(3.239.33.139) 您好!臺灣時間:2021/03/07 23:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張毓翔
研究生(外文):Chang, Yu-Hsiang
論文名稱:鈣鈦礦/嵌段共聚物複合薄膜於超快響應非揮發性快閃光記憶體之應用
論文名稱(外文):Ultrafast Responsive Non-Volatile Flash Photomemory via Spatially Addressable Perovskite/Block Copolymer Composite Film
指導教授:陳蓉瑤
指導教授(外文):Chen, Jung-Yao
口試委員:李文亞林群哲
口試委員(外文):Lee, Wen-YaLin, Chun-Che
口試日期:2020-06-01
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:88
中文關鍵詞:浮閘光記憶體有機-無機鈣鈦礦嵌段共聚物多級記憶體
外文關鍵詞:floating-gatephotomemoryorganic-inorganic hybrid perovskiteblock copolymer, multi-level memory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:37
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本文利用高激子壽命和低結合能的有機-無機鈣鈦礦材料,因為其獨特光物理性質得以應用在新穎的非揮發性快閃光記憶。但是,光記憶體的長時間光寫入限制了其在光照上網技術(light-fidelity, Li-Fi)上的應用,這需要高儲存容量和短時間光寫入的特性,因此在本文中利用嵌段共聚物聚苯乙烯-b-聚環氧乙烷(polystyrene-block-poly(ethylene oxide), PS-b-PEO)其具有自主裝的特性可成功的控制鈣鈦礦(MAPbBr3)在形貌上的變化,並影響光記憶體在電性上的表現,其中鈣鈦礦中的鉛離子與聚環氧乙烷間的螯合促進了聚苯乙烯-b-聚環氧乙烷/鈣鈦礦薄膜的抗溶劑能力,因此能以溶液製成旋轉塗佈的方式塗佈聚(3-己基噻吩-2,5-二基) (poly(3-hexylthiophene-2,5-diyl), P3HT)作為有機半導體主動層,通過操縱鈣鈦礦與P3HT之間的界面區域,可以實現0.056 ns-1的快速光響應電荷傳輸速率,89%的高電荷傳輸效率,104的照光開關電流比和5 ms的極短光寫入時間。這種可溶液製成的,可快速光寫入的非揮發性快閃光記憶體可以作為Li-Fi的實際應用。
The exotic photophysical properties of organic-inorganic hybrid perovskite with long exciton lifetime and small binding energy have appeared as promising front-runners for next-generation non-volatile flash photomemory. However, the long photo-programming time of photomemory limits its application on light-fidelity (Li-Fi), which requires high storage capacity and short programming time. Herein, the spatially addressable perovskite in polystyrene-block-poly(ethylene oxide) (PS-b-PEO)/perovskite composite film as photoactive floating gate was demonstrated to elucidate the effect of morphology on the photo-responsive characteristics of photomemory. The chelation between lead ion and PEO segment promoted the anti-solvent functionalities of perovskite/PS-b-PEO composite film, thus allowing the solution-processable poly(3-hexylthiophene-2,5-diyl) (P3HT) to act as the active channel. Through manipulating the interfacial area between perovskite and P3HT, fast photo-induced charge transfer rate of 0.056 ns-1, high charge transfer efficiency of 89%, ON/OFF current ratio of 104 and extremely low programming time of 5 ms can be achieved. This solution-processable and fast photo-programmable non-volatile flash photomemory can trigger the practical application on Li-Fi.
致謝 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 xi
第一章 緒論 1
1-1 有機半導體 1
1-2 有機場效應電晶體 3
1-3 非揮發性場效應電晶體式光記憶體 8
1-4 有機-無機鈣鈦礦材料 14
1-5 嵌段共聚物 15
1-6 嵌段共聚物/鈣鈦礦複合材料 23
1-7 光照上網技術 26
1-8 研究動機 27
第二章 實驗方法 28
2-1 實驗材料與藥品 28
2-2 實驗設備 29
2-3 非揮發性場效應電晶體式光記憶體 30
2-3-1 嵌段共聚物/鈣鈦礦複合薄膜製備 30
2-3-2 有機半導體薄膜製備 31
2-3-3 熱蒸鍍電極及電性量測 32
第三章 結果與討論 34
3-1 嵌段共聚物/鈣鈦礦複合薄膜之鍵結分析 34
3-2 嵌段共聚物/鈣鈦礦與均聚物/鈣鈦礦薄膜抗溶劑探討 36
3-3 嵌段共聚物/鈣鈦礦與均聚物/鈣鈦礦複合薄膜之形貌分析 39
3-3-1 表面形貌掃描式電子顯微鏡分析 39
3-3-2 穿透式電子顯微鏡 41
3-3-3 低掠角小角X-Ray散射分析 43
3-4 低掠角廣角X-Ray散射分析 46
3-5 光記憶體中載子傳輸及儲存操作機制 48
3-6 光物理分析 50
3-7 光記憶體電性分析 61
3-8 結論 79
第四章 結論 80
4-1 結論 80
第五章 未來展望 81
5-1 未來展望 81

1.H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). J. Chem. Soc., Chem. Commun., 1977(16): p. 578-580.
2.U. Salzner, J. B. Lagowski, P. G. Pickup and R. A. Poirier, Comparison of geometries and electronic structures of polyacetylene, polyborole, polycyclopentadiene, polypyrrole, polyfuran, polysilole, polyphosphole, polythiophene, polyselenophene and polytellurophene. Synth. Met., 1998. 96(3): p. 177-189.
3.S. G. Bucella, A. Luzio, E. Gann, L. Thomsen, C. R. McNeill, G. Pace, A. Perinot, Z. Chen, A. Facchetti and M. Caironi, Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics. Nat. Commun., 2015. 6(1): p. 8394.
4.J.-Y. Chen, H.-C. Wu, Y.-C. Chiu, C.-J. Lin, S.-H. Tung and W.-C. Chen, Electrospun Poly(3-hexylthiophene) Nanofibers with Highly Extended and Oriented Chains Through Secondary Electric Field for High-Performance Field-Effect Transistors. Adv. Electron. Mater., 2015. 1(1-2): p. 1400028.
5.M. Mas-Torrent, D. d. Boer, M. Durkut, P. Hadley and A. P. H. J. Schenning, Field effect transistors based on poly(3-hexylthiophene) at different length scales. Nanotechnology, 2004. 15(4): p. S265-S269.
6.A. Facchetti, Semiconductors for organic transistors. Mater. Today, 2007. 10(3): p. 28-37.
7.Y.-H. Chou, H.-C. Chang, C.-L. Liu and W.-C. Chen, Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices. Polym. Chem., 2015. 6(3): p. 341-352.
8.Y. H. Lee, M. Jang, M. Y. Lee, O. Y. Kweon and J. H. Oh, Flexible Field-Effect Transistor-Type Sensors Based on Conjugated Molecules. Chem, 2017. 3(5): p. 724-763.
9.T. Zhang, J. Wu, P. Zhang, W. Ahmad, Y. Wang, M. Alqahtani, H. Chen, C. Gao, Z. D. Chen, Z. Wang and S. Li, High Speed and Stable Solution-Processed Triple Cation Perovskite Photodetectors. Adv. Opt. Mater., 2018. 6(13).
10.C. M. Roberts, Radio frequency identification (RFID). Computers & Security, 2006. 25(1): p. 18-26.
11.F. J. Lin, C. Guo, W. T. Chuang, C. L. Wang, Q. Wang, H. Liu, C. S. Hsu and L. Jiang, Directional Solution Coating by the Chinese Brush: A Facile Approach to Improving Molecular Alignment for High-Performance Polymer TFTs. Adv. Mater.,2017. 29(34).
12.Y. Diao, L. Shaw, Z. Bao and S. C. B. Mannsfeld, Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 2014. 7(7): p. 2145-2159.
13.Y. Guo, G. Yu and Y. Liu, Functional organic field-effect transistors. Adv. Mater., 2010. 22(40): p. 4427-47.
14.C. A. Di, F. Zhang and D. Zhu, Multi-functional integration of organic field-effect transistors (OFETs): advances and perspectives. Adv. Mater., 2013. 25(3): p. 313-30.
15.Z. A. Lamport, H. F. Haneef, S. Anand, M. Waldrip and O. D. Jurchescu, Tutorial: Organic field-effect transistors: Materials, structure and operation. J. Appl. Phys., 2018. 124(7).
16.Y. C. Chiu, T. Y. Chen, Y. Chen, T. Satoh, T. Kakuchi and W. C. Chen, High-performance nonvolatile organic transistor memory devices using the electrets of semiconducting blends. ACS Appl Mater Interfaces, 2014. 6(15): p. 12780-8.
17.S. George, S. Gupta, V. Narayanan, K. Ma, A. Aziz, X. Li, A. Khan, S. Salahuddin, M.-F. Chang, S. Datta and J. Sampson, Nonvolatile memory design based on ferroelectric FETs, in Proceedings of the 53rd Annual Design Automation Conference on - DAC '16. 2016. p. 1-6.
18.Y. J. Jeong, D. J. Yun, S. H. Kim, J. Jang and C. E. Park, Photoinduced Recovery of Organic Transistor Memories with Photoactive Floating-Gate Interlayers. ACS Appl Mater Interfaces, 2017. 9(13): p. 11759-11769.
19.J. Y. Chen, Y. C. Chiu, Y. T. Li, C. C. Chueh and W. C. Chen, Nonvolatile Perovskite-Based Photomemory with a Multilevel Memory Behavior. Adv. Mater., 2017. 29(33).
20.Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou, L. Zhou, X. Chen and S. T. Han, Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic Computing. Adv. Mater., 2018. 30(38): p. e1802883.
21.C. Wu, W. Wang and J. Song, and J. Song, Molecular floating-gate organic nonvolatile memory with a fully solution processed core architecture. Appl. Phys. Lett., 2016. 109(22).
22.L. Y. Wei Q, Anderson ER, Briseno AL, Gido SP, Watkins JJ., Additive-driven assembly of block copolymer-nanoparticle hybrid materials for solution processable floating gate memory. ACS Nano., 2012: p. 6(2):1188-94.
23.B. Saparov and D. B. Mitzi, Organic-Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev., 2016. 116(7): p. 4558-96.
24.J. L. G. Fierro, Structure and composition of perovskite surface in relation to adsorption and catalytic properties. Catal. Today, 1990. 8(2): p. 153-174.
25.Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan and J. Huang, Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement. Adv. Mater., 2014. 26(37): p. 6503-6509.
26.W. Yu, F. Li, L. Yu, M. R. Niazi, Y. Zou, D. Corzo, A. Basu, C. Ma, S. Dey, M. L. Tietze, U. Buttner, X. Wang, Z. Wang, M. N. Hedhili, C. Guo, T. Wu and A. Amassian, Single crystal hybrid perovskite field-effect transistors. Nat. Commun., 2018. 9(1): p. 5354.
27.J. Cerdà, J. Arbiol, G. Dezanneau, R. Dı́az and J. R. Morante, Perovskite-type BaSnO3 powders for high temperature gas sensor applications. Sensors and Actuators B: Chemical, 2002. 84(1): p. 21-25.
28.N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R. H. Friend, J. Wang and W. Huang, Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016. 10(11): p. 699-704.
29.Y. Wang, Z. Lv, L. Zhou, X. Chen, J. Chen, Y. Zhou, V. A. L. Roy and S.-T. Han, Emerging perovskite materials for high density data storage and artificial synapses. J. Mater. Chem. C, 2018. 6(7): p. 1600-1617.
30.M. Li and C. K. Ober, Block copolymer patterns and templates. Mater. Today, 2006. 9(9): p. 30-39.
31.Y. Mai and A. Eisenberg, Self-assembly of block copolymers. Chem. Soc. Rev., 2012. 41(18): p. 5969-85.
32.F. S. BATES, Polymer-Polymer Phase Behavior. Science, 1991. 251(4996): p. 898-905.
33.M. W. Matsen and M. Schick, Stable and unstable phases of a diblock copolymer melt. Phys. Rev. Lett., 1994. 72(16): p. 2660-2663.
34.F. S. Bates and G. H. Fredrickson, Block Copolymers—Designer Soft Materials. Phys. Today, 1999. 52(2): p. 32-38.
35.A. K. Khandpur, S. Foerster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal and K. Mortensen, Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition. Macromolecules, 1995. 28(26): p. 8796-8806.
36.W.-H. Huang, P.-Y. Chen and S.-H. Tung, Effects of Annealing Solvents on the Morphology of Block Copolymer-Based Supramolecular Thin Films. Macromolecules, 2012. 45(3): p. 1562-1569.
37.C.-C. Hung, Y.-C. Chiu, H.-C. Wu, C. Lu, C. Bouilhac, I. Otsuka, S. Halila, R. Borsali, S.-H. Tung and W.-C. Chen, Conception of Stretchable Resistive Memory Devices Based on Nanostructure-Controlled Carbohydrate-block-Polyisoprene Block Copolymers. Adv. Funct. Mater., 2017. 27(13).
38.J. Tata, D. Scalarone, M. Lazzari and O. Chiantore, Control of morphology orientation in thin films of PS-b-PEO diblock copolymers and PS-b-PEO/resorcinol molecular complexes. Eur. Polym. J., 2009. 45(9): p. 2520-2528.
39.M. S. Alias, Y. Yang, T. K. Ng, I. Dursun, D. Shi, M. I. Saidaminov, D. Priante, O. M. Bakr and B. S. Ooi, Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications. J. Phys. Chem. Lett., 2016. 7(1): p. 137-142.
40.E. Ercan, J. Y. Chen, C. C. Shih, C. C. Chueh and W. C. Chen, Influence of polymeric electrets on the performance of derived hybrid perovskite-based photo-memory devices. Nanoscale, 2018. 10(39): p. 18869-18877.
41.N. Zhou, Y. Bekenstein, C. N. Eisler, D. Zhang, A. M. Schwartzberg, P. Yang, A. P. Alivisatos and J. A. Lewis, Perovskite nanowire–block copolymer composites with digitally programmable polarization anisotropy. Sci. Adv., 2019. 5(5): p. eaav8141.
42.M. Kim, S. G. Motti, R. Sorrentino and A. Petrozza, Energ, Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Environ. Sci., 2018. 11(9): p. 2609-2619.
43.Z. Wu, Z. Liu, Z. Hu, Z. Hawash, L. Qiu, Y. Jiang, L. K. Ono and Y. Qi, Highly Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the Perovskite/Carbon Electrode Interface. Adv. Mater., 2019. 31(11): p. e1804284.
44.H. Haas, L. Yin, Y. Wang and C. Chen, What is LiFi? J. Lightwave Technol., 2016. 34(6): p. 1533-1544.
45.H. Haas, LiFi is a paradigm-shifting 5G technology. Reviews in Physics, 2018. 3: p. 26-31.
46.H. P. Dong, Y. Li, S. F. Wang, W. Z. Li, N. Li, X. D. Guo and L. D, Interface engineering of perovskite solar cells with PEO for improved performance. Journal of Materials Chemistry A, 2015. 3(18): p. 9999-10004.
47.E. Ercan, J.-Y. Chen, P.-C. Tsai, J.-Y. Lam, S. C.-W. Huang, C.-C. Chueh and W.-C. Chen, A Redox-Based Resistive Switching Memory Device Consisting of Organic-Inorganic Hybrid Perovskite/Polymer Composite Thin Film. Adv. Electron. Mater., 2017. 3(12).
48.Y. Zhao, J. Wei, H. Li, Y. Yan, W. Zhou, D. Yu and Q. Zhao, A polymer scaffold for self-healing perovskite solar cells. Nat Commun, 2016. 7: p. 10228.
49.B. Chu and B. S. Hsiao, Small-Angle X-ray Scattering of Polymers. Chem. Rev., 2001. 101(6): p. 1727-1762.
50.N. C. Greenham, X. Peng and A. P. Alivisatos, Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B, 1996. 54(24): p. 17628-17637.
51.F. Zhang, H. Zhong, C. Chen, X.-g. Wu, X. Hu, H. Huang, J. Han, B. Zou and Y. Dong, Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano, 2015. 9(4): p. 4533-4542.
52.K.-H. Lin, C.-Y. Chuang, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, I. P. Liu, S.-C. Chou and Y.-L. Lee, Charge Transfer in the Heterointerfaces of CdS/CdSe Cosensitized TiO2 Photoelectrode. J. Phys. Chem.C, 2012. 116(1): p. 1550-1555.
53.K.-S. Cho, K. Heo, C.-W. Baik, J. Y. Choi, H. Jeong, S. Hwang and S. Y. Lee, Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors. Nat. Commun., 2017. 8(1): p. 840.
54.M.-S. Seo, I. Jeong, J.-S. Park, J. Lee, I. K. Han, W. I. Lee, H. J. Son, B.-H. Sohn and M. J. Ko, 2016, Vertically aligned nanostructured TiO2 photoelectrodes for high efficiency perovskite solar cells via a block copolymer template approach. Nanoscale, 2016. 8(22): p. 11472-11479.
55.C. Liu, A. Piyadasa, M. Piech, S. Dardona, Z. Ren and P.-X. Gao, Tunable UV response and high performance of zinc stannate nanoparticle film photodetectors. J. Mater. Chem. C, 2016. 4(25): p. 6176-6184.
56.K. Pydzińska, J. Karolczak, I. Kosta, R. Tena-Zaera, A. Todinova, J. Idígoras, J. A. Anta and M. Ziółek, Determination of Interfacial Charge-Transfer Rate Constants in Perovskite Solar Cells. ChemSusChem, 2016. 9(13): p. 1647-1659.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔