|
[1] J. Y. Chen, M. Scerbo, and G. Kramer, "A review of blood substitutes: examining the history, clinical trial results, and ethics of hemoglobin-based oxygen carriers," Clinics (Sao Paulo), vol. 64, no. 8, pp. 803-13, 2009, doi: 10.1590/S1807-59322009000800016. [2] S. A. Gould and G. S. Moss, "Clinical development of human polymerized hemoglobin as a blood substitute," (in eng), World J Surg, vol. 20, no. 9, pp. 1200-7, Nov-Dec 1996, doi: 10.1007/s002689900183. [3] L. Liu, J. L. Martínez, Z. Liu, D. Petranovic, and J. Nielsen, "Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae," (in eng), Metab Eng, vol. 21, pp. 9-16, Jan 2014, doi: 10.1016/j.ymben.2013.10.010. [4] J. L. Martínez, L. Liu, D. Petranovic, and J. Nielsen, "Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae," (in eng), Biotechnol Bioeng, vol. 112, no. 1, pp. 181-8, Jan 2015, doi: 10.1002/bit.25347. [5] R. F. Xu, J. W. Zhang, P. H. Zhou, R. Yang, X. Y. Feng, and L. X. Xu, "A novel artificial red blood cell substitute: grafted starch-encapsulated hemoglobin," (in English), RSC Adv., Article vol. 5, no. 54, pp. 43845-43853, 2015, doi: 10.1039/c5ra00772k. [6] S. Maijaroen, P. Anwised, S. Klaynongsruang, S. Daduang, and A. Boonmee, "Comparison of recombinant α-hemoglobin from Crocodylus siamensis expressed in different cloning vectors and their biological properties," (in eng), Protein Expr Purif, vol. 118, pp. 55-63, Feb 2016, doi: 10.1016/j.pep.2015.09.028. [7] Q. Wang et al., "Bioinspired Polydopamine-Coated Hemoglobin as Potential Oxygen Carrier with Antioxidant Properties," (in eng), Biomacromolecules, vol. 18, no. 4, pp. 1333-1341, Apr 10 2017, doi: 10.1021/acs.biomac.7b00077. [8] S. Faggiano, S. Bruno, L. Ronda, P. Pizzonia, B. Pioselli, and A. Mozzarelli, "Modulation of expression and polymerization of hemoglobin Polytaur, a potential blood substitute," Arch Biochem Biophys, vol. 505, no. 1, pp. 42-7, Jan 1 2011, doi: 10.1016/j.abb.2010.09.027. [9] P. W. Buehler, F. D'Agnillo, and D. J. Schaer, "Hemoglobin-based oxygen carriers: From mechanisms of toxicity and clearance to rational drug design," (in eng), Trends Mol Med, vol. 16, no. 10, pp. 447-57, Oct 2010, doi: 10.1016/j.molmed.2010.07.006. [10] M. G. Olsson et al., "Pathological conditions involving extracellular hemoglobin: molecular mechanisms, clinical significance, and novel therapeutic opportunities for α(1)-microglobulin," (in eng), Antioxid Redox Signal, vol. 17, no. 5, pp. 813-46, Sep 1 2012, doi: 10.1089/ars.2011.4282. [11] S. Kumar and U. Bandyopadhyay, "Free heme toxicity and its detoxification systems in human," (in eng), Toxicol Lett, vol. 157, no. 3, pp. 175-88, Jul 4 2005, doi: 10.1016/j.toxlet.2005.03.004. [12] M. Allhorn, A. Klapyta, and B. Akerström, "Redox properties of the lipocalin alpha1-microglobulin: reduction of cytochrome c, hemoglobin, and free iron," (in eng), Free Radic Biol Med, vol. 38, no. 5, pp. 557-67, Mar 1 2005, doi: 10.1016/j.freeradbiomed.2004.12.013. [13] E. Karnaukhova, S. Rutardottir, M. Rajabi, L. Wester Rosenlof, A. I. Alayash, and B. Akerstrom, "Characterization of heme binding to recombinant alpha1-microglobulin," Front Physiol, vol. 5, p. 465, 2014, doi: 10.3389/fphys.2014.00465. [14] D. Qi, P. Wang, C. Chen, S. Guo, and X. Wang, "Polymerization of modified diaspirin cross-linked hemoglobin (DCLHb) with 1,6-bismaleimic-hexane," Artif Cells Nanomed Biotechnol, vol. 44, no. 4, pp. 1069-74, Jun 2016, doi: 10.3109/21691401.2016.1138488. [15] N. Roamcharern et al., "Physicochemical properties and oxygen affinity of glutaraldehyde polymerized crocodile hemoglobin: the new alternative hemoglobin source for hemoglobin-based oxygen carriers," (in eng), Artif Cells Nanomed Biotechnol, vol. 47, no. 1, pp. 852-861, Dec 2019, doi: 10.1080/21691401.2019.1579733. [16] J. Monod, J. Wyman, and J. P. Changeux, "ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL," (in eng), J Mol Biol, vol. 12, pp. 88-118, May 1965, doi: 10.1016/s0022-2836(65)80285-6. [17] M. K. Safo, M. H. Ahmed, M. S. Ghatge, and T. Boyiri, "Hemoglobin-ligand binding: understanding Hb function and allostery on atomic level," (in eng), Biochim Biophys Acta, vol. 1814, no. 6, pp. 797-809, Jun 2011, doi: 10.1016/j.bbapap.2011.02.013. [18] B. Giardina, I. Messana, R. Scatena, and M. Castagnola, "The multiple functions of hemoglobin," (in eng), Crit Rev Biochem Mol Biol, vol. 30, no. 3, pp. 165-96, 1995, doi: 10.3109/10409239509085142. [19] G. Panetta, A. Arcovito, V. Morea, A. Bellelli, and A. E. Miele, "Hb(alphaalpha,betabeta): a novel fusion construct for a dimeric, four-domain hemoglobin," Biochim Biophys Acta, vol. 1784, no. 10, pp. 1462-70, Oct 2008, doi: 10.1016/j.bbapap.2008.01.003. [20] H. F. Bunn, "The use of hemoglobin as a blood substitute," (in eng), Am J Hematol, vol. 42, no. 1, pp. 112-7, Jan 1993, doi: 10.1002/ajh.2830420122. [21] C. Gaucher, E. Domingues-Hamdi, C. Prin-Mathieu, P. Menu, and V. Baudin-Creuza, "Interaction of recombinant octameric hemoglobin with endothelial cells," C R Biol, vol. 338, no. 2, pp. 95-102, Feb 2015, doi: 10.1016/j.crvi.2014.11.004. [22] N. Wajih et al., "The role of red blood cell S-nitrosation in nitrite bioactivation and its modulation by leucine and glucose," Redox Biol, vol. 8, pp. 415-21, Aug 2016, doi: 10.1016/j.redox.2016.04.004. [23] X. Xu et al., "Measurements of nitric oxide on the heme iron and beta-93 thiol of human hemoglobin during cycles of oxygenation and deoxygenation," (in eng), Proc Natl Acad Sci U S A, vol. 100, no. 20, pp. 11303-8, Sep 30 2003, doi: 10.1073/pnas.2033883100. [24] R. E. Benesch and R. Benesch, "The mechanism of interaction of red cell organic phosphates with hemoglobin," (in eng), Adv Protein Chem, vol. 28, pp. 211-37, 1974, doi: 10.1016/s0065-3233(08)60231-4. [25] J. Umbreit, "Methemoglobin--it's not just blue: a concise review," (in eng), Am J Hematol, vol. 82, no. 2, pp. 134-44, Feb 2007, doi: 10.1002/ajh.20738. [26] T. M. Chang, "Future prospects for artificial blood," (in eng), Trends Biotechnol, vol. 17, no. 2, pp. 61-7, Feb 1999, doi: 10.1016/s0167-7799(98)01242-6. [27] B. Yu, M. J. Raher, G. P. Volpato, K. D. Bloch, F. Ichinose, and W. M. Zapol, "Inhaled nitric oxide enables artificial blood transfusion without hypertension," Circulation, vol. 117, no. 15, pp. 1982-90, Apr 15 2008, doi: 10.1161/CIRCULATIONAHA.107.729137. [28] W. H. Chang, Y. Chang, Y. C. Chen, and H. W. Sung, "Hemoglobin polymerized with a naturally occurring crosslinking agent as a blood substitute: in vitro and in vivo studies," (in eng), Artif Cells Blood Substit Immobil Biotechnol, vol. 32, no. 2, pp. 243-62, May 2004, doi: 10.1081/bio-120037830. [29] F. Prouchayret, G. Fasan, M. Grandgeorge, C. Vigneron, P. Menu, and E. Dellacherie, "A potential blood substitute from carboxylic dextran and oxyhemoglobin. I. Preparation, purification and characterization," (in eng), Biomater Artif Cells Immobilization Biotechnol, vol. 20, no. 2-4, pp. 319-22, 1992, doi: 10.3109/10731199209119649. [30] J. Zhang et al., "Conjugation with 20 kDa dextran decreases the autoxidation rate of bovine hemoglobin," Artif Cells Nanomed Biotechnol, vol. 46, no. 7, pp. 1436-1443, Nov 2018, doi: 10.1080/21691401.2017.1371184. [31] A. G. Tsai, P. Cabrales, B. N. Manjula, S. A. Acharya, R. M. Winslow, and M. Intaglietta, "Dissociation of local nitric oxide concentration and vasoconstriction in the presence of cell-free hemoglobin oxygen carriers," Blood, vol. 108, no. 10, pp. 3603-10, Nov 15 2006, doi: 10.1182/blood-2006-02-005272. [32] J. Elmer, H. B. Alam, and S. R. Wilcox, "Hemoglobin-based oxygen carriers for hemorrhagic shock," (in English), Resuscitation, Review vol. 83, no. 3, pp. 285-292, Mar 2012, doi: 10.1016/j.resuscitation.2011.09.020. [33] E. Tsuchida, K. Sou, A. Nakagawa, H. Sakai, T. Komatsu, and K. Kobayashi, "Artificial oxygen carriers, hemoglobin vesicles and albumin-hemes, based on bioconjugate chemistry," (in eng), Bioconjug Chem, vol. 20, no. 8, pp. 1419-40, Aug 19 2009, doi: 10.1021/bc800431d. [34] P. E. Graves, D. P. Henderson, M. J. Horstman, B. J. Solomon, and J. S. Olson, "Enhancing stability and expression of recombinant human hemoglobin in E. coli: Progress in the development of a recombinant HBOC source," (in eng), Biochim Biophys Acta, vol. 1784, no. 10, pp. 1471-9, Oct 2008, doi: 10.1016/j.bbapap.2008.04.012. [35] T. Kabbua, P. Anwised, A. Boonmee, B. P. Subedi, B. S. Pierce, and S. Thammasirirak, "Autoinduction, purification, and characterization of soluble alpha-globin chains of crocodile (Crocodylus siamensis) hemoglobin in Escherichia coli," Protein Expr Purif, vol. 103, pp. 56-63, Nov 2014, doi: 10.1016/j.pep.2014.08.013. [36] S. J. Hoffman et al., "Expression of fully functional tetrameric human hemoglobin in Escherichia coli," (in eng), Proc Natl Acad Sci U S A, vol. 87, no. 21, pp. 8521-5, Nov 1990, doi: 10.1073/pnas.87.21.8521. [37] R. F. Eich et al., "Mechanism of NO-induced oxidation of myoglobin and hemoglobin," (in eng), Biochemistry, vol. 35, no. 22, pp. 6976-83, Jun 4 1996, doi: 10.1021/bi960442g. [38] S. T. Jeong, N. T. Ho, M. P. Hendrich, and C. Ho, "Recombinant hemoglobin(alpha 29leucine -> phenylalanine, alpha 96valine -> tryptophan, beta 108asparagine -> lysine) exhibits low oxygen affinity and high cooperativity combined with resistance to autoxidation," (in English), Biochemistry, Article vol. 38, no. 40, pp. 13433-13442, Oct 1999, doi: 10.1021/bi991271t. [39] M. F. Tam et al., "Autoxidation and oxygen binding properties of recombinant hemoglobins with substitutions at the αVal-62 or βVal-67 position of the distal heme pocket," (in eng), J Biol Chem, vol. 288, no. 35, pp. 25512-21, Aug 30 2013, doi: 10.1074/jbc.M113.474841. [40] A. B. Ramzi, J. E. Hyeon, and S. O. Han, "Improved catalytic activities of a dye-decolorizing peroxidase (DyP) by overexpression of ALA and heme biosynthesis genes in Escherichia coli," Process Biochemistry, vol. 50, no. 8, pp. 1272-1276, 2015, doi: 10.1016/j.procbio.2015.05.004. [41] D. M. Villarreal et al., "Enhancement of recombinant hemoglobin production in Escherichia coli BL21(DE3) containing the Plesiomonas shigelloides heme transport system," (in eng), Appl Environ Microbiol, vol. 74, no. 18, pp. 5854-6, Sep 2008, doi: 10.1128/aem.01291-08. [42] R. A. Zager, "Alpha 1 Microglobulin: A Potentially Paradoxical Anti-Oxidant Agent," Adv Tech Biol Med, vol. 5, no. 3, Aug 2017, doi: 10.4172/2379-1764.1000238. [43] M. Cederlund, A. Deronic, J. Pallon, O. E. Sørensen, and B. Åkerström, "A1M/α1-microglobulin is proteolytically activated by myeloperoxidase, binds its heme group and inhibits low density lipoprotein oxidation," (in eng), Front Physiol, vol. 6, p. 11, 2015, doi: 10.3389/fphys.2015.00011. [44] M. Allhorn, T. Berggård, J. Nordberg, M. L. Olsson, and B. Akerström, "Processing of the lipocalin alpha(1)-microglobulin by hemoglobin induces heme-binding and heme-degradation properties," (in eng), Blood, vol. 99, no. 6, pp. 1894-901, Mar 15 2002, doi: 10.1182/blood.v99.6.1894. [45] J. Lobstein, C. A. Emrich, C. Jeans, M. Faulkner, P. Riggs, and M. Berkmen, "SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm," Microb Cell Fact, vol. 11, p. 56, May 8 2012, doi: 10.1186/1475-2859-11-56.
|