[1]B. C. K. Tee, A. Chortos, R. R. Dunn, G. Schwartz, E. Eason, and Z. Bao, Tunable Flexible Pressure Sensors Using Microstructured Elastomer Geometries for Intuitive Electronics. Adv. Funct.
Mater. 2014, 24, 5427-5434.
[2]H. Liu, Q. Li, Y. Bu, N. Zhang, C. Wang, C. Pan, L. Mi, Z. Guo, C. Liu, and C. Shen, Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor. Nano
Energy 2019, 66, 104143-104151.
[3]M. Jung, K. Kim, B. Kim, H. Cheong, K. Shin, O. S. Kwon, J. J. Park, and S. Jeon, Paper-Based Bimodal Sensor for Electronic Skin
Applications. ACS Appl. Mater. Interfaces 2017, 9, 26974-26982.
[4]D. J. Lipomi, M. Vosgueritchian, B. C. K. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat.
Nanotechnol. 2011, 6, 788-792.
[5]G. Schwartz, B. C. K. Tee, J. Mei, A. L. Appleton, D. H. Kim, H. Wang, and Z. Bao, Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring.
Nat. Commun. 2013, 4, 1859-1866.
[6]T. H. Chang, Y. Tian, C. Li, X. Gu, K. Li, H. Yang, P. Sanghani, C. M. Lim, H. Ren, and P. Y. Chen, Stretchable Graphene Pressure Sensors with Shar-Pei-like Hierarchical Wrinkles for Collision-Aware Surgical
Robotics. ACS Appl. Mater. Interfaces 2019, 11, 10226-10236.
[7]M. Lou, I. Abdalla, M. Zhu, X. Wei, J. Yu, Z. Li, and B. Ding, Highly Wearable, Breathable, and Washable Sensing Textile for Human Motion and Pulse Monitoring. ACS Appl. Mater. Interfaces 2020, 12,
17, 19965-19973.
[8]W. Gao1, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D. H. Lien, G. A. Brooks, R. W. Davis, and A. Javey, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis.
Nature 2016, 529, 509-514.
[9]H. Y. Y. Nyein, W. Gao, Z. Shahpar, S. Emaminejad, S. Challa, K. Chen, H. M. Fahad, L. C. Tai, H. Ota, R. W. Davis, and A. Javey, A Wearable Electrochemical Platform for Noninvasive Simultaneous Monitoring of Ca2+ and pH. ACS Nano 2016, 10, 7216-7224.
[10] T. Q. Trung, and N. E. Lee, Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoring and Personal Healthcare. Adv. Mater. 2016, 28, 4338-4372.
[11] D. Kwon, T. I. Lee, J. Shim, S. Ryu, M. S. Kim, S. Kim, T. S. Kim, and I. Park. Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer. ACS Appl. Mater.
Interfaces 2016, 8, 16922-16931.
[12] J. O. Kim, S. Y. Kwon, Y. Kim, H. B. Choi, J. C. Yang, J. Oh, H. S. Lee, J. Y. Sim, S. Ryu, and S. Park, Highly Ordered 3d Microstructure Based Electronic Skin Capable of Differentiating Pressure, Temperature, and Proximity. ACS Appl. Mater. Interfaces 2018, 11, 1503-1511.
[13] Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, and J. B. Xu, Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures. ACS
Nano 2017, 11, 4507-4513.
[14] Y. Hu, H. Zhuo, Z. Chen, K. Wu, Q. Luo, Q. Liu, S. Jing, C. Liu, L. Zhong, R. Sun, and X. Peng, Superelastic Carbon Aerogel with Ultrahigh and Wide-Range Linear Sensitivity. ACS Appl. Mater. Interfaces 2018, 10, 47, 40641-40650.
[15] A. Tewari, S. Gandla, S. Bohm, C. R. McNeill, and Dipti Gupta, Highly Exfoliated MWNT–rGO Ink-Wrapped Polyurethane Foam for Piezoresistive Pressure Sensor Applications. ACS Appl. Mater. Interfaces 2018, 10, 6, 5185-5195.
[16] Y. Ding, T. Xu, O. Onyilagha, H. Fong, and Z. Zhu, Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges. ACS Appl. Mater. Interfaces 2019, 11, 7, 6685-6704.
[17] Y. Mao, B. Ji, G. Chen, C. Hao, B. Zhou, and Y. Tian, Robust and Wearable Pressure Sensor Assembled from AgNW-Coated PDMS Micropillar Sheets with High Sensitivity and Wide Detection Range. ACS Appl. Nano Mater. 2019, 2, 5, 3196-3205.
[18] B. Li, B. Gil, M. Power, A. Gao, S. Treratanakulchai, S. Anastasova, and G. Z. Yang, Carbon-Nanotube-Coated 3D Microspring Force Sensor for Medical Applications. ACS Appl. Mater. Interfaces 2019,11, 39, 35577-35586.
[19] Z. Han, H. Li, J. Xiao, H. Song, B. Li, S. Cai, Y. Chen, Y. Ma, and X. Feng, Ultralow-Cost, Highly Sensitive, and Flexible Pressure Sensors Based on Carbon Black and Airlaid Paper for Wearable Electronics. ACS Appl. Mater. Interfaces 2019, 11, 36, 33370-33379.
[20] C. Yang, W. Liu, N. Liu, J. Su, L. Li, L. Xiong, F. Long, Z. Zou, and Y. Gao, Graphene Aerogel Broken to Fragments for a Piezoresistive Pressure Sensor with a Higher Sensitivity. ACS Appl. Mater. Interfaces 2019, 11, 36, 33165-33172.
[21] Y. Lu, Z. Liu, H. Yan, Q. Peng, R. Wang, M. E. Barkey, J. W. Jeon, and E. K. Wujcik, Ultrastretchable Conductive Polymer Complex as a Strain Sensor with a Repeatable Autonomous Self-Healing Ability. ACS Appl. Mater. Interfaces 2019, 11, 22, 20453-20464.
[22] J. C. Yang, J. O. Kim, J. Oh, S. Y. Kwon, J. Y. Sim, D. W. Kim, H. B. Choi, and S. Park, Microstructured Porous Pyramid-Based Ultrahigh Sensitive Pressure Sensor Insensitive to Strain and Temperature. ACS Appl. Mater. Interfaces 2019, 11, 19472-19480.
[23] S. Kim, M. Amjadi, T. I. Lee, Y. Jeong, D. Kwon, M. S. Kim, K. Kim, T. S. Kim, Y. S. Oh, and I. Park, Wearable, Ultrawide-Range, and Bending-Insensitive Pressure Sensor Based on Carbon Nanotube Network-Coated Porous Elastomer Sponges for Human Interface and Healthcare Devices, ACS Appl. Mater. Interfaces 2019, 11, 23639-23648.
[24] J. Park, J. Kim, J. Hong, H. Lee, Y. Lee, S. Cho, S. W. Kim, J. J. Kim, S. Y. Kim, and H. Ko, Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins, NPG Asia Materials, 2018, 10, 163-176.
[25] F. Shaffer, R. McCraty, and C. L. Zerr, A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate
variability. Front. Psychol., 2014, 9, 1040-1058.
[26] https://wenku.baidu.com/view/a681869f87c24028915fc3af (心臟動作電位之圖片來源)。
[27] https://reurl.cc/Z7nr6V (動作電位形成原因之圖片來源)。
[28] A. Dashwood, E. Cheesman, N. Beard, H. Haqqani, Y. W. Wong, and P. Molenaar, Understanding How Phosphorylation and Redox Modifications Regulate Cardiac Ryanodine Receptor Type 2 Activity to Produce an Arrhythmogenic Phenotype in Advanced Heart Failure.
ACS Pharmacol. Transl. Sci. 2020, 3, 563-582.
[29] T. Yang, X. Jiang, Y. Zhong, X. Zhao, S. Lin, J. Li, X. Li, J. Xu, Z. Li, and H. Zhu, A Wearable and Highly Sensitive Graphene Strain Sensor for Precise Home-Based Pulse Wave Monitoring. ACS Sens. 2017, 2, 967-974.
[30] S. Laurent, J. Cockcroft, L. V. Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. S. Boudier, Expert consensus document on arterial stiffness: methodological issues and clinical applications. European Heart
Journal 2006, 27, 2588-2605.
[31] E. B. Peters and M. R. Kibbe, Nanomaterials to Resolve
Atherosclerosis. ACS Biomater. Sci. Eng. 2020, 6, 3693-3712.
[32] H. L. Kim and S. H. Kim, Pulse Wave Velocity in Atherosclerosis. Front.
Cardiovasc. Med., 2019, 6, 41-53.
[33] M. Lou, I. Abdalla, M. Zhu, J. Yu, Z. Li, and B. Ding, Hierarchically Rough Structured and Self-Powered Pressure Sensor Textile for Motion Sensing and Pulse Monitoring. ACS Appl. Mater. Interfaces 2020, 12, 1, 1597-1605.
[34] L. Zhang, H. Li, X. Lai, T. Gao, J. Yang, and X. Zeng, Thiolated Graphene@Polyester Fabric-Based Multilayer Piezoresistive Pressure Sensors for Detecting Human Motion. ACS Appl. Mater. Interfaces 2018, 10, 48, 41784-41792.
[35] L. Q. Tao, K. N. Zhang, H. Tian, Y. Liu, D. Y. Wang, Y. Q. Chen, Y. Yang, and T. L. Ren, Graphene-Paper Pressure Sensor for Detecting Human Motions. ACS Nano 2017, 11, 9, 8790-8795.
[36] X. Guan, Z. Wang, W. Zhao, H. Huang, S. Wang, Q. Zhang, D. Zhong, W. Lin, N. Ding, and Z. Peng, Flexible Piezoresistive Sensors with Wide-Range Pressure Measurements Based on a Graded Nest-like Architecture, ACS Appl. Mater. Interfaces 2020, 12, 26137-26144.
[37] X. F. Zhao, C. Z. Hang, X. H. Wen, M. Y. Liu, H. Zhang, F. Yang, R. G. Ma, J. C. Wang, D. W. Zhang, and H. L. Lu, Ultrahigh-Sensitive Finlike Double-Sided E‑Skin for Force Direction Detection, ACS Appl. Mater. Interfaces 2020, 12, 14136-14144.
[38] L. Gao, C. Zhu, L. Li, C. Zhang, J. Liu, H. D. Yu, and W. Huang, All Paper-Based Flexible and Wearable Piezoresistive Pressure Sensor, ACS Appl. Mater. Interfaces 2019, 11, 25034-25042.
[39] Y. Jeong, J. Park, J. Lee, K. Kim, and I. Park, Ultrathin, Biocompatible, and Flexible Pressure Sensor with a Wide Pressure Range and Its Biomedical Application, ACS Sens. 2020, 5, 481-489.
[40] K. Tian, G. Sui, P. Yang, H. Deng, and Q. Fu, Ultrasensitive Thin-Film Pressure Sensors with a Broad Dynamic Response Range and Excellent Versatility Toward Pressure, Vibration, Bending, and Temperature, ACS Appl. Mater. Interfaces 2020, 12, 18, 20998-21008.
[41] 吳沖滸、謝海唯、肖滿斗、劉丹妮、魯攀及文曉,多孔材料密度檢測方法,中華人民共和國國家知識產權局,2012,1-3。
[42] 陳清吉,製備超低密度奈米碳管塊及其應用於檢測人體生理訊號與微小運動之高靈敏感測器,中正大學化學工程學系碩士論文,108年。[43] C. Yang, W. Liu, N. Liu, J. Su, L. Li, L. Xiong, F. Long, Z. Zou, and Y. Gao, Graphene Aerogel Broken to Fragments for a Piezoresistive Pressure Sensor with a Higher Sensitivity. ACS Appl. Mater.
Interfaces 2019, 11, 33165-33172.
[44] Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju, Y. Li, X. Wang, D. Wang, M. Jian, Y. Zhang, R. Liang, H. Tian, Y. Yang, and T. L. Ren, Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large
Linearity. ACS Nano 2018, 12, 2346-2354.
[45] M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang, C. Wang, H. Xie, M. Zhang, and Y. Zhang, Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures. Adv. Funct. Mater. 2017, 27,
1606066-1606073.
[46] W. Zhong, C. Liu, Q. Liu, L. Piao, H. Jiang, W. Wang, K. Liu, M. Li, G. Sun, and D. Wang, Ultrasensitive Wearable Pressure Sensors Assembled by SurfacePatterned Polyolefin Elastomer Nanofiber Membrane Interpenetrated with Silver Nanowires. ACS Appl. Mater.
Interfaces 2018, 10, 42706-42714.
[47] J. Park, Y. Lee, J. Hong, M. Ha, Y. D. Jung, H. Lim, S. Y. Kim, and H. Ko. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014, 8, 4689-4697.
[48] Y. Zhang, Y. Hu, P. Zhu, F. Han, Y. Zhu, R. Sun, and C.-P. Wong, Flexible and Highly Sensitive Pressure Sensor Based on Microdome-Patterned PDMS Forming with Assistance of Colloid Self-Assembly and Replica Technique for Wearable Electronics. ACS Appl. Mater. Interfaces 2017, 9, 35968-35976.
[49] P. Nie, R. Wang, X. Xu, Y. Cheng, X. Wang, L. Shi, and J. Sun, High-Performance Piezoresistive Electronic Skin with Bionic Hierarchical Microstructure and Microcracks. ACS Appl. Mater. Interfaces 2017, 9, 14911-14919.
[50] S. G. Yoon, B. J. Park, and S. T. Chang, Highly Sensitive Piezocapacitive Sensor for Detecting Static and Dynamic Pressure Using Ion-Gel Thin Films and Conductive Elastomeric Composites.
ACS Appl. Mater. Interfaces 2017, 9, 36206-36219.
[51] Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao, J. Rao, S. Luo, J. Wang, X. Jiang, Z. Liu, N. Liu, and Y. Gao, 3D Synergistical MXene/Reduced Graphene Oxide Aerogel for a Piezoresistive Sensor. ACS Nano 2018, 12, 3209-3216.
[52] https://reurl.cc/R11OzD (醫學百科-解剖學)。
[53] K. K. Kim, I. Ha, M. Kim, J. Choi, P. Won, S. Jo, and S. H. Ko, A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 2020, 11, 2149-2156.
[54] https://zh.wikipedia.org/wiki/%E8%84%89%E6%90%8F (脈搏-維
基百科)。
[55] F. He, X. You, H. Gong, Y. Yang, T. Bai, W. Wang, W. Guo, X. Liu, and M. Ye, Stretchable, Biocompatible, and Multifunctional Silk Fibroin-Based Hydrogels toward Wearable Strain/Pressure Sensors and Triboelectric Nanogenerators. ACS Appl. Mater. Interfaces 2020,
12, 5, 6442-6450.
[56] K. Maity, S. Garain, K. Henkel, D. Schmeißer, and D. Mandal, Self-Powered Human-Health Monitoring through Aligned PVDF Nanofibers Interfaced Skin-Interactive Piezoelectric Sensor. ACS
Appl. Polym. Mater. 2020, 2, 2, 862-878.
[57] N. M. Saad, A. R. Abdullah, and Y. F. Low, Detection of Heart Blocks in ECG Signals by Spectrum and Time-Frequency Analysis. IEEE
Xplore, 2007, 10, 10182317-101821.
[58] https://reurl.cc/14QyZG (心臟位置示意圖之圖片來源)。
[59] All About Heart Rate (Pulse). American Heart Association. 22 Aug 2017.
[60] https://reurl.cc/Q3pzLo (完整心電圖波形之圖片來源)。
[61] https://reurl.cc/EzKg8g (百科知識-脈搏短絀)。
[62] A. B. Liu, P. C. Hsu, Z. L. Chen, and H. T. Wu, Measuring Pulse Wave Velocity Using ECG and Photoplethysmography. J Med Syst
2011, 35, 771-777.