(3.238.186.43) 您好!臺灣時間:2021/02/28 13:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭峰丞
研究生(外文):GUO,FONG-CHENG
論文名稱:芯鞘型聚氨酯奈米纖維於光動力抑菌效果之研究
論文名稱(外文):Preparation of Thermoplastic Polyurethane Core-Sheath Nanofibers and Its Application in Antimicrobial Photodynamic Therapy
指導教授:陳靜誼陳靜誼引用關係
指導教授(外文):CHEN,CHING-YI
口試委員:吳文中許昺慕李政怡陳靜誼
口試委員(外文):WU,WEN-ZONGHSU,BING-MULEE,CHENG-ICHEN,CHING-YI
口試日期:2020-07-28
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:114
中文關鍵詞:同軸傷口敷料光動力治療熱塑性聚氨酯藥物釋放光敏劑
外文關鍵詞:coaxialwound dressingphotodynamic therapythermoplastic polyurethanedrug releasephotosensitizer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:35
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
藥物的濫用,常常會造成抗藥性細菌的生成,為了避免這種情形產生,尋找一種新型的抗菌療法取代傳統的抗生素療法是一重要的課題,而光動力治療法(photodynamic therapy, PDT)被認為是可以有效防止抗藥性細菌的生成,近幾年以來,有越來越多的學者投入此領域研究。

本研究利用同軸靜電紡絲技術生產具拉伸性的奈米纖維膜並結合光動力療法應用於傷口敷料上,主要可分為四大部分:第一部分利 用一種抗沾黏的材料 [2-(methacryloyloxy)ethyl] dimethyl -(3-sulfopropyl) ammonium hydroxide (SBMA)與具有化學交聯反應的單體N-methylol acrylamide (NMA)以自由基聚合法合成poly(SBMA-co-NMA)共聚高分子及其性質鑑定;第二部分利用同軸靜電紡絲技術製備以熱塑性聚氨酯彈性橡膠(thermoplastic polyurethane, TPU)為內層芯材, poly(SBMA-co-NMA)共聚高分子為外層鞘材的同軸芯鞘型纖維膜,並將親水性帶正電光敏劑亞甲基藍(methylene blue, MB)分別混摻至芯層與鞘層,且進行加熱交聯以得到結構穩定的奈米纖維膜,實驗證實以120℃交聯72 hr的纖維膜具有較高的結構穩定性;第三部分則針對傷口敷料進行相關的性質鑑定,同軸纖維膜的水氣滲透率為2110.75 g.m-2day-1符合理想傷口敷料水氣滲透率範圍2000-2500 g.m-2day-1。並藉由拉伸試驗證實同軸芯鞘型纖維膜可以改善poly(SBMA-co-NMA)單層膜的機械性質。另外亦討論光敏劑在核層與殼層的釋放情形,由UV-Vis結果得知,位於殼層的親水性光敏劑較容易釋放,並透過2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA)試劑證實纖維膜具有光動力效果;第四部分為抗菌實驗:以革蘭氏陰性菌和革蘭氏陽性菌的抑菌圈與細菌存活率來檢測纖維膜的抗菌效果。

Antibiotics misuse often results in the formation of drug-resistant bacteria that causes a severe threat to human. In order to prevent this situation, an alternative antibacterial therapy is highly demanded to replace traditional antibiotic therapy. Photodynamic therapy (PDT) is considered to be effective in preventing the formation of drug-resistant bacteria. In recent years, more and more studies have been focused on this field.

In this study, we used the coaxial electrospinning technology to produce stretchable nanofibrous membranes and combined with photodynamic therapy to develop an antibacterial wound dressing. This study was divided into four parts: (I) an anti-fouling material [2- (methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA) and crosslinkable N-methylol acrylamide (NMA) was synthesized by free radical polymerization to form poly(SBMA-co-NMA). (II) a coaxial electrospinning technology was used to prepare core-shell nanofibers with thermoplastic polyurethane (TPU) as the core and poly (SBMA-co-NMA) as the shell, and the photosensitizers, methylene blue (MB), was doped into the core layer or the shell layer. The prepared core-shell nanofibers were thermal cross-linked to obtain a structurally stable nanofiber membrane at 120 curing temperature for 72 hours. (III) We tested the relevant properties for application in wound dressing. The water vapor permeability of the prepared coaxial nanofibrous membrane was 2110.75 g.m-2day-1, which is within the range for applying in ideal would dressing (2000-2500 g.m-2day-1). And the tensile test proves that the coaxial core-shell nanofiber membrane can improve the mechanical properties of poly(SBMA-co-NMA) monolayer membrane. In addition, the release behavior of the photosensitizers doped in the core layer and shell layer was also discussed. The coaxial nanofibers with photosensitizers doped into the shell layer showed faster release rate than doped into the core layer. We also confirmed the coaxial nanofibers with photosensitizers doped had photodynamic therapy effect by using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) reagent. (IV) the antibacterial effects on gram-negative bacteria and gram-positive bacteria will be tested.

致謝 II
中文摘要 III
Abstract V
目錄 VII
表目錄 XII
圖目錄 XIII
第一章 序論 1
1.1 前言 1
第二章 文獻回顧 3
2.1 靜電紡絲簡介 3
2.1.1 靜電紡絲原理 4
2.1.2 靜電紡絲參數 5
2.1.3 靜電紡絲分類 8
2.2 靜電紡絲應用於傷口敷料 10
2.3 抗沾黏材料 11
2.3.1 發展歷程 13
2.3.2 第三代雙離子性材料 15
2.4 交聯聚合物 18
2.4.1 N-羥甲基丙烯酰胺 (N-methylol acrylamide) 19
2.5 光敏劑 (Photosensitizer, PS) 20
2.5.1 亞甲基藍 (Methylene blue, MB) 25
2.6 光動力治療 26
2.7 研究動機與目的 28
第三章 實驗方法及步驟 30
3.1 實驗架構 30
3.2 poly(SBMA-co-NMA)之聚合 31
3.2.1 實驗材料與藥品 31
3.2.2 實驗裝置與設備 31
3.2.3 實驗步驟 32
3.2.4 實驗檢測儀器 34
3.3 利用靜電紡絲技術製備奈米纖維膜 34
3.3.1 實驗材料及藥品 34
3.3.2 實驗裝置及設備 35
3.3.3 實驗步驟 36
3.3.4 實驗檢測儀器 38
3.4 電紡纖維型態 39
3.5 交聯溫度對材料之影響 39
3.5.1 材料熱性質及熱穩定分析 40
3.5.2 芯鞘型纖維膜對水的穩定性 42
3.6 纖維性質鑑定 43
3.6.1 纖維親疏水鑑定 43
3.6.2 纖維吸水率 (Water uptake ratio) 44
3.6.3 水氣保留率 (Water residual rate) 45
3.6.4 水氣滲透率 (Water vapor permeability rate, WVTR) 46
3.6.5 抗生物沾黏 47
3.7 纖維機械性質 49
3.7.1 實驗步驟 50
3.7.2 實驗檢測儀器 50
3.8 纖維包藥檢測 50
3.8.1 藥物包覆率 (Loading content, L.C.)/藥物封裝效率(Encapsulation efficiency, E.E.) 51
3.8.2 藥物釋放 51
3.9 活性氧分子 (Reactive oxygen species, ROS)檢測 52
3.9.1 實驗材料與藥品 52
3.9.2 實驗裝置 52
3.9.3 實驗步驟 53
3.9.4 實驗檢測儀器 54
3.10 體外細胞毒性測試 55
3.10.1 實驗材料與藥品 55
3.10.2 實驗裝置與設備 56
3.10.3 實驗步驟 56
3.10.4 實驗檢測儀器 59
3.11 抗菌測試 59
3.11.1 實驗材料與菌種 59
3.11.2 實驗裝置 60
3.11.3 抑菌圈實驗 60
3.11.4 細菌存活率檢測 63
第四章 結果與討論 64
4.1 poly(SBMA-co-NMA)共聚高分子之合成與鑑定 64
4.2 同軸芯鞘型纖維之鑑定 65
4.3 電紡纖維型態 67
4.4 交聯溫度對材料之影響 73
4.4.1 材料熱穩定分析 73
4.4.2 纖維膜對水的穩定度檢測 76
4.5 纖維性質鑑定 80
4.5.1 纖維親疏水鑑定 80
4.5.2 纖維吸水率 (Water uptake ratio) 81
4.5.3 水氣保留率 (Water residual ratio) 82
4.5.4 水氣滲透率 (Water vapor permeability rate, WVTR) 83
4.5.5 抗生物沾黏 84
4.6 纖維機械性質 86
4.6.1 應力-應變曲線 86
4.6.2 拉伸後同軸芯鞘型纖維(未包藥)型態 88
4.7 纖維包藥測試 89
4.7.1 藥物包覆率 (Loading content, L.C.)/藥物封裝效率(Encapsulation efficiency, E.E.) 89
4.7.2 藥物釋放 91
4.8 活性氧分子 (Reactive oxygen species, ROS)檢測 93
4.9 生物相容性 95
4.10 抗菌測試 97
4.10.1 抑菌圈測試 97
4.10.2 細菌存活率測試 102
第五章 結論與未來展望 106
參考文獻 108

1. Lazarus, G. S. , Cooper, D. M. , Knighton, D. R. , Margolis, D. J. , Pecoraro, R. E. , Rodeheaver, G. , & Robson, M. C. , Definitions and guidelines for assessment of wounds and evaluation of healing. Archives of Dermatological Research, 1994. 2(3): p. 489-493.
2. Percival, N.J. , Classification of wounds and their management. International Journal of Surgery 2002. 20(5): p. 114-117.
3. Harding KG, M.H. , Patel GK. , Science, medicine and the future healing chronic wounds. British Medical Journal (Clinical Research ed.), 2002 Jan: p. 160-163.
4. Sreenivasan, K. , On the restriction of the release of water-soluble component from polyvinyl alcohol film by blending ?-cyclodextrin. Journal of Applied Polymer Science, 1997. 65(9): p. 1829-1832.
5. Öztürk, E. , et al. , Preparation and characterization of ciprofloxacin-loaded alginate/chitosan sponge as a wound dressing material. Journal of Applied Polymer Science, 2006. 101(3): p. 1602-1609.
6. Yu, H. , et al. , Medicated wound dressings based on poly(vinyl alcohol)/poly(N-vinyl pyrrolidone)/chitosan hydrogels. Journal of Applied Polymer Science, 2006. 101(4): p. 2453-2463.
7. Dyke, G.I.T.a.M.D.V. , Electrically driven jets. Proc. R. Soc. Lond, 1997: p. A313 453-475.
8. Zamani, M. , M.P. Prabhakaran, and S. Ramakrishna, Advances in drug delivery via electrospun and electrosprayed nanomaterials. International journal of nanomedicine, 2013. 8: p. 2997.
9. Jannesari, M. , et al. , Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. International Journal of Nanomedicine, 2011. 6: p. 993-1003.
10. Kim, K. , et al. , Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. Journal of Controlled Release, 2004. 98(1): p. 47-56.
11. Meng, Z.X. , et al. , Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids and Surfaces B: Biointerfaces, 2011. 84(1): p. 97-102.
12. Dror, Y. , et al. , One-step production of polymeric microtubes by co-electrospinning. Small, 2007. 3(6): p. 1064-1073.
13. Kraitzer, A. , et al. , Long-term in vitro study of paclitaxel-eluting bioresorbable core/shell fiber structures. Journal of Controlled Release, 2008. 126(2): p. 139-48.
14. Saraf, A. , et al. , Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. Journal of Controlled Release 2010. 143(1): p. 95-103.
15. Xu, X. , et al. , Ultrafine medicated fibers electrospun from W/O emulsions. Journal of Controlled Release, 2005. 108(1): p. 33-42.
16. Yang, Y. , et al. , Release pattern and structural integrity of lysozyme encapsulated in core-sheath structured poly(DL-lactide) ultrafine fibers prepared by emulsion electrospinning. European Journal of Pharmaceutics and Biopharmaceutics, 2008. 69(1): p. 106-160.
17. Luo, X. , et al. , Antitumor activities of emulsion electrospun fibers with core loading of hydroxycamptothecin via intratumoral implantation. International Journal of Pharmaceutics, 2012. 425(1-2): p. 19-28.
18. Zeng, J. , et al. , Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. Journal of Controlled Release, 2005. 105(1-2): p. 43-51.
19. Taepaiboon, P. , U. Rungsardthong, and P. Supaphol, Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology, 2006. 17(9): p. 2317-2329.
20. Xie, C. , et al. , Release modulation and cytotoxicity of hydroxycamptothecin-loaded electrospun fibers with 2-hydroxypropyl-beta-cyclodextrin inoculations. International Journal of Pharmaceutics, 2010. 391(1-2): p. 55-64.
21. 張雍 and 葉至誠, 雙離子性高分子材料介面的血液相容性. 化工, 2015. 62(1): p. 92-102.
22. Claesson, P.M. , et al. , Protein interactions at solid surfaces. Advances in Colloid and Interface Science, 1995. 57: p. 161-227.
23. Chinn JA, P.S. , Horbett TA. , Ratner BD. , Postadsorptive transition in fibrinogen adsorbed to polyurethanes changes in antibody binding and sodium dodecy sulfate elutability. Journal of Biomedical Materials Research, 1991. 25(4): p. 535‐555.
24. Whitesides, G.M. , Poly(ethylene glycol) chemistry biotechnical and biomedical applications. Applied Biochemistry and Biotechnology, 1993. 41(3).
25. Leduc E.H. ,and Holt. S. J. , Hydroxypropyl methacrylate, a new water-miscible embedding medium for electron microscopy. Journal of Cell Biology, 1965. 26(1): p. 137‐155.
26. Ma, H. , Hyun, J. , Stiller, P. and Chilkoti, A. , Non‐Fouling” Oligo(ethylene glycol)‐Functionalized Polymer Brushes Synthesized by Surface‐Initiated Atom Transfer Radical Polymerization. Advanced Materials, 2004. 16(4): p. 338-341.
27. Zheng, J. , et al. , Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: a molecular simulation study. Biophysical Journal, 2005. 89(1): p. 158-66.
28. Emanuele Ostuni, R.G.C., R. Erik Holmlin, Shuichi Takayama, and George M. Whitesides, A survey of structure−property relationships of surfaces that resist the adsorption of protein. Langmuir, 2001. 17(18): p. 5605-5620.
29. Zheng J, L. , Chen S. , Jiang S. , Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir, 2004. 20(20): p. 8931‐8938.
30. Shen, M. , et al. , PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. Journal of Biomaterials Science, Polymer Edition, 2012. 13(4): p. 367-390.
31. Matsuno, R. and Ishihara, K. Integrated functional nanocolloids covered with artificial cell membranes for biomedical applications. Nano Today, 2011. 6(1): p. 61-74.
32. Chang, Y. , et al. , Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS Applied Materials & Interfaces, 2011. 3(4): p. 1228-1237.
33. Chang Y, C.S. , Yu Q, Zhang Z, Bernards M, Jiang S. , Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance. Biomacromolecules, 2007. 8(1): p. 122‐127.
34. Cai, N. , et al. , Antifouling zwitterionic hydrogel coating improves hemocompatibility of activated carbon hemoadsorbent. Journal of Colloid and Interface Science, 2017. 503: p. 168-177.
35. Zhang Z, Chao T. , Chen S, Jiang S. , Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir, 2006. 22(24): p. 10072‐10077.
36. Chen, S. , et al. , Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer Journal, 2010. 51(23): p. 5283-5293.
37. Ishihara K, Miyazaki H. , Kurosaki T, Nakabayashi N. , Improvement of blood compatibility on cellulose dialysis membrane. III. Synthesis and performance of water-soluble cellulose grafted with phospholipid polymer as coating material on cellulose dialysis membrane. Journal of Biomedical Materials Research, 1995. 29(2): p. 181‐188.
38. Qing Shao, Yi He , Andrew D. White, and Shaoyi Jiang, Difference in hydration between carboxybetaine and sulfobetaine. The Journal of Physical Chemistry B, 2010. 114(49): p. 16625-16631.
39. West, S.L., et al., The biocompatibility of crosslinkable copolymer coatings containing sulfobetaines and phosphobetaines. Biomaterials Science, 2004. 25(7-8): p. 1195-204.
40. Yung Chang, S.C. , Zheng Zhang, and Shaoyi Jiang, Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir, 2006. 22(5).
41. Zheng Zhang, S.C. , and Shaoyi Jiang, Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromoleculesvolume, 2006. 7(12).
42. Yin, H.-E. , C.-F. Lee, and W.-Y. Chiu, Preparation of thermally curable conductive films PEDOT:P(SS-NMA) and their performances on weather stability and water resistance. Polymer Journal, 2011. 52(22): p. 5065-5074.
43. Yocum RH , N.E. , Functional monomers. Journal of Polymer Science: Polymer Letters Edition, 1973. 12(6): p 359.
44. LIPSON RL, B.E. , The photodynamic properties of a particular hematoporphyrin derivative. Archives of Dermatological Research, 1960. 82(4): p. 508-516.
45. Baas, P., van Mansom, I., van Tinteren, H., Stewart, F.A. and van Zandwijk, N. , Effect of N-acetylcysteïne on photofrin-induced skin photosensitivity in patients. Lasers in Surgery and Medicine, 1995. 16(4).
46. Beate Roeder, D.U.N. , Characterization of photobiophysical properties of sensitizers used in photodynamic therapy,. Future Trends in Biomedical Applications of Lasers, 1991.
47. Nyman, E.S. and P.H. Hynninen, Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2004. 73(1-2): p. 1-28.
48. MacRobert AJ, Bown SG, Phillips D. , What are the ideal photoproperties for a sensitizer? 2007.
49. JCrutchley, A.l.o.o.p.C., Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews, 2002. 233-234: p. 351-371.
50. Jones NF, M. S. , Gambier BA. , Reliability of the fibular osteocutaneous flap for mandibular reconstruction anatomical and surgical confirmation. Plastic and Reconstructive Surgery 1996. 97(4): p. 707‐718.
51. Tardivo, J.P. , et al. , Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagnosis and Photodynamic Therapy, 2005. 2(3): p. 175-191.
52. Wainwright M, Phoenix DA, Marland J, Wareing DR, Bolton FJ. , A study of photobactericidal activity in the phenothiazinium series. FEMS Immunology & Medical Microbiology, 2006. 19(1): p. 75-80.
53. Coronel, A. , et al. , Photodynamic action of methylene blue subjected to aromatic-aromatic interactions with poly(sodium 4-styrenesulfonate) in solution and supported in solid, highly porous alginate sponges. Dyes and Pigments, 2017. 147: p. 455-464.
54. Hamblin MR, Hasan T. , Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. , 2004. 3(5): p. 436‐450.
55. Wilson M. ,Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry Association and the European Society for Photobiology, 2004 May. 3(5): p. 412-418.
56. Clichici, S. , et al. , The dynamics of reactive oxygen species in photodynamic therapy with tetra sulfophenyl-porphyrin. ACTA Physiologica Hungarica, 2010. 97(1): p. 41-51.
57. T., M., A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment. Mini-Reviews in Medicinal Chemistry, 2009. 2009(9(8)): p. 974‐983.
58. Bressler NM, B.S. , Photodynamic therapy with verteporfin (Visudyne): impact on ophthalmology and visual sciences. Investigative Ophthalmology and Visual Science, 2000. 41(3): p. 624‐628.
59. Castano, A.P. , T.N. Demidova, and M.R. Hamblin, Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis and Photodynamic Therapy, 2004. 1(4): p. 279-293.
60. Bertran, M.S. and B.E. Dale, Determination of cellulose accessibility by differential scanning calorimetry. Journal of Applied Polymer Science, 1986. 32: p. 4241-4253.
61. Ma, Z. , M. Kotaki, and S. Ramakrishna, Electrospun cellulose nanofiber as affinity membrane. Journal of Membrane Science, 2005. 265(1-2): p. 115-123.
62. Lalani, R. , Preparation and biocompatibility of electrospun zwitterionic poly(sulfobetaine methacrylate) for wound dressing applications. Journal of Materials Science 2013.
63. Lalani, R. and L. Liu, Synthesis, characterization, and electrospinning of zwitterionic poly(sulfobetaine methacrylate). Polymer Journal 2011. 52(23): p. 5344-5354.
64. Z. Zhang, S.C. , Y. Chang, S. Jiang, Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Physical Chemistry Chemical Physics, 2006. 110 p. 10799-10804.
65. Kim, I.Y. , et al. , Evaluation of semi-interpenetrating polymer networks composed of chitosan and poloxamer for wound dressing application. International Journal of Pharmaceutics, 2007. 341(1-2): p. 35-43.
66. Nelson, M.T. , et al. , Electrospun composite polycaprolactone scaffolds for optimized tissue regeneration. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2012. 226(3): p. 111-121.
67. Zeina B. , G.J. , Purcell WM, Das B. , Killing of cutaneous microbial species by photodynamic therapy. British Journal of Dermatology, 2001. 144(2): p. 274-278.
68. Spagnul, C. , L.C. Turner, and R.W. Boyle, Immobilized photosensitizers for antimicrobial applications. Journal of Photochemistry and Photobiology B: Biology, 2015. 150: p. 11-30.
69. Huang YY, T.M. , Vecchio D, et al. , Photodynamic therapy induces an immune response against a bacterial pathogen. . Expert Review of Clinical Immunology, 2012. 8(5): p. 479-494.

電子全文 電子全文(網際網路公開日期:20230901)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔