跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 12:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊智瑩
研究生(外文):CHUANG,CHIH-YING
論文名稱:利用發泡劑製造奈米孔洞於碲化銻鉍熱電薄膜中 以提升整體熱電性值
論文名稱(外文):Using Foaming Agent to Make Nano-Holes in the Antimony-Bismuth Telluride Thermoelectric Film to Improve the Overall Thermoelectric Value
指導教授:林昭任林昭任引用關係
指導教授(外文):LIN,ZHAO-REN
口試委員:許瑞祺
口試委員(外文):SHIU,RUEI-CHI
口試日期:2020-07-29
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:100
中文關鍵詞:電流輔助熱壓發泡劑造孔洞降低熱傳導係數
相關次數:
  • 被引用被引用:2
  • 點閱點閱:56
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究透過電流輔助熱壓含發泡劑聚磷酸銨之熱電粉末以製造多孔性熱電薄膜,以此增加聲子散射降低晶格熱傳導係數提升整體熱電性質。發泡劑分為不可溶解型與可溶解型,分別以研磨及乳化的方式控制孔洞大小。由實驗結果可得,在相同添加量下進行熱壓處理,可溶解型降低熱傳導係數(0.3 W/mK)效果較不可溶解型(0.41 W/mK)佳。當可溶解型發泡劑含量由0 wt%至0.04 wt%時,κ會由0.56 W/mK降至0.25 W/mK,但電阻率由2.8 mΩ·cm上升至5.61 mΩ·cm,由結果可以得知,在發泡劑含量為0.02 wt%下,ZT值可達0.89,與純粉末熱電材料相比上升了20.2%。為了改善直接添加會使電阻率大幅上升的缺點,會以在發泡劑含量為0.02 wt%下,透過乳化調控孔洞大小以及電流輔助熱壓兩種方式改善電阻率,乳化劑經後處理會生成碳化物使電阻率降低,但其Seebeck係數會大幅下降,使含乳化劑之ZT值較未含乳化劑差;在直接添加發泡劑下以電流輔助熱壓做處理,在通入電流密度為1000 A/cm2時,其電阻率會由3.91 mΩ·cm降至1.92 mΩ·cm,而Seebeck係數僅略微下降,其Power factor由758 µW/K2m提升至1167.5 µW/K2m,約提升54%,使熱電性質大幅提升。
中文摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
第二章 文獻回顧 3
2.1 熱電材料 3
2.2 熱傳導係數 6
2.2.1電子的熱傳導 6
2.2.2聲子的熱傳 7
2.2.2.1聲子的散射機制與平均自由徑 7
2.2.2.1.1聲子-表面散射 8
2.2.2.1.2聲子-晶界散射 9
2.2.2.1.3聲子-雜質散射 10
2.2.2.1.4聲子-孔洞散射 12
2.3 發泡 16
2.3.1物理發泡 16
2.3.2化學發泡 16
2.4 乳化 18
2.5 熱電薄膜的製備 20
2.6 熱電薄膜後處理 22
2.7 熱壓 24
2.8 電流輔助熱壓 25
2.8.1電驅動力 25
2.8.2電流熱效應 26
第三章 實驗方法與步驟 28
3.1實驗藥品 28
3.2實驗儀器 30
3.3分析儀器 31
3.4實驗流程 32
3.4.1基材前處理 32
3.4.1.1基材清洗 32
3.4.1.2不鏽鋼片的表面修飾 33
3.4.2粉末研磨 33
3.4.3漿料配置 34
3.4.3.1發泡劑之漿料配置 34
3.4.3.2含乳化劑與發泡劑之漿料配置 34
3.4.4試片塗佈及封包 34
3.4.5薄膜的後處理 35
3.4.6熱傳導係數測量 36
3.4.7孔洞的分析 38
第四章 實驗結果與討論 40
4.1不可溶發泡劑 41
4.1.1不同粒徑大小之發泡劑之孔洞分析 41
4.1.2不同粒徑大小之發泡劑對電性的影響 45
4.2可溶解型發泡劑 52
4.2.1不同發泡劑添加量之孔洞分析 52
4.2.1 不同添加量對電性之影響 55
4.3不同乳化劑添加量 68
4.3.1不同乳化劑添加量之孔洞分析 68
4.3.2不同乳化劑添加量對電性的影響 72
4.4 不同電流密度對電性之影響 78
P-type 78
4.4.1 不同電流密度對電阻的影響 78
4.4.2 不同電流密度對載子濃度之影響 79
4.4.3 不同電流密度對載子遷移率之影響 80
4.4.4 不同電流密度對Seebeck係數的影響 80
4.4.5 不同電流密度Power Factor的影響 80
N-type 85
4.4.2.1 不同電流密度對電阻之影響 85
4.4.2.2不同電流密度對載子濃度之影響 86
4.4.2.3不同電流密度對載子遷移率之影響 87
4.4.2.4不同電流密度對Seebeck係數的影響 87
4.4.2.5不同電流密度對Power Factor的影響 87
第五章 結論與未來展望 92
5.1 結論 92
5.2未來展望 93
參考文獻 94


參考文獻
[1]G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials," Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group: World Scientific, pp.101-110, 2011.
[2]C. Kittel, Introduction to solid state physics. Wiley New York, 1976.
[3]J. J. P. R. Callaway, "Model for lattice thermal conductivity at low temperatures," Physical Review, vol. 113, no. 4, p. 1046, 1959.
[4]G. Chen, Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons. Oxford University Press, 2005.
[5]R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. J. N. O'quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, vol. 413, no. 6856, p. 597, 2001.
[6]A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M.Najarian, A. Majumdar, and P. Yang "Enhanced thermoelectric performance of rough silicon nanowires," Nature, vol. 451, no. 7175, p. 163, 2008.
[7]H. Kim, Y.-H. Park, I. Kim, J. Kim, H.-J. Choi, and W. J. A. P. A. Kim, "Effect of surface roughness on thermal conductivity of VLS-grown rough Si1− xGex nanowires," Applied Physics A, vol. 104, no. 1, pp. 23-28, 2011.
[8]B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, "High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys," Science, vol. 320, no. 5876, pp. 634-638, 2008.
[9]謝杰釗,「藉由熱壓不同粒徑組合之Bi2Te3製備熱電薄膜之電性探討」,國立中正大學化學工程研究所碩士論文,2018。
[10]C-W. Nan, R. Birringer, D. R. Clarke, and H. J. J. o. A. P. Gleiter, "Effective thermal conductivity of particulate composites with interfacial thermal resistance," Journal of Applied Physics, vol. 81, no. 10, pp. 6692-6699, 1997.
[11]H. Wang, J-H. Bahk, C. Kang, J. Hwang, K. Kim, J. Kim, P. Burke, E.B. John, C. Arthur, Gossard, A. Shakouri, and W. Kim "Right sizes of nano-and microstructures for high-performance and rigid bulk thermoelectrics," Proceedings of the National Academy of Sciences ,vol. 111, no. 30, pp. 10949-10954, 2014.
[12]B. Huang, C. Lawrence, A. Gross, G-S. Hwang, N. Ghafouri, S-W. Lee, H. Kim, C-P. Li, C. Uher, K. Najafi, and M. Kaviany, "Low-temperature characterization and micropatterning of coevaporated Bi2Te3 and Sb2Te3 films," Journal of Applied Physics, vol. 104, no. 11, p. 113710, 2008.
[13]W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, "Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors," Physical review letters,vol. 96, no. 4, p. 045901, 2006.
[14]Z. Pin-Wen, I. Yoshio, I. Yukihiro, S. Yoshikazi, J. Xiao-Peng, and Z. J. C. P. L. Guang-Tian, "High thermoelectric properties of PbTe doped with Bi2Te3 and Sb2Te3," Chinese Physics Letters,vol. 22, no. 8, p. 2103, 2005.
[15]Y.-N. Li, P. Wu, S-P. Zhang, S. Chen, D. Yan, J-G. Yang, L. Wang and X-L. Huai"Thermoelectric properties of lower concentration K-doped Ca3Co4O9 ceramics," Chinese Physics B,vol. 27, no. 5, p. 057201, 2018.
[16]Z. Yu, L. Ferrer-Argemi, and J. J. J. o. a. p. Lee, "Investigation of thermal conduction in symmetric and asymmetric nanoporous structures," Journal of applied physics, vol. 122, no. 24, p. 244305, 2017.
[17]L. Bulat et al., "Bulk nanocrystalline thermoelectrics based on Bi-Sb-Te solid solution," pp. 453-486, 2012.
[18]I. A. Drabkin, V. V. Karataev, V. B. Osvenski, A. I. Sorokin, G. I. Pivovarov, and N. Y. Tabachkova, "Structure and thermoelectric properties of nanostructured (Bi, Sb)2Te3," Advances in Materials Physics and Chemistry, vol. 3 no. 2, 2013.
[19]M. Kashiwagi, A.S. Hirata, K. Harada, Y. Zheng, K. Miyazaki, M. Yahiro, and C. Adachi "Enhanced figure of merit of a porous thin film of bismuth antimony telluride," Applied physics letters, vol. 98, no. 2, p. 023114, 2011.
[20]K. Kato, T. Muto, T. Kondo, and K. Miyazaki, "Fabrication of flexible thermoelectric thin film module using micro porous structure," in IEEE CPMT Symposium Japan 2014, pp. 182-185: IEEE, 2014.
[21]J. Tang et al., "Holey silicon as an efficient thermoelectric material," Nano letters, vol. 10, no. 10, pp. 4279-4283, 2010.
[22]E. S. Reddy, J. Noudem, C. J. E. c. Goupil, and management, "Open porous foam oxide thermoelectric elements for hot gases and liquid environments," Energy conversion and management, vol. 48, no. 4, pp. 1251-1254, 2007.
[23]T. Teranishi, Y. Mori, H. Hayashi, and A. J. J. o. t. A. C. S. Kishimoto, "Thermoelectric Property of Polycrystalline Aluminum‐Doped Zinc Oxide Enhanced by Micropore Foaming," vol. 95, no. 2, pp. 690-695, 2012.
[24]M. Aghelinejad and S. N. J. J. o. A. P. S. Leung, "Enhancement of thermoelectric conversion efficiency of polymer/carbon nanotube nanocomposites through foaming‐induced microstructuring," Journal of the American Ceramic Society, vol. 134, no. 28, p. 45073, 2017.
[25]M. Takashiri, S. Tanaka, and K. J. T. S. F. Miyazaki, "Improved thermoelectric performance of highly-oriented nanocrystalline bismuth antimony telluride thin films," Thin Solid Films, vol. 519, no. 2, pp. 619-624, 2010.
[26]Y. Wang, J. He, Y. Yang, Z. Zhang, and R. J. A. A. E. M. Long, "Chlorine Passivation of Grain Boundary Suppresses Electron–Hole Recombination in CsPbBr3 Perovskite by Nonadiabatic Molecular Dynamics Simulation," ACS Applied Energy Materials, vol. 2, no. 5, pp. 3419-3426, 2019.
[27]楊孟璇,「具反蛋白石結構之碲化鉍電鍍膜層微結構與熱電性質研究」,國立清華大學材料科學工程學系碩士, 2014。
[28]H. Noro, K. Sato, and H. J. J. o. A. P. Kagechika, "The thermoelectric properties and crystallography of Bi‐Sb‐Te‐Se thin films grown by ion beam sputtering," Journal of Applied Physics, vol. 73, no. 3, pp. 1252-1260, 1993.
[29]L. Francioso, C. De Pascali, I. Farellaa, C. Martucci, P. Cretì, P. Sicilianoa, A. Perrone, "Flexible thermoelectric generator for ambient assisted living wearable biometric sensors," Journal of Power Sources, vol. 196, no. 6, pp. 3239-3243, 2011.
[30]L. Goncalves, J. Rocha, C. Couto, P. Alpuim, J. J. S. Correia, and A. A. Physical, "On-chip array of thermoelectric Peltier microcoolers," Sensors and Actuators A: Physical, vol. 145, pp. 75-80, 2008.
[31]S. Cho, Y. Kim, and J. B. J. A. P. A. Ketterson, "Structural and thermoelectric properties in (Sb1-xBix)2Te3 thin films," Applied Physics A, vol. 79, no. 7, pp. 1729-1731, 2004.
[32]A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, E. Charles, A. Boyer "Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD," Materials Science and Engineering: B, vol. 64, no. 1, pp. 19-24, 1999.
[33]J. Lim, G. Snyder, C. Huang, J. Herman, M. Ryan, and J. Fleurial, "Thermoelectric microdevice fabrication process and evaluations at the Jet Propulsion Laboratory," 2002.
[34]L. Bu, W. Wang, and H. J. A. s. s. Wang, "Electrodeposition of n-type Bi2Te3− ySey thermoelectric thin films on stainless steel and gold substrates," Applied surface science vol. 253, no. 6, pp. 3360-3365, 2007.
[35]J. Weber, K. Potje-Kamloth, F. Haase, P. Detemple, F. Volklein, T. Doll, "Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics," Sensors and Actuators A: Physical, vol. 132, no. 1, pp. 325-330, 2006.
[36]S. J. Kim, J. H. We, B. J. J. E. Cho, and E. Science, "A wearable thermoelectric generator fabricated on a glass fabric," Energy & Environmental Science, vol. 7, no. 6, pp. 1959-1965, 2014.
[37]D.-H. Kim, G.-H. J. M. S. Lee, and E. B, "Effect of rapid thermal annealing on thermoelectric properties of bismuth telluride films grown by co-sputtering," vol. 131, no. 1-3, pp. 106-110, 2006.
[38]J. Song, X. Chen, Y. Tang, Q. Yao, and L. J. J. o. e. m. Chen, "Post-annealing Effect on Microstructures and Thermoelectric Properties of Bi0.45Sb1.55Te3 Thin Films Deposited by Co-sputtering," Journal of electronic materials,vol. 41, no. 11, pp. 3068-3072, 2012.
[39]D.-M. Lee, J.-H. Seo, C.-H. Lee, K. Park, and I. Shiota, "Microstructure and thermoelectric properties of p-type Bi0.5Sb1.5Te3 fabricated by hot pressing," in Functionally Graded Materials 1996: Elsevier, 1997, pp. 539-543.
[40]J. Shen et al., "Thermoelectric and thermomechanical properties of the hot pressed polycrystalline Bi0.5Sb1.5Te3 alloys," Journal of alloys and compounds ,vol. 509, no. 1, pp. 161-164, 2011.
[41]J. Jiang, L. Chen, S. Bai, Q. J. J. o. a. Yao, and compounds, "Thermoelectric performance of p-type Bi-Sb-Te materials prepared by spark plasma sintering," Journal of alloys and compounds, vol. 390, no. 1-2, pp. 208-211, 2005.
[42]D. M. Hulbert, A. Anders, D. V. Dudina, J. Andersson, D. Jiang, C. Unuvar, A-T. Umberto, E. J. Lavernia, and A. K. Mukherjee "The absence of plasma in “spark plasma sintering," Journal of Applied Physics, vol. 104, no. 3, p. 033305, 2008.
[43]張志宇,「經電流輔助退火處理之Bi0.5Sb1.5Te3/Sb多層濺鍍薄膜熱電性質研究」,國立清華大學材料科學工程學系碩士,2010。
[44]蘇小維,「電流輔助退火處理對Bi0.5Sb1.5Te3濺鍍薄膜熱電傳輸性質之研究」,國立清華大學材料科學工程學系碩士,2010。
[45]蔣家偉,「利用熱壓與電流輔助退火對可撓式3-D碲化鉍系薄膜發電元件之熱電性質與電訊性質研究」,國立中正大學化學工程研究所碩士論文,2016。
[46]游福全,「利用電流輔助熱壓與退火對電沉積碲化鉍系於其晶種層之熱電性質研究」,國立中正大學化學工程研究所碩士論文,2016。
[47]藍. J. 清華大學材料科學工程學系學位論文, "電流輔助燒結碲化鉛塊材之熱電傳輸性質研究," pp. 1-49, 2017.
[48]林璟延,「利用電流輔助於粉末熱壓法製備碲化銻鉍熱電薄膜之最佳化研究」,林璟延, 2018。
[49]黃坤祥, 粉末冶金學. 中華民國粉末冶金協會, 2003.
[50]H. M. Gilder and D. J. P. R. Lazarus, "Effect of high electronic current density on the motion of Au195and Sb125in gold," Physical Review, vol. 145, no. 2, p. 507, 1966.
[51]K. Liou and C. J. J. o. A. P. Liao, "Electric current enhanced defect elimination in thermally annealed Bi-Sb-Te and Bi-Se-Te thermoelectric thin films," Journal of Applied Physics ,vol. 108, no. 5, p. 053711, 2010.
[52]H. Chi, W. Liu, and C. J. M. A. o. T. Usher, "Growth and transport properties of tetradymite thin films," Materials Aspect of Thermoelectricity, pp. 109-138, 2016.
[53]O. E. Falodun, "Spark plasma sintering of nanoceramics dispersion strengthened titanium aluminium vanadium alloy," University of Johannesburg, 2019.
[54]L. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago, and M. A. Pimenta "General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy," Applied Physics Letters , vol. 88, no. 16, p. 163106, 2006.


電子全文 電子全文(網際網路公開日期:20250827)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top