|
1.Le Page, F., A. Guy, J. Cadet, A. Sarasin, and A. Gentil, Repair and mutagenic potency of 8-oxoG:A and 8-oxoG:C base pairs in mammalian cells. Nucleic acids research, 1998. 26(5): p. 1276-1281. 2.Kino, K., M. Hirao-Suzuki, M. Morikawa, A. Sakaga, and H. Miyazawa, Generation, repair and replication of guanine oxidation products. Genes and Environment, 2017. 39(1): p. 21. 3.Guo, Y., J. Weck, R. Sundaram, A.E. Goldstone, G. Buck Louis, and K. Kannan, Urinary Concentrations of Phthalates in Couples Planning Pregnancy and Its Association with 8-Hydroxy-2′-deoxyguanosine, a Biomarker of Oxidative Stress: Longitudinal Investigation of Fertility and the Environment Study. Environmental Science & Technology, 2014. 48(16): p. 9804-9811. 4.Boiteux, S., F. Coste, and B. Castaing, Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Free Radic Biol Med, 2017. 107: p. 179-201. 5.Loft, S., P. Svoboda, K. Kawai, H. Kasai, M. Sørensen, A. Tjønneland, U. Vogel, P. Møller, K. Overvad, and O. Raaschou-Nielsen, Association between 8-oxo-7,8-dihydroguanine excretion and risk of lung cancer in a prospective study. Free Radical Biology and Medicine, 2012. 52(1): p. 167-172. 6.Roszkowski, K., W. Jozwicki, P. Blaszczyk, A. Mucha-Malecka, and A. Siomek, Oxidative damage DNA: 8-oxoGua and 8-oxodG as molecular markers of cancer. Medical science monitor : international medical journal of experimental and clinical research, 2011. 17(6): p. CR329-CR333. 7.AkiraMatsui, TadashiIkeda, KohjiEnomoto, KanaeHosoda, HiroshiNakashima, KazuyukiOmae, MamoruWatanabe, ToshifumiHibi, and MasakiKitajima, Increased formation of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, in human breast cancer tissue and its relationship to GSTP1 and COMT genotypes. Cancer Letters, 2000. 151(1): p. 87-95. 8.Cappelli, E., P. Degan, L.H. Thompson, and G. Frosina, Efficient Repair of 8-Oxo-7,8-dihydrodeoxyguanosine in Human and Hamster Xeroderma Pigmentosum D Cells. Biochemistry, 2000. 39(34): p. 10408-10412. 9.Wyde, M.E., V.A. Wong, A.H. Kim, G.W. Lucier, and N.J. Walker, Induction of Hepatic 8-Oxo-deoxyguanosine Adducts by 2,3,7,8-Tetrachlorodibenzo-p-dioxin in Sprague−Dawley Rats Is Female-Specific and Estrogen-Dependent. Chemical Research in Toxicology, 2001. 14(7): p. 849-855. 10.Fortini, P., B. Pascucci, E. Parlanti, M. D’Errico, V. Simonelli, and E. Dogliotti, 8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2003. 531(1): p. 127-139. 11.Loft, S. and H.E. Poulsen, Cancer risk and oxidative DNA damage in man. Journal of Molecular Medicine, 1996. 74(6): p. 297-312. 12.Gackowski, D., E. Speina, M. Zielinska, J. Kowalewski, R. Rozalski, A. Siomek, T. Paciorek, B. Tudek, and R. Olinski, Products of Oxidative DNA Damage and Repair as Possible Biomarkers of Susceptibility to Lung Cancer. Cancer Research, 2003. 63(16): p. 4899. 13.Li, C.-S., K.-Y. Wu, G.-P. Chang-Chien, and C.-C. Chou, Analysis of Oxidative DNA Damage 8-Hydroxy-2‘-deoxyguanosine as a Biomarker of Exposures to Persistent Pollutants for Marine Mammals. Environmental Science & Technology, 2005. 39(8): p. 2455-2460. 14.Negi, R., D. Pande, A. Kumar, R.S. Khanna, and H.D. Khanna, In vivo Oxidative DNA Damage and lipid Peroxidation as a Biomarker of Oxidative Stress in Preterm Low-Birthweight Infants. Journal of Tropical Pediatrics, 2011. 58(4): p. 326-328. 15.Gackowski, D., M. Starczak, E. Zarakowska, M. Modrzejewska, A. Szpila, Z. Banaszkiewicz, and R. Olinski, Accurate, Direct, and High-Throughput Analyses of a Broad Spectrum of Endogenously Generated DNA Base Modifications with Isotope-Dilution Two-Dimensional Ultraperformance Liquid Chromatography with Tandem Mass Spectrometry: Possible Clinical Implication. Analytical Chemistry, 2016. 88(24): p. 12128-12136. 16.Fan, R., D. Wang, R. Ramage, and J. She, Fast and Simultaneous Determination of Urinary 8-Hydroxy-2′-deoxyguanosine and Ten Monohydroxylated Polycyclic Aromatic Hydrocarbons by Liquid Chromatography/Tandem Mass Spectrometry. Chemical Research in Toxicology, 2012. 25(2): p. 491-499. 17.Pilger, A., S. Ivancsits, D. Germadnik, and H.WRüdiger, Urinary excretion of 8-hydroxy-2′-deoxyguanosine measured by high-performance liquid chromatography with electrochemical detection. Journal of Chromatography B, 2002. 778(1-2): p. 393-401. 18.Bist, I., S. Bhakta, D. Jiang, T.E. Keyes, A. Martin, R.J. Forster, and J.F. Rusling, Evaluating Metabolite-Related DNA Oxidation and Adduct Damage from Aryl Amines Using a Microfluidic ECL Array. Analytical Chemistry, 2017. 89(22): p. 12441-12449. 19.Sie, C.-Y. and S.-L. Lee, Quantum Calculations for Misincorporation of Mutagenic FaPy Guanine and DNA Bases. National Digital Library of Theses and Dissertations in Taiwan, 2016. 20.Hofer, T. and L. Möller, Reduction of Oxidation during the Preparation of DNA and Analysis of 8-Hydroxy-2‘-deoxyguanosine. Chemical Research in Toxicology, 1998. 11(8): p. 882-887. 21.Zhao, H., T. Tanaka, V. Mitlitski, J. Heeter, E.A. Balazs, and Z. Darzynkiewicz, Protective effect of hyaluronate on oxidative DNA damage in WI-38 and A549 cells. International Journal of Oncology, 2008 p. 1159-1167. 22.Marnett, L.J., Oxy radicals, lipid peroxidation and DNA damage. Toxicology, 2002. 181-182: p. 219-222. 23.Häder, D.-P. and R.P. Sinha, Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2005. 571(1): p. 221-233. 24.Deans, A.J. and S.C. West, DNA interstrand crosslink repair and cancer. Nature Reviews Cancer, 2011. 11: p. 467. 25.Moore, L.D., T. Le, and G. Fan, DNA methylation and its basic function. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2013. 38(1): p. 23-38. 26.Ellison, E.M., E.L. Abner, and M.A. Lovell, Multiregional analysis of global 5-methylcytosine and 5-hydroxymethylcytosine throughout the progression of Alzheimer's disease. Journal of neurochemistry, 2017. 140(3): p. 383-394. 27.Tang, Y., J.-M. Chu, W. Huang, J. Xiong, X.-W. Xing, X. Zhou, Y.-Q. Feng, and B.-F. Yuan, Hydrophilic Material for the Selective Enrichment of 5-Hydroxymethylcytosine and Its Liquid Chromatography–Tandem Mass Spectrometry Detection. Analytical Chemistry, 2013. 85(12): p. 6129-6135. 28.Becke, A.D., A new mixing of Hartree–Fock and local density‐functional theories. The Journal of Chemical Physics, 1993. 29.Chai, J.-D. and M. Head-Gordon, Systematic optimization of long-range corrected hybrid density functionals. The Journal of Chemical Physics. The Journal of Chemical Physics, 2008. 30.Hehre, W.J., R. Ditchfield, and J.A. Pople, Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules The Journal of Chemical Physics, 1972. 31.Krishnan, R., J.S. Binkley, R. Seeger, and J.A. Pople, Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions The Journal of Chemical Physics, 1980. 32.Simon, S. and M. Duran, How does basis set superposition error change the potential surfacesfor hydrogen-bonded dimers? The Journal of Chemical Physics, 1996. 33.Tomasi, J., B. Mennucci, and R. Cammi, Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 2005. 105(8): p. 2999-3094. 34.Burns, L.A., Á.V. Mayagoitia, B.G. Sumpter, and C.D. Sherrill, Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. The Journal of Chemical Physics, 2011. 134(8): p. 084107. 35.Fonseca Guerra, C., Structure and bonding of DNA : development and application of parallel and order-N DFT methods. 2000, Vrije Universiteit. 36.Santamaria, R. and A. Vázquez, Structural and electronic property changes of the nucleic acid bases upon base pair formation. Journal of Computational Chemistry, 1994. 15(9): p. 981-996. 37.Bertran, J., A. Oliva, L. Rodríguez-Santiago, and M. Sodupe, Single versus Double Proton-Transfer Reactions in Watson−Crick Base Pair Radical Cations. A Theoretical Study. Journal of the American Chemical Society, 1998. 120(32): p. 8159-8167. 38.Gould, I.R. and P.A. Kollman, Theoretical Investigation of the Hydrogen Bond Strengths in Guanine-Cytosine and Adenine-Thymine Base Pairs. Journal of the American Chemical Society, 1994. 116(6): p. 2493-2499. 39.Šponer, J., J. Leszczynski, and P. Hobza, Structures and Energies of Hydrogen-Bonded DNA Base Pairs. A Nonempirical Study with Inclusion of Electron Correlation. The Journal of Physical Chemistry, 1996. 100(5): p. 1965-1974. 40.Brameld, K., S. Dasgupta, and W.A. Goddard, Distance Dependent Hydrogen Bond Potentials for Nucleic Acid Base Pairs from ab Initio Quantum Mechanical Calculations (LMP2/cc-pVTZ). The Journal of Physical Chemistry B, 1997. 101(24): p. 4851-4859.
|