|
1.H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). J. Chem. Soc., Chem. Commun., 1977(16): p. 578-580. 2.U. Salzner, J. B. Lagowski, P. G. Pickup and R. A. Poirier, Comparison of geometries and electronic structures of polyacetylene, polyborole, polycyclopentadiene, polypyrrole, polyfuran, polysilole, polyphosphole, polythiophene, polyselenophene and polytellurophene. Synth. Met., 1998. 96(3): p. 177-189. 3.S. G. Bucella, A. Luzio, E. Gann, L. Thomsen, C. R. McNeill, G. Pace, A. Perinot, Z. Chen, A. Facchetti and M. Caironi, Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics. Nat. Commun., 2015. 6(1): p. 8394. 4.J.-Y. Chen, H.-C. Wu, Y.-C. Chiu, C.-J. Lin, S.-H. Tung and W.-C. Chen, Electrospun Poly(3-hexylthiophene) Nanofibers with Highly Extended and Oriented Chains Through Secondary Electric Field for High-Performance Field-Effect Transistors. Adv. Electron. Mater., 2015. 1(1-2): p. 1400028. 5.M. Mas-Torrent, D. d. Boer, M. Durkut, P. Hadley and A. P. H. J. Schenning, Field effect transistors based on poly(3-hexylthiophene) at different length scales. Nanotechnology, 2004. 15(4): p. S265-S269. 6.A. Facchetti, Semiconductors for organic transistors. Mater. Today, 2007. 10(3): p. 28-37. 7.Y.-H. Chou, H.-C. Chang, C.-L. Liu and W.-C. Chen, Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices. Polym. Chem., 2015. 6(3): p. 341-352. 8.Y. H. Lee, M. Jang, M. Y. Lee, O. Y. Kweon and J. H. Oh, Flexible Field-Effect Transistor-Type Sensors Based on Conjugated Molecules. Chem, 2017. 3(5): p. 724-763. 9.T. Zhang, J. Wu, P. Zhang, W. Ahmad, Y. Wang, M. Alqahtani, H. Chen, C. Gao, Z. D. Chen, Z. Wang and S. Li, High Speed and Stable Solution-Processed Triple Cation Perovskite Photodetectors. Adv. Opt. Mater., 2018. 6(13). 10.C. M. Roberts, Radio frequency identification (RFID). Computers & Security, 2006. 25(1): p. 18-26. 11.F. J. Lin, C. Guo, W. T. Chuang, C. L. Wang, Q. Wang, H. Liu, C. S. Hsu and L. Jiang, Directional Solution Coating by the Chinese Brush: A Facile Approach to Improving Molecular Alignment for High-Performance Polymer TFTs. Adv. Mater.,2017. 29(34). 12.Y. Diao, L. Shaw, Z. Bao and S. C. B. Mannsfeld, Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 2014. 7(7): p. 2145-2159. 13.Y. Guo, G. Yu and Y. Liu, Functional organic field-effect transistors. Adv. Mater., 2010. 22(40): p. 4427-47. 14.C. A. Di, F. Zhang and D. Zhu, Multi-functional integration of organic field-effect transistors (OFETs): advances and perspectives. Adv. Mater., 2013. 25(3): p. 313-30. 15.Z. A. Lamport, H. F. Haneef, S. Anand, M. Waldrip and O. D. Jurchescu, Tutorial: Organic field-effect transistors: Materials, structure and operation. J. Appl. Phys., 2018. 124(7). 16.Y. C. Chiu, T. Y. Chen, Y. Chen, T. Satoh, T. Kakuchi and W. C. Chen, High-performance nonvolatile organic transistor memory devices using the electrets of semiconducting blends. ACS Appl Mater Interfaces, 2014. 6(15): p. 12780-8. 17.S. George, S. Gupta, V. Narayanan, K. Ma, A. Aziz, X. Li, A. Khan, S. Salahuddin, M.-F. Chang, S. Datta and J. Sampson, Nonvolatile memory design based on ferroelectric FETs, in Proceedings of the 53rd Annual Design Automation Conference on - DAC '16. 2016. p. 1-6. 18.Y. J. Jeong, D. J. Yun, S. H. Kim, J. Jang and C. E. Park, Photoinduced Recovery of Organic Transistor Memories with Photoactive Floating-Gate Interlayers. ACS Appl Mater Interfaces, 2017. 9(13): p. 11759-11769. 19.J. Y. Chen, Y. C. Chiu, Y. T. Li, C. C. Chueh and W. C. Chen, Nonvolatile Perovskite-Based Photomemory with a Multilevel Memory Behavior. Adv. Mater., 2017. 29(33). 20.Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou, L. Zhou, X. Chen and S. T. Han, Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic Computing. Adv. Mater., 2018. 30(38): p. e1802883. 21.C. Wu, W. Wang and J. Song, and J. Song, Molecular floating-gate organic nonvolatile memory with a fully solution processed core architecture. Appl. Phys. Lett., 2016. 109(22). 22.L. Y. Wei Q, Anderson ER, Briseno AL, Gido SP, Watkins JJ., Additive-driven assembly of block copolymer-nanoparticle hybrid materials for solution processable floating gate memory. ACS Nano., 2012: p. 6(2):1188-94. 23.B. Saparov and D. B. Mitzi, Organic-Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev., 2016. 116(7): p. 4558-96. 24.J. L. G. Fierro, Structure and composition of perovskite surface in relation to adsorption and catalytic properties. Catal. Today, 1990. 8(2): p. 153-174. 25.Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan and J. Huang, Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement. Adv. Mater., 2014. 26(37): p. 6503-6509. 26.W. Yu, F. Li, L. Yu, M. R. Niazi, Y. Zou, D. Corzo, A. Basu, C. Ma, S. Dey, M. L. Tietze, U. Buttner, X. Wang, Z. Wang, M. N. Hedhili, C. Guo, T. Wu and A. Amassian, Single crystal hybrid perovskite field-effect transistors. Nat. Commun., 2018. 9(1): p. 5354. 27.J. Cerdà, J. Arbiol, G. Dezanneau, R. Dı́az and J. R. Morante, Perovskite-type BaSnO3 powders for high temperature gas sensor applications. Sensors and Actuators B: Chemical, 2002. 84(1): p. 21-25. 28.N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R. H. Friend, J. Wang and W. Huang, Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016. 10(11): p. 699-704. 29.Y. Wang, Z. Lv, L. Zhou, X. Chen, J. Chen, Y. Zhou, V. A. L. Roy and S.-T. Han, Emerging perovskite materials for high density data storage and artificial synapses. J. Mater. Chem. C, 2018. 6(7): p. 1600-1617. 30.M. Li and C. K. Ober, Block copolymer patterns and templates. Mater. Today, 2006. 9(9): p. 30-39. 31.Y. Mai and A. Eisenberg, Self-assembly of block copolymers. Chem. Soc. Rev., 2012. 41(18): p. 5969-85. 32.F. S. BATES, Polymer-Polymer Phase Behavior. Science, 1991. 251(4996): p. 898-905. 33.M. W. Matsen and M. Schick, Stable and unstable phases of a diblock copolymer melt. Phys. Rev. Lett., 1994. 72(16): p. 2660-2663. 34.F. S. Bates and G. H. Fredrickson, Block Copolymers—Designer Soft Materials. Phys. Today, 1999. 52(2): p. 32-38. 35.A. K. Khandpur, S. Foerster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal and K. Mortensen, Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition. Macromolecules, 1995. 28(26): p. 8796-8806. 36.W.-H. Huang, P.-Y. Chen and S.-H. Tung, Effects of Annealing Solvents on the Morphology of Block Copolymer-Based Supramolecular Thin Films. Macromolecules, 2012. 45(3): p. 1562-1569. 37.C.-C. Hung, Y.-C. Chiu, H.-C. Wu, C. Lu, C. Bouilhac, I. Otsuka, S. Halila, R. Borsali, S.-H. Tung and W.-C. Chen, Conception of Stretchable Resistive Memory Devices Based on Nanostructure-Controlled Carbohydrate-block-Polyisoprene Block Copolymers. Adv. Funct. Mater., 2017. 27(13). 38.J. Tata, D. Scalarone, M. Lazzari and O. Chiantore, Control of morphology orientation in thin films of PS-b-PEO diblock copolymers and PS-b-PEO/resorcinol molecular complexes. Eur. Polym. J., 2009. 45(9): p. 2520-2528. 39.M. S. Alias, Y. Yang, T. K. Ng, I. Dursun, D. Shi, M. I. Saidaminov, D. Priante, O. M. Bakr and B. S. Ooi, Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications. J. Phys. Chem. Lett., 2016. 7(1): p. 137-142. 40.E. Ercan, J. Y. Chen, C. C. Shih, C. C. Chueh and W. C. Chen, Influence of polymeric electrets on the performance of derived hybrid perovskite-based photo-memory devices. Nanoscale, 2018. 10(39): p. 18869-18877. 41.N. Zhou, Y. Bekenstein, C. N. Eisler, D. Zhang, A. M. Schwartzberg, P. Yang, A. P. Alivisatos and J. A. Lewis, Perovskite nanowire–block copolymer composites with digitally programmable polarization anisotropy. Sci. Adv., 2019. 5(5): p. eaav8141. 42.M. Kim, S. G. Motti, R. Sorrentino and A. Petrozza, Energ, Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Environ. Sci., 2018. 11(9): p. 2609-2619. 43.Z. Wu, Z. Liu, Z. Hu, Z. Hawash, L. Qiu, Y. Jiang, L. K. Ono and Y. Qi, Highly Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the Perovskite/Carbon Electrode Interface. Adv. Mater., 2019. 31(11): p. e1804284. 44.H. Haas, L. Yin, Y. Wang and C. Chen, What is LiFi? J. Lightwave Technol., 2016. 34(6): p. 1533-1544. 45.H. Haas, LiFi is a paradigm-shifting 5G technology. Reviews in Physics, 2018. 3: p. 26-31. 46.H. P. Dong, Y. Li, S. F. Wang, W. Z. Li, N. Li, X. D. Guo and L. D, Interface engineering of perovskite solar cells with PEO for improved performance. Journal of Materials Chemistry A, 2015. 3(18): p. 9999-10004. 47.E. Ercan, J.-Y. Chen, P.-C. Tsai, J.-Y. Lam, S. C.-W. Huang, C.-C. Chueh and W.-C. Chen, A Redox-Based Resistive Switching Memory Device Consisting of Organic-Inorganic Hybrid Perovskite/Polymer Composite Thin Film. Adv. Electron. Mater., 2017. 3(12). 48.Y. Zhao, J. Wei, H. Li, Y. Yan, W. Zhou, D. Yu and Q. Zhao, A polymer scaffold for self-healing perovskite solar cells. Nat Commun, 2016. 7: p. 10228. 49.B. Chu and B. S. Hsiao, Small-Angle X-ray Scattering of Polymers. Chem. Rev., 2001. 101(6): p. 1727-1762. 50.N. C. Greenham, X. Peng and A. P. Alivisatos, Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B, 1996. 54(24): p. 17628-17637. 51.F. Zhang, H. Zhong, C. Chen, X.-g. Wu, X. Hu, H. Huang, J. Han, B. Zou and Y. Dong, Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano, 2015. 9(4): p. 4533-4542. 52.K.-H. Lin, C.-Y. Chuang, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, I. P. Liu, S.-C. Chou and Y.-L. Lee, Charge Transfer in the Heterointerfaces of CdS/CdSe Cosensitized TiO2 Photoelectrode. J. Phys. Chem.C, 2012. 116(1): p. 1550-1555. 53.K.-S. Cho, K. Heo, C.-W. Baik, J. Y. Choi, H. Jeong, S. Hwang and S. Y. Lee, Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors. Nat. Commun., 2017. 8(1): p. 840. 54.M.-S. Seo, I. Jeong, J.-S. Park, J. Lee, I. K. Han, W. I. Lee, H. J. Son, B.-H. Sohn and M. J. Ko, 2016, Vertically aligned nanostructured TiO2 photoelectrodes for high efficiency perovskite solar cells via a block copolymer template approach. Nanoscale, 2016. 8(22): p. 11472-11479. 55.C. Liu, A. Piyadasa, M. Piech, S. Dardona, Z. Ren and P.-X. Gao, Tunable UV response and high performance of zinc stannate nanoparticle film photodetectors. J. Mater. Chem. C, 2016. 4(25): p. 6176-6184. 56.K. Pydzińska, J. Karolczak, I. Kosta, R. Tena-Zaera, A. Todinova, J. Idígoras, J. A. Anta and M. Ziółek, Determination of Interfacial Charge-Transfer Rate Constants in Perovskite Solar Cells. ChemSusChem, 2016. 9(13): p. 1647-1659.
|