跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/18 18:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐守原
研究生(外文):HSU,SHOU-YUAN
論文名稱:氧化去氧鳥苷與DNA鹼基間錯配量化計算研究
論文名稱(外文):Quantum Calculations for Misincorporation of Oxidized Deoxy Guanosine and DNA Bases
指導教授:李錫隆李錫隆引用關係
指導教授(外文):LEE, SHYI-LONG
口試委員:李政怡王伯昌
口試委員(外文):Lea, Cheng-IWang, Bo-Cheng
口試日期:2019-10-31
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:99
中文關鍵詞:鹼基錯配量化計算8-氧代鳥苷8-羥基鳥苷
外文關鍵詞:MisincorporationQuantum Calculation8-oxoG8-OHG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
兩種DFT方案B3LYP和ωB97X-D用於檢查正常鹼基與8-羥基-2'-鳥嘌呤(8-oxoG)及其烯醇形式8-Oxo-2'-鳥嘌呤(8-OHG)之間的錯配。 結構最佳化後,總共各獲得了19個穩定的配對錯誤。
發現8-OHG·G的結合比其他對和正常的G·C對更強。 但是據報導會導致突變的8-OHG·A競爭性不強。 8-OHG的烯醇氫在與正常鹼基的牢固結合中起重要作用。 對於8-oxoG·鹼基對,這些鹼基對的結合力通常比正常的G·C組合還弱。
Two DFT schemes, B3LYP and ωB97X-D, were employed to examine the misincorporation between normal bases and 8-hydroxy-2'-guanine(8-oxoG) and its enol form, 8-Oxo-2'-guanine(8-OHG). Total of 19 stable mispairings each were obtained upon optimization.
It is found that 8-OHG·G is bound even stronger than other pairs and normal G·C pair. But 8-OHG·A, which has been reported to lead to mutations, are not so competitive. Enolic hydrogen of 8-OHG plays a big role in strong binding with normal bases. For 8-oxoG·base pairs, these pairs mostly bind weaker than normal G·C pair.

Abstract 2
Chapter 1 Introduction 4
Chapter 2 Computation Method 8
2.1 computation details 8
2.2 Density Functional Theory 10
2.3 Split-valence Basis Set 15
2.4 Basis Set Superposition Error[32] 16
Chapter 3 Results and Discussion 18
3.1 Effect of oxidative addition on guanine 18
3.2 Charge Density Distributions 21
3.3 Oxidized Guanine Complexes 24
3.4 binding energies of normal GC 68
3.5 binding Gibbs free energies 69
3.6 Comparation with FaPyG Mispairing 73
Chapter 4 Conclusion 75
References 77


1.Le Page, F., A. Guy, J. Cadet, A. Sarasin, and A. Gentil, Repair and mutagenic potency of 8-oxoG:A and 8-oxoG:C base pairs in mammalian cells. Nucleic acids research, 1998. 26(5): p. 1276-1281.
2.Kino, K., M. Hirao-Suzuki, M. Morikawa, A. Sakaga, and H. Miyazawa, Generation, repair and replication of guanine oxidation products. Genes and Environment, 2017. 39(1): p. 21.
3.Guo, Y., J. Weck, R. Sundaram, A.E. Goldstone, G. Buck Louis, and K. Kannan, Urinary Concentrations of Phthalates in Couples Planning Pregnancy and Its Association with 8-Hydroxy-2′-deoxyguanosine, a Biomarker of Oxidative Stress: Longitudinal Investigation of Fertility and the Environment Study. Environmental Science & Technology, 2014. 48(16): p. 9804-9811.
4.Boiteux, S., F. Coste, and B. Castaing, Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Free Radic Biol Med, 2017. 107: p. 179-201.
5.Loft, S., P. Svoboda, K. Kawai, H. Kasai, M. Sørensen, A. Tjønneland, U. Vogel, P. Møller, K. Overvad, and O. Raaschou-Nielsen, Association between 8-oxo-7,8-dihydroguanine excretion and risk of lung cancer in a prospective study. Free Radical Biology and Medicine, 2012. 52(1): p. 167-172.
6.Roszkowski, K., W. Jozwicki, P. Blaszczyk, A. Mucha-Malecka, and A. Siomek, Oxidative damage DNA: 8-oxoGua and 8-oxodG as molecular markers of cancer. Medical science monitor : international medical journal of experimental and clinical research, 2011. 17(6): p. CR329-CR333.
7.AkiraMatsui, TadashiIkeda, KohjiEnomoto, KanaeHosoda, HiroshiNakashima, KazuyukiOmae, MamoruWatanabe, ToshifumiHibi, and MasakiKitajima, Increased formation of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, in human breast cancer tissue and its relationship to GSTP1 and COMT genotypes. Cancer Letters, 2000. 151(1): p. 87-95.
8.Cappelli, E., P. Degan, L.H. Thompson, and G. Frosina, Efficient Repair of 8-Oxo-7,8-dihydrodeoxyguanosine in Human and Hamster Xeroderma Pigmentosum D Cells. Biochemistry, 2000. 39(34): p. 10408-10412.
9.Wyde, M.E., V.A. Wong, A.H. Kim, G.W. Lucier, and N.J. Walker, Induction of Hepatic 8-Oxo-deoxyguanosine Adducts by 2,3,7,8-Tetrachlorodibenzo-p-dioxin in Sprague−Dawley Rats Is Female-Specific and Estrogen-Dependent. Chemical Research in Toxicology, 2001. 14(7): p. 849-855.
10.Fortini, P., B. Pascucci, E. Parlanti, M. D’Errico, V. Simonelli, and E. Dogliotti, 8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2003. 531(1): p. 127-139.
11.Loft, S. and H.E. Poulsen, Cancer risk and oxidative DNA damage in man. Journal of Molecular Medicine, 1996. 74(6): p. 297-312.
12.Gackowski, D., E. Speina, M. Zielinska, J. Kowalewski, R. Rozalski, A. Siomek, T. Paciorek, B. Tudek, and R. Olinski, Products of Oxidative DNA Damage and Repair as Possible Biomarkers of Susceptibility to Lung Cancer. Cancer Research, 2003. 63(16): p. 4899.
13.Li, C.-S., K.-Y. Wu, G.-P. Chang-Chien, and C.-C. Chou, Analysis of Oxidative DNA Damage 8-Hydroxy-2‘-deoxyguanosine as a Biomarker of Exposures to Persistent Pollutants for Marine Mammals. Environmental Science & Technology, 2005. 39(8): p. 2455-2460.
14.Negi, R., D. Pande, A. Kumar, R.S. Khanna, and H.D. Khanna, In vivo Oxidative DNA Damage and lipid Peroxidation as a Biomarker of Oxidative Stress in Preterm Low-Birthweight Infants. Journal of Tropical Pediatrics, 2011. 58(4): p. 326-328.
15.Gackowski, D., M. Starczak, E. Zarakowska, M. Modrzejewska, A. Szpila, Z. Banaszkiewicz, and R. Olinski, Accurate, Direct, and High-Throughput Analyses of a Broad Spectrum of Endogenously Generated DNA Base Modifications with Isotope-Dilution Two-Dimensional Ultraperformance Liquid Chromatography with Tandem Mass Spectrometry: Possible Clinical Implication. Analytical Chemistry, 2016. 88(24): p. 12128-12136.
16.Fan, R., D. Wang, R. Ramage, and J. She, Fast and Simultaneous Determination of Urinary 8-Hydroxy-2′-deoxyguanosine and Ten Monohydroxylated Polycyclic Aromatic Hydrocarbons by Liquid Chromatography/Tandem Mass Spectrometry. Chemical Research in Toxicology, 2012. 25(2): p. 491-499.
17.Pilger, A., S. Ivancsits, D. Germadnik, and H.WRüdiger, Urinary excretion of 8-hydroxy-2′-deoxyguanosine measured by high-performance liquid chromatography with electrochemical detection. Journal of Chromatography B, 2002. 778(1-2): p. 393-401.
18.Bist, I., S. Bhakta, D. Jiang, T.E. Keyes, A. Martin, R.J. Forster, and J.F. Rusling, Evaluating Metabolite-Related DNA Oxidation and Adduct Damage from Aryl Amines Using a Microfluidic ECL Array. Analytical Chemistry, 2017. 89(22): p. 12441-12449.
19.Sie, C.-Y. and S.-L. Lee, Quantum Calculations for Misincorporation of Mutagenic FaPy Guanine and DNA Bases. National Digital Library of Theses and Dissertations in Taiwan, 2016.
20.Hofer, T. and L. Möller, Reduction of Oxidation during the Preparation of DNA and Analysis of 8-Hydroxy-2‘-deoxyguanosine. Chemical Research in Toxicology, 1998. 11(8): p. 882-887.
21.Zhao, H., T. Tanaka, V. Mitlitski, J. Heeter, E.A. Balazs, and Z. Darzynkiewicz, Protective effect of hyaluronate on oxidative DNA damage in WI-38 and A549 cells. International Journal of Oncology, 2008 p. 1159-1167.
22.Marnett, L.J., Oxy radicals, lipid peroxidation and DNA damage. Toxicology, 2002. 181-182: p. 219-222.
23.Häder, D.-P. and R.P. Sinha, Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2005. 571(1): p. 221-233.
24.Deans, A.J. and S.C. West, DNA interstrand crosslink repair and cancer. Nature Reviews Cancer, 2011. 11: p. 467.
25.Moore, L.D., T. Le, and G. Fan, DNA methylation and its basic function. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2013. 38(1): p. 23-38.
26.Ellison, E.M., E.L. Abner, and M.A. Lovell, Multiregional analysis of global 5-methylcytosine and 5-hydroxymethylcytosine throughout the progression of Alzheimer's disease. Journal of neurochemistry, 2017. 140(3): p. 383-394.
27.Tang, Y., J.-M. Chu, W. Huang, J. Xiong, X.-W. Xing, X. Zhou, Y.-Q. Feng, and B.-F. Yuan, Hydrophilic Material for the Selective Enrichment of 5-Hydroxymethylcytosine and Its Liquid Chromatography–Tandem Mass Spectrometry Detection. Analytical Chemistry, 2013. 85(12): p. 6129-6135.
28.Becke, A.D., A new mixing of Hartree–Fock and local density‐functional theories. The Journal of Chemical Physics, 1993.
29.Chai, J.-D. and M. Head-Gordon, Systematic optimization of long-range corrected hybrid density functionals. The Journal of Chemical Physics. The Journal of Chemical Physics, 2008.
30.Hehre, W.J., R. Ditchfield, and J.A. Pople, Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules The Journal of Chemical Physics, 1972.
31.Krishnan, R., J.S. Binkley, R. Seeger, and J.A. Pople, Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions The Journal of Chemical Physics, 1980.
32.Simon, S. and M. Duran, How does basis set superposition error change the potential surfacesfor hydrogen-bonded dimers? The Journal of Chemical Physics, 1996.
33.Tomasi, J., B. Mennucci, and R. Cammi, Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 2005. 105(8): p. 2999-3094.
34.Burns, L.A., Á.V. Mayagoitia, B.G. Sumpter, and C.D. Sherrill, Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. The Journal of Chemical Physics, 2011. 134(8): p. 084107.
35.Fonseca Guerra, C., Structure and bonding of DNA : development and application of parallel and order-N DFT methods. 2000, Vrije Universiteit.
36.Santamaria, R. and A. Vázquez, Structural and electronic property changes of the nucleic acid bases upon base pair formation. Journal of Computational Chemistry, 1994. 15(9): p. 981-996.
37.Bertran, J., A. Oliva, L. Rodríguez-Santiago, and M. Sodupe, Single versus Double Proton-Transfer Reactions in Watson−Crick Base Pair Radical Cations. A Theoretical Study. Journal of the American Chemical Society, 1998. 120(32): p. 8159-8167.
38.Gould, I.R. and P.A. Kollman, Theoretical Investigation of the Hydrogen Bond Strengths in Guanine-Cytosine and Adenine-Thymine Base Pairs. Journal of the American Chemical Society, 1994. 116(6): p. 2493-2499.
39.Šponer, J., J. Leszczynski, and P. Hobza, Structures and Energies of Hydrogen-Bonded DNA Base Pairs. A Nonempirical Study with Inclusion of Electron Correlation. The Journal of Physical Chemistry, 1996. 100(5): p. 1965-1974.
40.Brameld, K., S. Dasgupta, and W.A. Goddard, Distance Dependent Hydrogen Bond Potentials for Nucleic Acid Base Pairs from ab Initio Quantum Mechanical Calculations (LMP2/cc-pVTZ). The Journal of Physical Chemistry B, 1997. 101(24): p. 4851-4859.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top