Bifunctional Air Electrodes with Ultrahigh
Electrochemical Properties for Rechargeable Zinc-Air Batteries, Advanced Functional
Materials 28(5) (2018).
[14] X. Wu, G. Meng, W.X. Liu, T. Li, Q. Yang, X.M. Sun, J.F. Liu, Metal-organic
framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as
bifunctional catalysts for rechargeable zinc-air batteries, Nano Research 11(1) (2018)
163-173.
[15] W.M. Zhang, X.Y. Zhao, Y.W. Zhao, J.Q. Zhang, X.T. Li, L.D. Fang, L. Li, Mo-Doped
Zn, Co Zeolitic Imidazolate Framework-Derived Co9S8 Quantum Dots and MoS2
Embedded in Three-Dimensional Nitrogen-Doped Carbon Nanoflake Arrays as an
Efficient Trifunctional Electrocatalysts for the Oxygen Reduction Reaction, Oxygen
Evolution Reaction, and Hydrogen Evolution Reaction, Acs Applied Materials &
Interfaces 12(9) (2020) 10280-10290.
[16] J.J. Zhao, H.B. Hu, M.Z. Wu, N-Doped-carbon/cobalt-nanoparticle/N-doped-carbon
multi-layer sandwich nanohybrids derived from cobalt MOFs having 3D molecular
structures as bifunctional electrocatalysts for on-chip solid-state Zn-air batteries,
Nanoscale 12(6) (2020) 3750-3762.
[17] J.J. Cai, Q.Y. Zhou, B. Liu, X.F. Gong, Y.L. Zhang, K. Goh, D.M. Gu, L. Zhao, X.L.
Sui, Z.B. Wang, A sponge-templated sandwich-like cobalt-embedded nitrogen-doped
carbon polyhedron/graphene composite as a highly efficient catalyst for Zn-air
batteries, Nanoscale 12(2) (2020) 973-982.
[18] D.H. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of
58
nitrogen-doped carbon materials for oxygen reduction reaction clarified using model
catalysts, Science 351(6271) (2016) 361-365.
[19] Y.D. Xue, Y.T. Wang, Z.H. Pan, C.H. Zhang, Metal-organic frameworks derived
cobalt encapsulated in porous nitrogen-doped carbon nanostructure towards highly
efficient and durable oxygen reduction reaction electrocatalysis, Journal of Power
Sources 451 (2020).
[20] S.L. Zhao, J. Yang, M. Han, X.M. Wang, Y. Lin, R. Yang, D.D. Xu, N.E. Shi, Q.
Wang, M.J. Yang, Z.H. Dai, J.C. Bao, Synergistically enhanced oxygen reduction
electrocatalysis by atomically dispersed and nanoscaled Co species in three-
dimensional mesoporous Co, N-codoped carbon nanosheets network, Applied
Catalysis B-Environmental 260 (2020).
[21] J. Ying, J. Li, G.P. Jiang, Z.P. Cano, Z. Ma, C. Zhong, D. Su, Z.W. Chen, Metal-
organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-
doped hollow porous carbon capsules as a highly active and durable catalyst for
oxygen reduction reaction, Applied Catalysis B-Environmental 225 (2018) 496-503.
[22] R. Dong, P. Han, H. Arora, M. Ballabio, M. Karakus, Z. Zhang, C. Shekhar, P. Adler,
P. St Petkov, A. Erbe, S.C.B. Mannsfeld, C. Felser, T. Heine, M. Bonn, X.L. Feng, E.
Canovas, High-mobility band-like charge transport in a semiconducting two-
dimensional metal-organic framework, Nature Materials 17(11) (2018) 1027-+.
[23] S.S.A. Shah, L.S. Peng, T. Najam, C. Cheng, G.P. Wu, Y. Nie, W. Ding, X.Q. Qi, S.G.
Chen, Z.D. Wei, Monodispersed Co in Mesoporous Polyhedrons: Fine-tuning of ZIF-
8 Structure with Enhanced Oxygen Reduction Activity, Electrochimica Acta 251
(2017) 498-504.
[24] Y.J. Deng, Y.Y. Dong, G.H. Wang, K.L. Sun, X.D. Shi, L. Zheng, X.H. Li, S.J. Liao,
Well-Defined ZIF-Derived Fe-N Codoped Carbon Nanoframes as Efficient Oxygen
Reduction Catalysts, Acs Applied Materials & Interfaces 9(11) (2017) 9699-9709.
[25] J. Li, S.Q. Lu, H.L. Huang, D.H. Liu, Z.B. Zhuang, C.L. Zhong, ZIF-67 as
Continuous Self-Sacrifice Template Derived NiCo2O4/Co,N-CNTs Nanocages as
Efficient Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries, Acs
Sustainable Chemistry & Engineering 6(8) (2018) 10021-10029.
[26] C.C. Wang, K.Y. Hung, T.E. Ko, S. Hosseini, Y.Y. Li, Carbon-nanotube-grafted and
59
nano-Co3O4-doped porous carbon derived from metal-organic framework as an
excellent bifunctional catalyst for zinc-air battery, Journal of Power Sources 452
(2020).
[27] D.Z. Ren, J. Ying, M.L. Xiao, Y.P. Deng, J.H. Ou, J.B. Zhu, G.H. Liu, Y. Pei, S. Li,
A.M. Jauhar, H.L. Jin, S. Wang, D. Su, A.P. Yu, Z.W. Chen, Hierarchically Porous
Multimetal-Based Carbon Nanorod Hybrid as an Efficient Oxygen Catalyst for
Rechargeable Zinc-Air Batteries, Advanced Functional Materials.
[28] J.W. Huang, Y.B. Chen, X.L. Chen, X. Liu, L.S. Ma, W.Y. Su, Y. Zhao, H.B. Zhu, H.
Yang, Exploring Efficient Fe/N/C Electrocatalysts for Oxygen Reduction from
Nonporous Interpenetrated Metal-Organic Framework Involving in Situ Formation of
ZnO Templates, Acs Sustainable Chemistry & Engineering 8(8) (2020) 3208-+.
[29] Z.Y. Bai, S.S. Li, J. Fu, Q. Zhang, F.F. Chang, L. Yang, J. Lu, Z.W. Chen, Metal-
organic framework-derived Nickel Cobalt oxysulfide nanocages as trifunctional
electrocatalysts for high efficiency power to hydrogen, Nano Energy 58 (2019) 680-
686.
[30] Z.J. Wang, Y.Z. Lu, Y. Yan, T.Y.P. Larissa, X. Zhang, D. Wuu, H. Zhang, Y.H. Yang,
X. Wang, Core-shell carbon materials derived from metal-organic frameworks as an
efficient oxygen bifunctional electrocatalyst, Nano Energy 30 (2016) 368-378.
[31] W. Zhang, W.J. Chen, Q. Xiao, L. Yu, C.Q. Huang, G.X. Lu, A.W. Morawski, Y. Yu,
Nitrogen-coordinated metallic cobalt disulfide self-encapsulated in graphitic carbon
for electrochemical water oxidation, Applied Catalysis B-Environmental 268 (2020).
[32] J.S. Meng, C.J. Niu, L.H. Xu, J.T. Li, X. Liu, X.P. Wang, Y.Z. Wu, X.M. Xu, W.Y.
Chen, Q. Li, Z.Z. Zhu, D.Y. Zhao, L.Q. Mai, General Oriented Formation of Carbon
Nanotubes from Metal-Organic Frameworks, Journal of the American Chemical
Society 139(24) (2017) 8212-8221.
[33] B. You, N. Jiang, M.L. Sheng, W.S. Drisdell, J. Yano, Y.J. Sun, Bimetal-Organic
Framework Self-Adjusted Synthesis of Support-Free Nonprecious Electrocatalysts for
Efficient Oxygen Reduction, Acs Catalysis 5(12) (2015) 7068-7076.
[34] L.J. Zhi, Y.S. Hu, B. El Hamaoui, X. Wang, I. Lieberwirth, U. Kolb, J. Maier, K.
Mullen, Precursor-controlled formation of novel carbon/metal and carbon/metal oxide
nanocomposites, Advanced Materials 20(9) (2008) 1727-+.
60
[35] Y. Hou, Z.H. Wen, S.M. Cui, S.Q. Ci, S. Mao, J.H. Chen, An Advanced Nitrogen-
Doped Graphene/Cobalt-Embedded Porous Carbon Polyhedron Hybrid for Efficient
Catalysis of Oxygen Reduction and Water Splitting, Advanced Functional Materials
25(6) (2015) 872-882.
[36] P.Z. Liu, Y.Y. Liu, J.C. Jiang, S. Ashraf, X.L. Wu, G.S. Han, J. Gao, K. Zhang, B.J. Li,
Co-, Fe-, and N-Modified Carbon Composites for Excellent Catalytic Performances
toward Electrochemical Reduction Reaction, Acs Sustainable Chemistry &
Engineering 7(9) (2019) 8744-8754.
[37] L. Chen, N.J. Luo, S.P. Huang, Y.F. Li, M.D. Wei, Metal-organic framework-derived
hollow structure CoS2/nitrogen-doped carbon spheres for high-performance
lithium/sodium ion batteries, Chemical Communications 56(28) (2020) 3951-3954.
[38] Y.X. Zhao, Q.X. Lai, J.J. Zhu, J. Zhong, Z.M. Tang, Y. Luo, Y.Y. Liang, Controllable
Construction of Core-Shell Polymer@Zeolitic Imidazolate Frameworks Fiber Derived
Heteroatom-Doped Carbon Nanofiber Network for Efficient Oxygen Electrocatalysis,
Small 14(19) (2018).
[39] Q.J. Niu, J.X. Guo, B.L. Chen, J. Nie, X.D. Guo, G.P. Ma, Bimetal-organic
frameworks/polymer core-shell nanofibers derived heteroatom-doped carbon
materials as electrocatalysts for oxygen reduction reaction, Carbon 114 (2017) 250-
260.
[40] S. Xie, Y.F. Deng, J. Mei, Z.T. Yang, W.M. Lau, H. Liu, Carbon coated CoS2 thermal
battery electrode material with enhanced discharge performances and air stability,
Electrochimica Acta 231 (2017) 287-293.
[41] X.M. Zhang, G.B. Ji, W. Liu, B. Quan, X.H. Liang, C.M. Shang, Y. Cheng, Y.W. Du,
Thermal conversion of an Fe3O4@metal-organic framework: a new method for an
efficient Fe-Co/nanoporous carbon microwave absorbing material, Nanoscale 7(30)
(2015) 12932-12942.
[42] G. Ai, Q.Q. Hu, L. Zhang, K.H. Dai, J. Wang, Z.J. Xu, Y. Huang, B. Zhang, D. Li, T.
Zhang, G. Liu, W.F. Mao, Investigation of the Nanocrystal CoS2 Embedded in 3D
Honeycomb-like Graphitic Carbon with a Synergistic Effect for High-Performance
Lithium Sulfur Batteries, Acs Applied Materials & Interfaces 11(37) (2019) 33987-
33999.
61
[43] C. Hang, J. Zhang, J.W. Zhu, W.Q. Li, Z.K. Kou, Y.H. Huang, In Situ Exfoliating and
Generating Active Sites on Graphene Nanosheets Strongly Coupled with Carbon
Fiber toward Self-Standing Bifunctional Cathode for Rechargeable Zn-Air Batteries,
Advanced Energy Materials 8(16) (2018).
[44] F.C. Zheng, Y. Yang, Q.W. Chen, High lithium anodic performance of highly nitrogen-
doped porous carbon prepared from a metal-organic framework, Nature
Communications 5 (2014).
[45] C.Z. Zhang, N. Mahmood, H. Yin, F. Liu, Y.L. Hou, Synthesis of Phosphorus-Doped
Graphene and its Multifunctional Applications for Oxygen Reduction Reaction and
Lithium Ion Batteries, Advanced Materials 25(35) (2013) 4932-4937.
[46] X.Y. Lu, D. Wang, L.P. Ge, L.H. Xiao, H.Y. Zhang, L.L. Liu, J.Q. Zhang, M.Z. An,
P.X. Yang, Enriched graphitic N in nitrogen-doped graphene as a superior metal-free
electrocatalyst for the oxygen reduction reaction, New Journal of Chemistry 42(24)
(2018) 19665-19670.
[47] L. Zhu, D.Z. Zheng, Z.F. Wang, X.S. Zheng, P.P. Fang, J.F. Zhu, M.H. Yu, Y.X. Tong,
X.H. Lu, A Confinement Strategy for Stabilizing ZIF-Derived Bifunctional Catalysts
as a Benchmark Cathode of Flexible All-Solid-State Zinc-Air Batteries, Advanced
Materials 30(45) (2018).
[48] C.C. Hou, L.L. Zou, Q. Xu, A Hydrangea-Like Superstructure of Open Carbon Cages
with Hierarchical Porosity and Highly Active Metal Sites, Advanced Materials 31(46)
(2019).
[49] X. Zhang, S.W. Liu, Y.P. Zang, R.R. Liu, G.Q. Liu, G.Z. Wang, Y.X. Zhang, H.M.
Zhang, H.J. Zhao, Co/Co9S8@S,N-doped porous graphene sheets derived from S, N
dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water
splitting in alkaline media, Nano Energy 30 (2016) 93-102.
[50] J.H. Shen, L. Meng, Y.Y. Liu, C. Chen, Y.H. Zhu, C.Z. Li, Preparation of Co-N carbon
nanosheet oxygen electrode catalyst by controlled crystallization of cobalt salt
precursors for all-solid-state Al-air battery, Rsc Advances 8(39) (2018) 22193-22198.
[51] P.Q. Yin, T. Yao, Y. Wu, L.R. Zheng, Y. Lin, W. Liu, H.X. Ju, J.F. Zhu, X. Hong, Z.X.
Deng, G. Zhou, S.Q. Wei, Y.D. Li, Single Cobalt Atoms with Precise N-Coordination
as Superior Oxygen Reduction Reaction Catalysts, Angewandte Chemie-International
62
Edition 55(36) (2016) 10800-10805.
[52] L. Cao, Z.H. Li, Y. Gu, D.H. Li, K.M. Su, D.J. Yang, B.W. Cheng, Rational design of
N-doped carbon nanobox-supported Fe/Fe2N/Fe3C nanoparticles as efficient oxygen
reduction catalysts for Zn-air batteries, Journal of Materials Chemistry A 5(22) (2017)
11340-11347.
[53] F.F. Chao, B.X. Wang, J.J. Ren, Y.W. Lu, W.R. Zhang, X.Z. Wang, L. Cheng, Y.B.
Lou, J.X. Chen, Micro-meso-macroporous FeCo-N-C derived from hierarchical
bimetallic FeCo-ZIFs as cathode catalysts for enhanced Li-O-2 batteries performance,
Journal of Energy Chemistry 35 (2019) 212-219.
[54] L. Zhu, D. Susac, M. Teo, K.C. Wong, P.C. Wong, R.R. Parsons, D. Bizzotto, K.A.R.
Mitchell, S.A. Campbell, Investigation of CoS2-based thin films as model catalysts
for the oxygen reduction reaction, Journal of Catalysis 258(1) (2008) 235-242.
[55] L. Shang, H.J. Yu, X. Huang, T. Bian, R. Shi, Y.F. Zhao, G.I.N. Waterhouse, L.Z. Wu,
C.H. Tung, T.R. Zhang, Well-Dispersed ZIF-Derived Co,N-Co-doped Carbon
Nanoframes through Mesoporous-Silica-Protected Calcination as Efficient Oxygen
Reduction Electrocatalysts, Advanced Materials 28(8) (2016) 1668-1674.
[56] L.L. Chen, Y.L. Zhang, L.L. Dong, W.X. Yang, X.J. Liu, L. Long, C.Y. Liu, S.J. Dong,
J.B. Jia, Synergistic effect between atomically dispersed Fe and Co metal sites for
enhanced oxygen reduction reaction, Journal of Materials Chemistry A 8(8) (2020)
4369-4375.
[57] X. Li, H. Wang, Z.M. Cui, Y.T. Li, S. Xin, J.S. Zhou, Y.W. Long, C.Q. Jin, J.B.
Goodenough, Exceptional oxygen evolution reactivities on CaCoO3 and SrCoO3,
Science Advances 5(8) (2019).
[58] S.S.A. Shah, T. Najam, M.K. Aslam, M. Ashfaq, M.M. Rahman, K. Wang, P.
Tsiakaras, S.Q. Song, Y. Wang, Recent advances on oxygen reduction electrocatalysis:
Correlating the characteristic properties of metal organic frameworks and the derived
nanomaterials, Applied Catalysis B-Environmental 268 (2020).
[59] C. Tang, B. Wang, H.F. Wang, Q. Zhang, Defect Engineering toward Atomic Co-N-x-
C in Hierarchical Graphene for Rechargeable Flexible Solid Zn-Air Batteries,
Advanced Materials 29(37) (2017).
63
[60] M. Lebrini, F. Robert, A. Lecante, C. Roos, Corrosion inhibition of C38 steel in 1 M
hydrochloric acid medium by alkaloids extract from Oxandra asbeckii plant,
Corrosion Science 53(2) (2011) 687-695.
[61] J.Z. Yang, Z. Yang, L.H. Li, Q.R. Cai, H.G. Nie, M.Z. Ge, X.A. Chen, Y. Chen, S.M.
Huang, Highly efficient oxygen evolution from CoS2/CNT nanocomposites via a one-
step electrochemical deposition and dissolution method, Nanoscale 9(20) (2017)
6886-6894.
[62] H.J. Qiu, P. Du, K.L. Hu, J.J. Gao, H.L. Li, P. Liu, T. Ina, K. Ohara, Y. Ito, M.W.
Chen, Metal and Nonmetal Codoped 3D Nanoporous Graphene for Efficient
Bifunctional Electrocatalysis and Rechargeable Zn-Air Batteries, Advanced Materials
31(19) (2019).
[63] Q. Hu, G.M. Li, G.D. Li, X.F. Liu, B. Zhu, X.Y. Chai, Q.L. Zhang, J. Liu, C. He,
Trifunctional Electrocatalysis on Dual-Doped Graphene Nanorings-Integrated Boxes
for Efficient Water Splitting and Zn-Air Batteries, Advanced Energy Materials 9(14)
(2019).
[64] X.F. Lu, Y. Chen, S.B. Wang, S.Y. Gao, X.W. Lou, Interfacing Manganese Oxide and
Cobalt in Porous Graphitic Carbon Polyhedrons Boosts Oxygen Electrocatalysis for
Zn-Air Batteries, Advanced Materials 31(39) (2019).
[65] D.Z. Ren, J. Ying, M.L. Xiao, Y.P. Deng, J.H. Ou, J.B. Zhu, G.H. Liu, Y. Pei, S. Li,
A.M. Jauhar, H.L. Jin, S. Wang, D. Su, A.P. Yu, Z.W. Chen, Hierarchically Porous
Multimetal-Based Carbon Nanorod Hybrid as an Efficient Oxygen Catalyst for
Rechargeable Zinc-Air Batteries, Advanced Functional Materials 30(7) (2020).
[66] C.H. Li, E.H. Zhou, Z.Y. Yu, H.X. Liu, M. Xiong, Tailor-made open porous 2D
CoFe/SN-carbon with slightly weakened adsorption strength of ORR/OER
intermediates as remarkable electrocatalysts toward zinc-air batteries, Applied
Catalysis B-Environmental 269 (2020).
[67] D. Chen, J.W. Zhu, X.Q. Mu, R.L. Cheng, W.Q. Li, S.L. Liu, Z.H. Pu, C. Lin, S.C.
Mu, Nitrogen-Doped carbon coupled FeNi3 intermetallic compound as advanced
bifunctional electrocatalyst for OER, ORR and zn-air batteries, Applied Catalysis B-
Environmental 268 (2020).
[68] S. Chen, L.L. Zhao, J.Z. Ma, Y.Q. Wang, L.M. Dai, J.T. Zhang, Edge-doping
64
modulation of N, P-codoped porous carbon spheres for high-performance
rechargeable Zn-air batteries, Nano Energy 60 (2019) 536-544.
[69] C.H. Li, H.X. Liu, Z.Y. Yu, Novel and multifunctional inorganic mixing salt-
templated 2D ultrathin Fe/Co-N/S-carbon nanosheets as effectively bifunctional
electrocatalysts for Zn-air batteries, Applied Catalysis B-Environmental 241 (2019)
95-103.
[70] J.B. Tan, T. Thomas, J.X. Liu, L. Yang, L.H. Pan, R. Cao, H.J. Shen, J.C. Wang, J.
Liu, M.H. Yang, Rapid microwave-assisted preparation of high-performance
bifunctional Ni3Fe/Co-N-C for rechargeable Zn-air battery, Chemical Engineering
Journal 395 (2020).
[71] S.L. Xie, J.J. Lin, S.S. Wang, D. Xie, P. Liu, G.P. Tan, M. Zhang, D.L. Ruan, C. Zhen,
F.L. Cheng, Rational design of hybrid Fe7S8/Fe2N nanoparticles as effective and
durable bifunctional electrocatalysts for rechargeable zinc-air batteries, Journal of
Power Sources 457 (2020)
電子全文 電子全文(網際網路公開日期:20220831)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔