跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/23 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳佳俐
研究生(外文):WU,CHIA-LI
論文名稱:以離子液體開發可拋式電極偵測養殖水中硫化氫
論文名稱(外文):Develop a disposable ionic liquid modified electrode to detect hydrogen sulfide in aquaculture water
指導教授:魏國佐
指導教授(外文):WEI,GUOR-TZO
口試委員:魏國佐連經憶曾志明
口試委員(外文):WEI,GUOR-TZOLIEN,CHING-YIZEN,JYH-MYNG
口試日期:2020-06-30
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:89
中文關鍵詞:離子液體硫化氫亞甲基藍坡縷石網版印刷碳電極
外文關鍵詞:ionic liquidhydrogen sulfidemethylene bluepalygorskitescreen-printed carbon electrode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
總目錄
摘要 I
Abstract III
總目錄 V
圖目錄 VIII
縮寫與全名對照 XI
第一章 緒論 1
1.1 研究動機 1
1.2 離子液體 2
1.3 化學修飾電極(Chemical modified electrode) 3
1.5 網版印刷碳電極(Screen printed carbon electrode, SPCE) 4
1.6 電子傳遞介質(Electron-mediator) 6
1.7 坡縷石(Palygorskite)介紹 8
1.8 電化學方法簡介 11
1.8.1 循環伏安法 11
1.8.2 安培法 12
1.8.3 交流阻抗分析法(AC-impedance) 15
1.9 養殖池的底泥與間隙水介紹 23
1.10 硫化氫(Hydrogen sulfide)簡介 24
1.11 檢測硫化氫相關文獻 26
第二章 實驗藥品、設備及方法 30
2.1 實驗設備 30
2.2 三電極系統 32
2.3 藥品 33
2.3.1 離子液體合成藥品 33
2.3.2 有機溶劑 33
2.3.3 修飾電極材料 34
2.3.4 緩衝溶液 34
2.3.5 分析物 35
2.4 合成離子液體 36
2.4.1 [C4VIM][PF6] 離子液體的合成 36
2.4.2 [C9(VIM)2][PF6]2 離子液體的合成 38
2.5 藥品配製方法 40
2.5.1 磷酸鹽緩衝溶液 ( Phosphate Buffer Solution, KPBS) 40
2.6 普魯士藍聚合型離子液體電極製程 (PBG-PIL-SPCE) 41
2.7 鐵氰化鉀聚合型離子液體電極製程 (FeCN/PG-PIL-SPCE) 42
2.8 亞甲基藍聚合型離子液體電極製程 (MB/PG-PIL-SPCE) 43
第三章 不同離子液體修飾電極對於硫化鈉的檢測 45
3.1 研磨後的普魯士藍修飾離子液體電極 (PBG-PIL-SPCE) vs. 鐵氰化鉀修飾電極 (FeCN/PG-PIL-SPCE) 45
3.1.1 普魯士藍電化學特徵 45
3.1.2 研磨普魯士藍 46
3.1.3 以循環伏安法探討PBG-PIL-SPCE對硫化鈉電化學反應機制 47
3.1.4 三明治製備FeCN/PG- PIL-SPCE電極 49
3.1.5 以循環伏安法探討FeCN/PG-PIL-SPCE對於硫化鈉之電化學反應機制 49
3.1.6 緩衝溶液 pH值對PBG-PIL-SPCE和FeCN/PG-PIL-SPCE檢測Na2S的影響 50
3.1.7 以FIA對FeCN/PG- PIL-SPCE 偵測Na2S進行定量分析之電位最佳化 53
3.1.8 測試FeCN-PG/PIL-SPCE電極之穩定性與再現性 55
3.2坡縷石吸附亞甲基藍之修飾離子液體電極 (MB/PG-PIL-SPCE) 57
3.2.1 以循環伏安法探討MB/PG-PIL-SPCE檢測硫化鈉之電化學反應機制 57
3.2.2 電極篩選 58
3.2.3 緩衝溶液pH值對MB/PG-PIL-SPCE檢測Na2S的影響 60
3.2.4 分析物移動至電極表面反應之機制 61
3.2.5 以FIA 探討分析物定量分析之電位與流速最佳化 63
3.2.6 以FIA對Na2S進行定量分析 65
3.2.7 MB/PG-PIL-SPCE檢測Na2S之穩定度及電極再現性 66
第四章 連接氣化裝置改善MB/PG-PIL-SPCE 70
4.1 頂空萃取回溶裝置 70
4.1.1 以MB/PG-PIL-SPCE探討Na2S的氣化時間 71
4.1.2 分析物氣化後訊號再現性 71
4.1.3 5mL分析物氣化後回溶定量 72
4.2 以空氣purge萃取樣品回溶裝置 73
4.2.1 以5 mL分析物進行purge體積最佳化 74
4.2.2 5 mL分析物purge後進行回溶定量 75
4.2.3 相同濃度下分析物體積變化對於訊號的影響 76
4.2.4 以20 mL分析物進行purge體積最佳化 77
4.2.5 20 mL分析物purge後進行回溶定量 78
4.2.6 間隙水基質效應 80
4.2.7 以模擬樣品進行回收率檢測 82
4.2.8 文獻比較 84
第五章 結論 85
第六章 參考文獻 86


[1]蔡明龍, "以離子液體修飾電極做電分析檢測 4-胺基苯酚. 亞硫酸鹽及薑黃素," 中正大學化學暨生物化學系學位論文, 2018.
[2]邱蕙萱, "聚合型離子液體修飾電極結合電子傳遞物質應用於電催化氧化硫醇分子," 中正大學化學暨生物化學系學位論文, 2013.
[3]陳苡伃, "聚合型離子液體複合材料修飾電極的開發與應用," 中正大學化學暨生物化學系學位論文, 2014.
[4]F. H. Hurley and T. P. Wier Jr, "Electrodeposition of metals from fused quaternary ammonium salts," Journal of The Electrochemical Society, vol. 98, no. 5, p. 203, 1951.
[5]B. Wang, Y. Li, X. Qin, G. Zhan, M. Ma, and C. Li, "Electrochemical fabrication of TiO2 nanoparticles/[BMIM] BF4 ionic liquid hybrid film electrode and its application in determination of p-acetaminophen," Materials Science and Engineering: C, vol. 32, no. 8, pp. 2280-2285, 2012.
[6]R. W. Murray, A. G. Ewing, and R. A. Durst, "Chemically modified electrodes. Molecular design for electroanalysis," Analytical Chemistry, vol. 59, no. 5, pp. 379A-390A, 1987.
[7]M. Sajid, M. K. Nazal, M. Mansha, A. Alsharaa, S. M. S. Jillani, and C. Basheer, "Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review," TrAC Trends in Analytical Chemistry, vol. 76, pp. 15-29, 2016.
[8]鍾協訓 and 曾志明, "液體電化學感測器的介紹與應用," 化學, vol. 59, no. 2, 2001.
[9]M. H. Yang, B. G. Choi, H. Park, W. H. Hong, S. Y. Lee, and T. J. Park, "Development of a glucose biosensor using advanced electrode modified by nanohybrid composing chemically modified graphene and ionic liquid," Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, vol. 22, no. 11, pp. 1223-1228, 2010.
[10]S. Baskar, J.-L. Chang, and J.-M. Zen, "Simultaneous detection of NADH and H2O2 using flow injection analysis based on a bifunctional poly (thionine)-modified electrode," Biosensors and Bioelectronics, vol. 33, no. 1, pp. 95-99, 2012.
[11]P.-Y. Chen, C.-H. Luo, M.-C. Chen, F.-J. Tsai, N.-F. Chang, and Y. Shih, "Screen-printed carbon electrodes modified with cobalt phthalocyanine for selective sulfur detection in cosmetic products," International journal of molecular sciences, vol. 12, no. 6, pp. 3810-3820, 2011.
[12]J.-M. Zen, H.-H. Chung, and A. S. Kumar, "Flow injection analysis of hydrogen peroxide on copper-plated screen-printed carbon electrodes," Analyst, vol. 125, no. 9, pp. 1633-1637, 2000.
[13]J. M. Zen, D. M. Tsai, and A. Senthil Kumar, "Flow injection analysis of ascorbic acid in real samples using a highly stable chemically modified screen‐printed electrode," Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, vol. 15, no. 14, pp. 1171-1176, 2003.
[14]P. Fanjul-Bolado, P. J. Lamas-Ardisana, D. Hernández-Santos, and A. Costa-García, "Electrochemical study and flow injection analysis of paracetamol in pharmaceutical formulations based on screen-printed electrodes and carbon nanotubes," Analytica chimica acta, vol. 638, no. 2, pp. 133-138, 2009.
[15]J.-M. Zen, H.-H. Yang, M.-H. Chiu, Y.-J. Chen, and Y. Shih, "Determination of thioglycolic acid in hair-waving products by disposable electrochemical sensor coupled with high-performance liquid chromatography," Journal of AOAC International, vol. 92, no. 2, pp. 574-579, 2009.
[16]M. Johirul, A. Shiddiky, R. E. Kim, and Y. B. Shim, "Microchip capillary electrophoresis with a cellulose‐DNA‐modified screen‐printed electrode for the analysis of neurotransmitters," Electrophoresis, vol. 26, no. 15, pp. 3043-3052, 2005.
[17]O. D. Renedo, M. Alonso-Lomillo, and M. A. Martínez, "Recent developments in the field of screen-printed electrodes and their related applications," Talanta, vol. 73, no. 2, pp. 202-219, 2007.
[18]H. Jia and P. Wang, "Biocatalytic generation of power from biofuels: biofuel cells," Biofuels, vol. 1, no. 3, pp. 479-492, 2010/05/01 2010.
[19]P. T. Kissinger and W. R. Heineman, "Cyclic voltammetry," Journal of Chemical Education, vol. 60, no. 9, p. 702, 1983.
[20]J. Keggin and F. Miles, "Structures and formulae of the Prussian blues and related compounds," Nature, vol. 137, no. 3466, pp. 577-578, 1936.
[21]S.-H. Lee and Y.-D. Huh, "Preferential evolution of Prussian blue's morphology from cube to hexapod," Bulletin of the Korean Chemical Society, vol. 33, no. 3, pp. 1078-1080, 2012.
[22]J. Hong, H. Ghourchian, S. Rezaei‐Zarchi, A. A. Moosavi‐Movahedi, S. Ahmadian, and A. A. Saboury, "Nafion‐Methylene Blue Functional Membrane and Its Application in Chemical and Biosensing," Analytical Letters, vol. 40, no. 3, pp. 483-496, 2007.
[23]黃泓潔, "坡縷石之特性及應用研究," 中興大學土壤環境科學系所學位論文, 2013.
[24]W. Bradley, "The structural scheme of attapulgite," American Mineralogist: Journal of Earth and Planetary Materials, vol. 25, no. 6, pp. 405-410, 1940.
[25]A. Singer, "Palygorskite and sepiolite," Soil Mineralogy with Environmental Applications, vol. 7, pp. 555-583, 2002.
[26]H. Murray, "Applied clay mineralogy today and tomorrow," Clay minerals, vol. 34, no. 1, pp. 39-49, 1999.
[27]D. G. Schulze, "An introduction to soil mineralogy," Soil mineralogy with environmental applications, vol. 7, pp. 1-35, 2002.
[28]N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, "A Practical Beginner’s Guide to Cyclic Voltammetry," Journal of Chemical Education, vol. 95, no. 2, pp. 197-206, 2018.
[29]張仁麟, "可拋棄式超微電極電化學分析系統的研發與應用," 中興大學化學系所學位論文, 2007.
[30]陳昱如, "可攜式三聚氰胺與賽滅淨電化學偵檢器之研發應用," 中興大學化學系所學位論文, 2012.
[31]F. Mansfeld, "Recording and analysis of AC impedance data for corrosion studies," Corrosion, vol. 37, no. 5, pp. 301-307, 1981.
[32]D. McCumber, "Effect of ac impedance on dc voltage‐current characteristics of superconductor weak‐link junctions," Journal of Applied Physics, vol. 39, no. 7, pp. 3113-3118, 1968.
[33]"底泥的物質循環." 水產養殖環境解碼 底泥, 藻菌共生,水質, 2015.
[34]邱仕彰, "養殖池生態環境探討概說," 農業新發現, 2011.
[35]S. Wang, X. Liu, and M. Zhang, "Reduction of ammineruthenium (III) by sulfide enables in vivo electrochemical monitoring of free endogenous hydrogen sulfide," Analytical chemistry, vol. 89, no. 10, pp. 5382-5388, 2017.
[36]J. Kang et al., "pH-controlled hydrogen sulfide release for myocardial ischemia-reperfusion injury," Journal of the American Chemical Society, vol. 138, no. 20, pp. 6336-6339, 2016.
[37]G. A. Benavides et al., "Hydrogen sulfide mediates the vasoactivity of garlic," Proceedings of the National Academy of Sciences, vol. 104, no. 46, pp. 17977-17982, 2007.
[38]R. Reiffenstein, W. C. Hulbert, and S. H. Roth, "Toxicology of hydrogen sulfide," Annual review of pharmacology and toxicology, vol. 32, no. 1, pp. 109-134, 1992.
[39]B. Nam et al., "Neurologic sequela of hydrogen sulfide poisoning," Industrial health, vol. 42, no. 1, pp. 83-87, 2004.
[40]B. Tvedt, A. Edland, K. Skyberg, and O. Forberg, "Delayed neuropsychiatric sequelae after acute hydrogen sulfide poisoning: affection of motor function, memory, vision and hearing," Acta neurologica scandinavica, vol. 84, no. 4, pp. 348-351, 1991.
[41]J.-L. Chang, G.-T. Wei, T.-Y. Chen, and J.-M. Zen, "Highly Stable Polymeric Ionic Liquid Modified Electrode to Immobilize Ferricyanide for Electroanalysis of Sulfide," Electroanalysis, vol. 25, no. 4, pp. 845-849, 2013.
[42]A. Safavi and A. Abi, "A Selective and Sensitive Sensor for Determination of Sulfide in Aquatic Environment," Sensors Journal, IEEE, vol. 15, pp. 3507-3513, 06/01 2015, doi: 10.1109/JSEN.2014.2379696.
[43]J. R. Hall and M. H. Schoenfisch, "Direct Electrochemical Sensing of Hydrogen Sulfide without Sulfur Poisoning," Anal Chem, vol. 90, no. 8, pp. 5194-5200, Apr 17 2018.
[44]蔡孟樺, "以離子液體開發可拋式普魯士藍電極," 中正大學化學暨生物化學系學位論文, 2019.
[45]方藝鈞, "以聚合型離子液體為修飾網版印刷碳電極之平台做電分析 檢測7-羥基-4-甲基香豆素與過氧化氫," 中正大學化學暨生物化學系學位論文, 2019.
[46]陳以中, "普魯士藍聚合型離子液體修飾電極於電化學分析的開發," 中正大學化學暨生物化學系學位論文, 2016.
[47]F. Mollarasouli, K. Asadpour-Zeynali, S. Campuzano, P. Yáñez-Sedeño, and J. M. Pingarrón, "Non-enzymatic hydrogen peroxide sensor based on graphene quantum dots-chitosan/methylene blue hybrid nanostructures," Electrochimica Acta, vol. 246, 2017.
[48]倪婕舲, "南崁溪水質與底泥品質之主成分分析," 臺灣大學環境工程學研究所學位論文, 2017.
[49]S. Balasubramanian and V. Pugalenthi, "A comparative study of the determination of sulphide in tannery waste water by ion selective electrode (ISE) and iodimetry," Water Research, vol. 34, no. 17, pp. 4201-4206, 2000.
[50]M. Ueda, H. Dietz, A. Anders, H. Kneppe, A. Meixner, and W. Plieth, "Double-pulse technique as an electrochemical tool for controlling the preparation of metallic nanoparticles," Electrochimica acta, vol. 48, no. 4, pp. 377-386, 2002.
[51]M. A. Aziz, M. Sohail, M. Oyama, and W. Mahfoz, "Electrochemical Investigation of Metal Oxide Conducting Electrodes for Direct Detection of Sulfide," Electroanalysis, vol. 27, no. 5, pp. 1268-1275, 2015.


電子全文 電子全文(網際網路公開日期:20250727)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊