|
1. Lazarus, G. S. , Cooper, D. M. , Knighton, D. R. , Margolis, D. J. , Pecoraro, R. E. , Rodeheaver, G. , & Robson, M. C. , Definitions and guidelines for assessment of wounds and evaluation of healing. Archives of Dermatological Research, 1994. 2(3): p. 489-493. 2. Percival, N.J. , Classification of wounds and their management. International Journal of Surgery 2002. 20(5): p. 114-117. 3. Harding KG, M.H. , Patel GK. , Science, medicine and the future healing chronic wounds. British Medical Journal (Clinical Research ed.), 2002 Jan: p. 160-163. 4. Sreenivasan, K. , On the restriction of the release of water-soluble component from polyvinyl alcohol film by blending ?-cyclodextrin. Journal of Applied Polymer Science, 1997. 65(9): p. 1829-1832. 5. Öztürk, E. , et al. , Preparation and characterization of ciprofloxacin-loaded alginate/chitosan sponge as a wound dressing material. Journal of Applied Polymer Science, 2006. 101(3): p. 1602-1609. 6. Yu, H. , et al. , Medicated wound dressings based on poly(vinyl alcohol)/poly(N-vinyl pyrrolidone)/chitosan hydrogels. Journal of Applied Polymer Science, 2006. 101(4): p. 2453-2463. 7. Dyke, G.I.T.a.M.D.V. , Electrically driven jets. Proc. R. Soc. Lond, 1997: p. A313 453-475. 8. Zamani, M. , M.P. Prabhakaran, and S. Ramakrishna, Advances in drug delivery via electrospun and electrosprayed nanomaterials. International journal of nanomedicine, 2013. 8: p. 2997. 9. Jannesari, M. , et al. , Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. International Journal of Nanomedicine, 2011. 6: p. 993-1003. 10. Kim, K. , et al. , Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. Journal of Controlled Release, 2004. 98(1): p. 47-56. 11. Meng, Z.X. , et al. , Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids and Surfaces B: Biointerfaces, 2011. 84(1): p. 97-102. 12. Dror, Y. , et al. , One-step production of polymeric microtubes by co-electrospinning. Small, 2007. 3(6): p. 1064-1073. 13. Kraitzer, A. , et al. , Long-term in vitro study of paclitaxel-eluting bioresorbable core/shell fiber structures. Journal of Controlled Release, 2008. 126(2): p. 139-48. 14. Saraf, A. , et al. , Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. Journal of Controlled Release 2010. 143(1): p. 95-103. 15. Xu, X. , et al. , Ultrafine medicated fibers electrospun from W/O emulsions. Journal of Controlled Release, 2005. 108(1): p. 33-42. 16. Yang, Y. , et al. , Release pattern and structural integrity of lysozyme encapsulated in core-sheath structured poly(DL-lactide) ultrafine fibers prepared by emulsion electrospinning. European Journal of Pharmaceutics and Biopharmaceutics, 2008. 69(1): p. 106-160. 17. Luo, X. , et al. , Antitumor activities of emulsion electrospun fibers with core loading of hydroxycamptothecin via intratumoral implantation. International Journal of Pharmaceutics, 2012. 425(1-2): p. 19-28. 18. Zeng, J. , et al. , Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. Journal of Controlled Release, 2005. 105(1-2): p. 43-51. 19. Taepaiboon, P. , U. Rungsardthong, and P. Supaphol, Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology, 2006. 17(9): p. 2317-2329. 20. Xie, C. , et al. , Release modulation and cytotoxicity of hydroxycamptothecin-loaded electrospun fibers with 2-hydroxypropyl-beta-cyclodextrin inoculations. International Journal of Pharmaceutics, 2010. 391(1-2): p. 55-64. 21. 張雍 and 葉至誠, 雙離子性高分子材料介面的血液相容性. 化工, 2015. 62(1): p. 92-102. 22. Claesson, P.M. , et al. , Protein interactions at solid surfaces. Advances in Colloid and Interface Science, 1995. 57: p. 161-227. 23. Chinn JA, P.S. , Horbett TA. , Ratner BD. , Postadsorptive transition in fibrinogen adsorbed to polyurethanes changes in antibody binding and sodium dodecy sulfate elutability. Journal of Biomedical Materials Research, 1991. 25(4): p. 535‐555. 24. Whitesides, G.M. , Poly(ethylene glycol) chemistry biotechnical and biomedical applications. Applied Biochemistry and Biotechnology, 1993. 41(3). 25. Leduc E.H. ,and Holt. S. J. , Hydroxypropyl methacrylate, a new water-miscible embedding medium for electron microscopy. Journal of Cell Biology, 1965. 26(1): p. 137‐155. 26. Ma, H. , Hyun, J. , Stiller, P. and Chilkoti, A. , Non‐Fouling” Oligo(ethylene glycol)‐Functionalized Polymer Brushes Synthesized by Surface‐Initiated Atom Transfer Radical Polymerization. Advanced Materials, 2004. 16(4): p. 338-341. 27. Zheng, J. , et al. , Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: a molecular simulation study. Biophysical Journal, 2005. 89(1): p. 158-66. 28. Emanuele Ostuni, R.G.C., R. Erik Holmlin, Shuichi Takayama, and George M. Whitesides, A survey of structure−property relationships of surfaces that resist the adsorption of protein. Langmuir, 2001. 17(18): p. 5605-5620. 29. Zheng J, L. , Chen S. , Jiang S. , Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir, 2004. 20(20): p. 8931‐8938. 30. Shen, M. , et al. , PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. Journal of Biomaterials Science, Polymer Edition, 2012. 13(4): p. 367-390. 31. Matsuno, R. and Ishihara, K. Integrated functional nanocolloids covered with artificial cell membranes for biomedical applications. Nano Today, 2011. 6(1): p. 61-74. 32. Chang, Y. , et al. , Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS Applied Materials & Interfaces, 2011. 3(4): p. 1228-1237. 33. Chang Y, C.S. , Yu Q, Zhang Z, Bernards M, Jiang S. , Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance. Biomacromolecules, 2007. 8(1): p. 122‐127. 34. Cai, N. , et al. , Antifouling zwitterionic hydrogel coating improves hemocompatibility of activated carbon hemoadsorbent. Journal of Colloid and Interface Science, 2017. 503: p. 168-177. 35. Zhang Z, Chao T. , Chen S, Jiang S. , Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir, 2006. 22(24): p. 10072‐10077. 36. Chen, S. , et al. , Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer Journal, 2010. 51(23): p. 5283-5293. 37. Ishihara K, Miyazaki H. , Kurosaki T, Nakabayashi N. , Improvement of blood compatibility on cellulose dialysis membrane. III. Synthesis and performance of water-soluble cellulose grafted with phospholipid polymer as coating material on cellulose dialysis membrane. Journal of Biomedical Materials Research, 1995. 29(2): p. 181‐188. 38. Qing Shao, Yi He , Andrew D. White, and Shaoyi Jiang, Difference in hydration between carboxybetaine and sulfobetaine. The Journal of Physical Chemistry B, 2010. 114(49): p. 16625-16631. 39. West, S.L., et al., The biocompatibility of crosslinkable copolymer coatings containing sulfobetaines and phosphobetaines. Biomaterials Science, 2004. 25(7-8): p. 1195-204. 40. Yung Chang, S.C. , Zheng Zhang, and Shaoyi Jiang, Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir, 2006. 22(5). 41. Zheng Zhang, S.C. , and Shaoyi Jiang, Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromoleculesvolume, 2006. 7(12). 42. Yin, H.-E. , C.-F. Lee, and W.-Y. Chiu, Preparation of thermally curable conductive films PEDOT:P(SS-NMA) and their performances on weather stability and water resistance. Polymer Journal, 2011. 52(22): p. 5065-5074. 43. Yocum RH , N.E. , Functional monomers. Journal of Polymer Science: Polymer Letters Edition, 1973. 12(6): p 359. 44. LIPSON RL, B.E. , The photodynamic properties of a particular hematoporphyrin derivative. Archives of Dermatological Research, 1960. 82(4): p. 508-516. 45. Baas, P., van Mansom, I., van Tinteren, H., Stewart, F.A. and van Zandwijk, N. , Effect of N-acetylcysteïne on photofrin-induced skin photosensitivity in patients. Lasers in Surgery and Medicine, 1995. 16(4). 46. Beate Roeder, D.U.N. , Characterization of photobiophysical properties of sensitizers used in photodynamic therapy,. Future Trends in Biomedical Applications of Lasers, 1991. 47. Nyman, E.S. and P.H. Hynninen, Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2004. 73(1-2): p. 1-28. 48. MacRobert AJ, Bown SG, Phillips D. , What are the ideal photoproperties for a sensitizer? 2007. 49. JCrutchley, A.l.o.o.p.C., Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews, 2002. 233-234: p. 351-371. 50. Jones NF, M. S. , Gambier BA. , Reliability of the fibular osteocutaneous flap for mandibular reconstruction anatomical and surgical confirmation. Plastic and Reconstructive Surgery 1996. 97(4): p. 707‐718. 51. Tardivo, J.P. , et al. , Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagnosis and Photodynamic Therapy, 2005. 2(3): p. 175-191. 52. Wainwright M, Phoenix DA, Marland J, Wareing DR, Bolton FJ. , A study of photobactericidal activity in the phenothiazinium series. FEMS Immunology & Medical Microbiology, 2006. 19(1): p. 75-80. 53. Coronel, A. , et al. , Photodynamic action of methylene blue subjected to aromatic-aromatic interactions with poly(sodium 4-styrenesulfonate) in solution and supported in solid, highly porous alginate sponges. Dyes and Pigments, 2017. 147: p. 455-464. 54. Hamblin MR, Hasan T. , Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. , 2004. 3(5): p. 436‐450. 55. Wilson M. ,Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry Association and the European Society for Photobiology, 2004 May. 3(5): p. 412-418. 56. Clichici, S. , et al. , The dynamics of reactive oxygen species in photodynamic therapy with tetra sulfophenyl-porphyrin. ACTA Physiologica Hungarica, 2010. 97(1): p. 41-51. 57. T., M., A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment. Mini-Reviews in Medicinal Chemistry, 2009. 2009(9(8)): p. 974‐983. 58. Bressler NM, B.S. , Photodynamic therapy with verteporfin (Visudyne): impact on ophthalmology and visual sciences. Investigative Ophthalmology and Visual Science, 2000. 41(3): p. 624‐628. 59. Castano, A.P. , T.N. Demidova, and M.R. Hamblin, Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis and Photodynamic Therapy, 2004. 1(4): p. 279-293. 60. Bertran, M.S. and B.E. Dale, Determination of cellulose accessibility by differential scanning calorimetry. Journal of Applied Polymer Science, 1986. 32: p. 4241-4253. 61. Ma, Z. , M. Kotaki, and S. Ramakrishna, Electrospun cellulose nanofiber as affinity membrane. Journal of Membrane Science, 2005. 265(1-2): p. 115-123. 62. Lalani, R. , Preparation and biocompatibility of electrospun zwitterionic poly(sulfobetaine methacrylate) for wound dressing applications. Journal of Materials Science 2013. 63. Lalani, R. and L. Liu, Synthesis, characterization, and electrospinning of zwitterionic poly(sulfobetaine methacrylate). Polymer Journal 2011. 52(23): p. 5344-5354. 64. Z. Zhang, S.C. , Y. Chang, S. Jiang, Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Physical Chemistry Chemical Physics, 2006. 110 p. 10799-10804. 65. Kim, I.Y. , et al. , Evaluation of semi-interpenetrating polymer networks composed of chitosan and poloxamer for wound dressing application. International Journal of Pharmaceutics, 2007. 341(1-2): p. 35-43. 66. Nelson, M.T. , et al. , Electrospun composite polycaprolactone scaffolds for optimized tissue regeneration. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2012. 226(3): p. 111-121. 67. Zeina B. , G.J. , Purcell WM, Das B. , Killing of cutaneous microbial species by photodynamic therapy. British Journal of Dermatology, 2001. 144(2): p. 274-278. 68. Spagnul, C. , L.C. Turner, and R.W. Boyle, Immobilized photosensitizers for antimicrobial applications. Journal of Photochemistry and Photobiology B: Biology, 2015. 150: p. 11-30. 69. Huang YY, T.M. , Vecchio D, et al. , Photodynamic therapy induces an immune response against a bacterial pathogen. . Expert Review of Clinical Immunology, 2012. 8(5): p. 479-494.
|