(3.235.108.188) 您好!臺灣時間:2021/03/07 20:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳立軒
研究生(外文):CHEN, LI-HSUAN
論文名稱:以奈米碳管塊結合指叉式電極製備超靈敏傳感器與其應用
論文名稱(外文):Carbon nanotube blocks combined with interdigitated electrode to fabricate ultra-sensitive sensor and its application
指導教授:陳建忠陳建忠引用關係
指導教授(外文):CHEN, CHIEN-CHONG
口試委員:喬緒明李元堯王崇人
口試委員(外文):CHIAO, SHU-MINLI, YUAN-YAOWANG, CHURNG-REN
口試日期:2020-07-16
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:111
中文關鍵詞:奈米碳管指叉式電極感測器監測人體生理訊號
外文關鍵詞:Carbon nanotubeInterdigitated electrodeSensorMonitoring of human physiological signal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:40
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是使用本實驗室學長以流動型觸媒化學氣相法合成的奈米碳管塊,並且,結合指叉式電極的設計,去製備出高靈敏度壓阻式壓力感測器來量測人體細微運動和監測人體生理訊號像是脈搏訊號等等。
首先,將矽橡膠溶解在四氫呋喃(THF)中,並以噴塗法噴出厚度約為0.1 mm的SR薄膜。接著利用雷射切割機切割出指叉式圖案的壓克力模具,然後,以超音波分散法將奈米碳管分散於矽橡膠溶液中,藉由上述圖案遮片在SR薄膜上噴塗出指叉式圖案作為電極使用。利用雷射切割機切出中空模具並以噴塗法噴塗矽橡膠形成感測器的封裝層,最後,將其組裝成感測器。感測器其傳感機制是由於奈米碳管塊屬於超低密度、多孔材料,在微小的壓力下,奈米碳管塊與CNT/SR電極之間接觸面積增加,導電路徑變多,造成感測器電阻下降。
本研究所製備出的感測器,最小重量的偵測極限可以低至16.1毫克,此數據代表著感測器能夠感測到比米粒(約20毫克)還要輕的重量。其最小偵測壓力極限為0.8 Pa,且具有良好的靈敏度,在0.8~54 Pa的壓力範圍下,感測器最大靈敏度達到15.9 kPa-1。而感測器在人體運動訊號這方面,能夠量測人體點頭、偵測手臂肌肉拉伸以及藉由手指與手腕之間肌肉連接的關係,進而,在手腕上感測到各手指進行往上翹動作時所造成的電阻變化。在感測人體生理訊號這部分,感測器可以量測到脈搏訊號,並且,與標準脈搏圖比較,感測器清楚地展示了脈搏的特徵波形。然後,將感測器黏貼於心臟跳動處,來觀察因心跳所引起胸腔表面振動的訊號,感測器在呼吸情況下測試,從數據放大圖中可以觀察到有一個振幅較大的規律訊號,並且,其訊號上有較小的波形產生,將訊號放大後與標準心電圖波形進行比較,可以推論振幅較小的訊號為心率訊號,並且,藉由FFT分析可以觀察到呼吸以及心率訊號的頻率,所以,感測器能夠同時量測到呼吸及心率訊號。藉由受測者憋氣時測試,感測器可以直接量測到心率訊號,並且,從FFT分析中可以觀察到只有心率訊號的頻率,沒有觀察到呼吸訊號的頻率,感測器能夠不用透過信號放大器、濾波器等儀器輔助下即可量測到心率訊號,這在文獻中相當少見。
將感測器進行同時量測心臟與手腕脈搏訊號測試,感測器在受測者呼吸狀況下測試,從數據放大圖中,在心臟訊號的部分,可以觀察到有一個振幅較大的規律訊號,其訊號上有較小的波形產生,藉由將訊號放大後與標準心電圖波形進行比較,推論振幅較小的訊號為心率訊號,並且,藉由FFT分析可以觀察到呼吸以及心率訊號的頻率,代表,感測器在受測者呼吸時測試,可以同時量測到呼吸及心率訊號;在脈搏訊號的部分,感測器黏貼在手腕時,從數據放大圖中可以觀察到脈搏訊號,將訊號放大後與標準脈搏波形圖進行比較,可以觀察到所量測的訊號波形都有對應到脈搏的特徵波形,並且,進行FFT分析有觀察到脈搏訊號的頻率。受測者在憋氣時測試,感測器黏貼在心臟時,可以量測到規律的訊號,並且,將訊號放大與標準心電圖波形進行比較,推論此訊號為心率訊號,並且,透過FFT分析,可以觀察到心率訊號的頻率;感測器黏貼於手腕時,將量測到的訊號放大與標準脈搏波形圖比較,可以觀察到所量測的訊號波形都有對應到脈搏的特徵波形,並且,透過FFT分析可以觀察到脈搏訊號的頻率。在文獻中提到,可以藉由量測心率以及脈搏訊號,計算兩者訊號每分鐘跳動次數差異,可以初步判斷受測者是否有心血管相關的疾病。
除此之外,在憋氣時測試,可以直接觀察到心率及脈搏訊號,藉由計算心臟與脈搏之間的脈搏波速率為476.1 ±17.3 cm/s,與文獻的數據比較後,測試值為正常值,文獻中提到,在累積一定的樣本數後,脈搏波速率可以用來評估是否有動脈硬化的情況。
感測器可以透過簡易的量測可以獲得自己身體健康訊息,在自己身體稍有微恙時,立即的去醫院就醫檢查,減少延誤就醫的機率,感測器在對於人體健康監測這方面具有很大的發展潛力。
關鍵字:奈米碳管、指叉式電極、感測器、監測人體生理訊號。

In this study, we use the carbon nanotube blocks made by the senior in our laboratory. The carbon nanotube blocks synthesized by the flow-catalyst chemical vapor method. We use the design of the interdigitated electrode. We have prepared high sensitivity piezoresistive pressure sensors to measure the subtle movement of the human body.
First, the silicone rubber was dissolved in tetrahydrofuran (THF), and spray a SR film with a thickness of about 0.1 mm by spraying. Next, we use a laser cutting machine to cut out the acrylic mold of the interdigitated pattern. Then, we dispersed the carbon nanotubes in the silicone rubber solution by ultrasonic dispersion method. We use a pattern mask to spray an interdigitated pattern on the SR film as an electrode. We use a laser cutting machine to cut out the hollow mold and spray the silicone rubber to form the package layer of the sensor. Finally, assemble it into a sensor. The sensing mechanism of the sensor is that the carbon nanotube block is an ultra-low density, and porous material. In the small pressure range, the increase of contact area between the carbon nanotube block and the CNT / SR electrode, resulting in more conductive paths, and sensor resistance change.
The minimum weight detection limit of the sensor prepared in this research can be as low as 16.1 mg. This data represents that the sensor can sense lighter weight than rice grains (about 20 mg). The minimum detection pressure limit is 0.8 Pa, and it has good sensitivity. In the pressure range of 0.8 ~ 54 Pa, the maximum sensitivity of the sensor reaches 15.9 kPa-1. In detecting human motion signals, the sensor can measure the nodding of the human, detect the stretching of the arm muscles. In addition, through the muscle connection between the finger and the wrist, the resistance change caused by the upward tilt of each finger is sensed on the wrist. In the part of sensing the physiological signal of the human body, the sensor can measure the pulse signal, and compared with the standard pulse graph, the sensor clearly shows the characteristic peak of the pulse. Then, stick the sensor to the heartbeat to observe the vibration signal on the surface of the chest cavity caused by the heartbeat. In the case of breathing, the sensor can be observed from the enlarged data graph that there is a regular signal with a larger amplitude, and a smaller waveform is generated on the signal. After the signal is amplified and compared with the standard electrocardiogram waveform, it can be inferred that the signal with a smaller amplitude is the heart rate signal, and the frequency of the respiration and the heart rate signal can be observed by FFT analysis, so the sensor can simultaneously measure the respiration and Heart rate signal. Through the test when the subject is holding his breath, the sensor can directly measure the heart rate signal, and from the FFT analysis, only the frequency of the heart rate signal can be observed, but the frequency of the breathing signal is not observed. The sensor can measure the heart rate signal without the aid of signal amplifiers, filters and other instruments, which is quite rare in the literature.
The sensor is used to simultaneously measure the heart and wrist pulse signal test. The sensor is tested under the respiratory condition of the subject. From the data magnification diagram, in the part of the heart signal, a regular signal with larger amplitude can be observed, a smaller waveform is generated on the signal. In addition, the frequency of breathing and heart rate signals can be observed by FFT analysis, which means that the sensor is tested when the subject is breathing, and the breathing and heart rate signals can be measured at the same time.
In the part of the pulse signal, when the sensor is attached to the wrist, the pulse signal can be observed from the data magnification diagram. After the signal is amplified, it is compared with the standard pulse waveform diagram, and the measured signal waveforms can be observed. The characteristic waveform of the pulse, and the frequency of the pulse signal can be observed by FFT analysis.
When the subject is holding his breath, the regular signal can be measured when the sensor is attached to the heart, and the signal is amplified and compared with the standard electrocardiogram waveform. It is deduced that the signal is a heart rate signal, and through FFT analysis, it can be observe the frequency of the heart rate signal when the sensor is attached to the wrist, the measured signal is amplified and compared with the standard pulse waveform graph. It can be observed that the measured signal waveform has a characteristic waveform corresponding to the pulse. FFT analysis can observe the frequency of the pulse signal.
In the literature, by measuring the heart rate and pulse signal, and calculating the difference in the number of beats per minute between the two signals, it is possible to preliminarily determine whether the subject has cardiovascular-related diseases.
In addition, the heart rate and pulse signal can be directly observed during the test while holding the breath. By calculating the pulse wave rate between the heart and the pulse as 476.1 ±17.3 cm/s, the test value is normal after comparing with the data in the literature. Value, mentioned in the literature, after accumulating a certain number of samples, the pulse wave rate can be used to assess whether there is arteriosclerosis.
  The sensor can obtain information about your health through simple measurement. When your body is slightly ill, you can go to the hospital for medical examination immediately, reducing the probability of delay in seeking medical attention. The sensor is very useful in monitoring human health. Great development potential.
Keywords: Carbon nanotube;Interdigitated electrode;Sensor;Monitoring of human physiological signal
誌謝 I
摘要 III
Abstract VI
目錄 XI
圖目錄 XIII
表目錄 XVIII
第一章 介紹 1
第二章 實驗儀器與方法 9
2-1實驗藥品 9
2-2實驗儀器與設備 9
2-3奈米碳管塊基本性質量測方法 10
2-3-1 奈米碳管塊其管長與管徑 10
2-3-2 奈米碳管塊密度 10
2-4製備超靈敏感測器 11
2-4-1 製備底層矽橡膠薄膜 11
2-4-2 製備CNT/SR電極薄膜 11
2-4-3 製備封裝薄膜 12
2-4-4 裁切奈米碳管塊 12
2-4-5 封裝感測器 13
2-5感測器測試時之實驗步驟 13
2-5-1 感測器基本性質測試 13
2-5-2 感測器人體運動訊號測試 15
2-5-3 感測器人體生理訊號測試 16
第三章 結果與討論 18
3-1感測器製備歷程 18
3-2感測器基本性質測試 20
3-3感測器偵測人體運動訊號 24
3-4感測器人體生理訊號監測 27
第四章 結論 39
第五章 未來展望 42
參考文獻 44
圖片說明 56
圖片 60
表格說明 90
表格 91

[1]B. C. K. Tee, A. Chortos, R. R. Dunn, G. Schwartz, E. Eason, and Z. Bao, Tunable Flexible Pressure Sensors Using Microstructured Elastomer Geometries for Intuitive Electronics. Adv. Funct.
Mater. 2014, 24, 5427-5434.
[2]H. Liu, Q. Li, Y. Bu, N. Zhang, C. Wang, C. Pan, L. Mi, Z. Guo, C. Liu, and C. Shen, Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor. Nano
Energy 2019, 66, 104143-104151.
[3]M. Jung, K. Kim, B. Kim, H. Cheong, K. Shin, O. S. Kwon, J. J. Park, and S. Jeon, Paper-Based Bimodal Sensor for Electronic Skin
Applications. ACS Appl. Mater. Interfaces 2017, 9, 26974-26982.
[4]D. J. Lipomi, M. Vosgueritchian, B. C. K. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat.
Nanotechnol. 2011, 6, 788-792.
[5]G. Schwartz, B. C. K. Tee, J. Mei, A. L. Appleton, D. H. Kim, H. Wang, and Z. Bao, Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring.
Nat. Commun. 2013, 4, 1859-1866.
[6]T. H. Chang, Y. Tian, C. Li, X. Gu, K. Li, H. Yang, P. Sanghani, C. M. Lim, H. Ren, and P. Y. Chen, Stretchable Graphene Pressure Sensors with Shar-Pei-like Hierarchical Wrinkles for Collision-Aware Surgical
Robotics. ACS Appl. Mater. Interfaces 2019, 11, 10226-10236.
[7]M. Lou, I. Abdalla, M. Zhu, X. Wei, J. Yu, Z. Li, and B. Ding, Highly Wearable, Breathable, and Washable Sensing Textile for Human Motion and Pulse Monitoring. ACS Appl. Mater. Interfaces 2020, 12,
17, 19965-19973.
[8]W. Gao1, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D. H. Lien, G. A. Brooks, R. W. Davis, and A. Javey, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis.
Nature 2016, 529, 509-514.
[9]H. Y. Y. Nyein, W. Gao, Z. Shahpar, S. Emaminejad, S. Challa, K. Chen, H. M. Fahad, L. C. Tai, H. Ota, R. W. Davis, and A. Javey, A Wearable Electrochemical Platform for Noninvasive Simultaneous Monitoring of Ca2+ and pH. ACS Nano 2016, 10, 7216-7224.
[10] T. Q. Trung, and N. E. Lee, Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoring and Personal Healthcare. Adv. Mater. 2016, 28, 4338-4372.
[11] D. Kwon, T. I. Lee, J. Shim, S. Ryu, M. S. Kim, S. Kim, T. S. Kim, and I. Park. Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer. ACS Appl. Mater.
Interfaces 2016, 8, 16922-16931.
[12] J. O. Kim, S. Y. Kwon, Y. Kim, H. B. Choi, J. C. Yang, J. Oh, H. S. Lee, J. Y. Sim, S. Ryu, and S. Park, Highly Ordered 3d Microstructure Based Electronic Skin Capable of Differentiating Pressure, Temperature, and Proximity. ACS Appl. Mater. Interfaces 2018, 11, 1503-1511.
[13] Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, and J. B. Xu, Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures. ACS
Nano 2017, 11, 4507-4513.
[14] Y. Hu, H. Zhuo, Z. Chen, K. Wu, Q. Luo, Q. Liu, S. Jing, C. Liu, L. Zhong, R. Sun, and X. Peng, Superelastic Carbon Aerogel with Ultrahigh and Wide-Range Linear Sensitivity. ACS Appl. Mater. Interfaces 2018, 10, 47, 40641-40650.
[15] A. Tewari, S. Gandla, S. Bohm, C. R. McNeill, and Dipti Gupta, Highly Exfoliated MWNT–rGO Ink-Wrapped Polyurethane Foam for Piezoresistive Pressure Sensor Applications. ACS Appl. Mater. Interfaces 2018, 10, 6, 5185-5195.
[16] Y. Ding, T. Xu, O. Onyilagha, H. Fong, and Z. Zhu, Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges. ACS Appl. Mater. Interfaces 2019, 11, 7, 6685-6704.
[17] Y. Mao, B. Ji, G. Chen, C. Hao, B. Zhou, and Y. Tian, Robust and Wearable Pressure Sensor Assembled from AgNW-Coated PDMS Micropillar Sheets with High Sensitivity and Wide Detection Range. ACS Appl. Nano Mater. 2019, 2, 5, 3196-3205.
[18] B. Li, B. Gil, M. Power, A. Gao, S. Treratanakulchai, S. Anastasova, and G. Z. Yang, Carbon-Nanotube-Coated 3D Microspring Force Sensor for Medical Applications. ACS Appl. Mater. Interfaces 2019,11, 39, 35577-35586.
[19] Z. Han, H. Li, J. Xiao, H. Song, B. Li, S. Cai, Y. Chen, Y. Ma, and X. Feng, Ultralow-Cost, Highly Sensitive, and Flexible Pressure Sensors Based on Carbon Black and Airlaid Paper for Wearable Electronics. ACS Appl. Mater. Interfaces 2019, 11, 36, 33370-33379.
[20] C. Yang, W. Liu, N. Liu, J. Su, L. Li, L. Xiong, F. Long, Z. Zou, and Y. Gao, Graphene Aerogel Broken to Fragments for a Piezoresistive Pressure Sensor with a Higher Sensitivity. ACS Appl. Mater. Interfaces 2019, 11, 36, 33165-33172.
[21] Y. Lu, Z. Liu, H. Yan, Q. Peng, R. Wang, M. E. Barkey, J. W. Jeon, and E. K. Wujcik, Ultrastretchable Conductive Polymer Complex as a Strain Sensor with a Repeatable Autonomous Self-Healing Ability. ACS Appl. Mater. Interfaces 2019, 11, 22, 20453-20464.
[22] J. C. Yang, J. O. Kim, J. Oh, S. Y. Kwon, J. Y. Sim, D. W. Kim, H. B. Choi, and S. Park, Microstructured Porous Pyramid-Based Ultrahigh Sensitive Pressure Sensor Insensitive to Strain and Temperature. ACS Appl. Mater. Interfaces 2019, 11, 19472-19480.
[23] S. Kim, M. Amjadi, T. I. Lee, Y. Jeong, D. Kwon, M. S. Kim, K. Kim, T. S. Kim, Y. S. Oh, and I. Park, Wearable, Ultrawide-Range, and Bending-Insensitive Pressure Sensor Based on Carbon Nanotube Network-Coated Porous Elastomer Sponges for Human Interface and Healthcare Devices, ACS Appl. Mater. Interfaces 2019, 11, 23639-23648.
[24] J. Park, J. Kim, J. Hong, H. Lee, Y. Lee, S. Cho, S. W. Kim, J. J. Kim, S. Y. Kim, and H. Ko, Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins, NPG Asia Materials, 2018, 10, 163-176.
[25] F. Shaffer, R. McCraty, and C. L. Zerr, A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate
variability. Front. Psychol., 2014, 9, 1040-1058.
[26] https://wenku.baidu.com/view/a681869f87c24028915fc3af (心臟動作電位之圖片來源)。
[27] https://reurl.cc/Z7nr6V (動作電位形成原因之圖片來源)。
[28] A. Dashwood, E. Cheesman, N. Beard, H. Haqqani, Y. W. Wong, and P. Molenaar, Understanding How Phosphorylation and Redox Modifications Regulate Cardiac Ryanodine Receptor Type 2 Activity to Produce an Arrhythmogenic Phenotype in Advanced Heart Failure.
ACS Pharmacol. Transl. Sci. 2020, 3, 563-582.
[29] T. Yang, X. Jiang, Y. Zhong, X. Zhao, S. Lin, J. Li, X. Li, J. Xu, Z. Li, and H. Zhu, A Wearable and Highly Sensitive Graphene Strain Sensor for Precise Home-Based Pulse Wave Monitoring. ACS Sens. 2017, 2, 967-974.
[30] S. Laurent, J. Cockcroft, L. V. Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. S. Boudier, Expert consensus document on arterial stiffness: methodological issues and clinical applications. European Heart
Journal 2006, 27, 2588-2605.
[31] E. B. Peters and M. R. Kibbe, Nanomaterials to Resolve
Atherosclerosis. ACS Biomater. Sci. Eng. 2020, 6, 3693-3712.
[32] H. L. Kim and S. H. Kim, Pulse Wave Velocity in Atherosclerosis. Front.
Cardiovasc. Med., 2019, 6, 41-53.
[33] M. Lou, I. Abdalla, M. Zhu, J. Yu, Z. Li, and B. Ding, Hierarchically Rough Structured and Self-Powered Pressure Sensor Textile for Motion Sensing and Pulse Monitoring. ACS Appl. Mater. Interfaces 2020, 12, 1, 1597-1605.
[34] L. Zhang, H. Li, X. Lai, T. Gao, J. Yang, and X. Zeng, Thiolated Graphene@Polyester Fabric-Based Multilayer Piezoresistive Pressure Sensors for Detecting Human Motion. ACS Appl. Mater. Interfaces 2018, 10, 48, 41784-41792.
[35] L. Q. Tao, K. N. Zhang, H. Tian, Y. Liu, D. Y. Wang, Y. Q. Chen, Y. Yang, and T. L. Ren, Graphene-Paper Pressure Sensor for Detecting Human Motions. ACS Nano 2017, 11, 9, 8790-8795.
[36] X. Guan, Z. Wang, W. Zhao, H. Huang, S. Wang, Q. Zhang, D. Zhong, W. Lin, N. Ding, and Z. Peng, Flexible Piezoresistive Sensors with Wide-Range Pressure Measurements Based on a Graded Nest-like Architecture, ACS Appl. Mater. Interfaces 2020, 12, 26137-26144.
[37] X. F. Zhao, C. Z. Hang, X. H. Wen, M. Y. Liu, H. Zhang, F. Yang, R. G. Ma, J. C. Wang, D. W. Zhang, and H. L. Lu, Ultrahigh-Sensitive Finlike Double-Sided E‑Skin for Force Direction Detection, ACS Appl. Mater. Interfaces 2020, 12, 14136-14144.
[38] L. Gao, C. Zhu, L. Li, C. Zhang, J. Liu, H. D. Yu, and W. Huang, All Paper-Based Flexible and Wearable Piezoresistive Pressure Sensor, ACS Appl. Mater. Interfaces 2019, 11, 25034-25042.
[39] Y. Jeong, J. Park, J. Lee, K. Kim, and I. Park, Ultrathin, Biocompatible, and Flexible Pressure Sensor with a Wide Pressure Range and Its Biomedical Application, ACS Sens. 2020, 5, 481-489.
[40] K. Tian, G. Sui, P. Yang, H. Deng, and Q. Fu, Ultrasensitive Thin-Film Pressure Sensors with a Broad Dynamic Response Range and Excellent Versatility Toward Pressure, Vibration, Bending, and Temperature, ACS Appl. Mater. Interfaces 2020, 12, 18, 20998-21008.
[41] 吳沖滸、謝海唯、肖滿斗、劉丹妮、魯攀及文曉,多孔材料密度檢測方法,中華人民共和國國家知識產權局,2012,1-3。
[42] 陳清吉,製備超低密度奈米碳管塊及其應用於檢測人體生理訊號與微小運動之高靈敏感測器,中正大學化學工程學系碩士論文,108年。
[43] C. Yang, W. Liu, N. Liu, J. Su, L. Li, L. Xiong, F. Long, Z. Zou, and Y. Gao, Graphene Aerogel Broken to Fragments for a Piezoresistive Pressure Sensor with a Higher Sensitivity. ACS Appl. Mater.
Interfaces 2019, 11, 33165-33172.
[44] Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju, Y. Li, X. Wang, D. Wang, M. Jian, Y. Zhang, R. Liang, H. Tian, Y. Yang, and T. L. Ren, Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large
Linearity. ACS Nano 2018, 12, 2346-2354.
[45] M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang, C. Wang, H. Xie, M. Zhang, and Y. Zhang, Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures. Adv. Funct. Mater. 2017, 27,
1606066-1606073.
[46] W. Zhong, C. Liu, Q. Liu, L. Piao, H. Jiang, W. Wang, K. Liu, M. Li, G. Sun, and D. Wang, Ultrasensitive Wearable Pressure Sensors Assembled by SurfacePatterned Polyolefin Elastomer Nanofiber Membrane Interpenetrated with Silver Nanowires. ACS Appl. Mater.
Interfaces 2018, 10, 42706-42714.
[47] J. Park, Y. Lee, J. Hong, M. Ha, Y. D. Jung, H. Lim, S. Y. Kim, and H. Ko. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014, 8, 4689-4697.
[48] Y. Zhang, Y. Hu, P. Zhu, F. Han, Y. Zhu, R. Sun, and C.-P. Wong, Flexible and Highly Sensitive Pressure Sensor Based on Microdome-Patterned PDMS Forming with Assistance of Colloid Self-Assembly and Replica Technique for Wearable Electronics. ACS Appl. Mater. Interfaces 2017, 9, 35968-35976.
[49] P. Nie, R. Wang, X. Xu, Y. Cheng, X. Wang, L. Shi, and J. Sun, High-Performance Piezoresistive Electronic Skin with Bionic Hierarchical Microstructure and Microcracks. ACS Appl. Mater. Interfaces 2017, 9, 14911-14919.
[50] S. G. Yoon, B. J. Park, and S. T. Chang, Highly Sensitive Piezocapacitive Sensor for Detecting Static and Dynamic Pressure Using Ion-Gel Thin Films and Conductive Elastomeric Composites.
ACS Appl. Mater. Interfaces 2017, 9, 36206-36219.
[51] Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao, J. Rao, S. Luo, J. Wang, X. Jiang, Z. Liu, N. Liu, and Y. Gao, 3D Synergistical MXene/Reduced Graphene Oxide Aerogel for a Piezoresistive Sensor. ACS Nano 2018, 12, 3209-3216.
[52] https://reurl.cc/R11OzD (醫學百科-解剖學)。
[53] K. K. Kim, I. Ha, M. Kim, J. Choi, P. Won, S. Jo, and S. H. Ko, A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 2020, 11, 2149-2156.
[54] https://zh.wikipedia.org/wiki/%E8%84%89%E6%90%8F (脈搏-維
基百科)。
[55] F. He, X. You, H. Gong, Y. Yang, T. Bai, W. Wang, W. Guo, X. Liu, and M. Ye, Stretchable, Biocompatible, and Multifunctional Silk Fibroin-Based Hydrogels toward Wearable Strain/Pressure Sensors and Triboelectric Nanogenerators. ACS Appl. Mater. Interfaces 2020,
12, 5, 6442-6450.
[56] K. Maity, S. Garain, K. Henkel, D. Schmeißer, and D. Mandal, Self-Powered Human-Health Monitoring through Aligned PVDF Nanofibers Interfaced Skin-Interactive Piezoelectric Sensor. ACS
Appl. Polym. Mater. 2020, 2, 2, 862-878.
[57] N. M. Saad, A. R. Abdullah, and Y. F. Low, Detection of Heart Blocks in ECG Signals by Spectrum and Time-Frequency Analysis. IEEE
Xplore, 2007, 10, 10182317-101821.
[58] https://reurl.cc/14QyZG (心臟位置示意圖之圖片來源)。
[59] All About Heart Rate (Pulse). American Heart Association. 22 Aug 2017.
[60] https://reurl.cc/Q3pzLo (完整心電圖波形之圖片來源)。
[61] https://reurl.cc/EzKg8g (百科知識-脈搏短絀)。
[62] A. B. Liu, P. C. Hsu, Z. L. Chen, and H. T. Wu, Measuring Pulse Wave Velocity Using ECG and Photoplethysmography. J Med Syst
2011, 35, 771-777.

電子全文 電子全文(網際網路公開日期:20220831)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔