跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/23 13:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾政元
研究生(外文):CHUNG, CHENG-YUAN
論文名稱:利用DFT方法進行Au5 +/0/-團簇理論計算之研究
論文名稱(外文):Theoretical Studies of Au5+/0/- Clusters Using DFT Method
指導教授:李錫隆李錫隆引用關係
指導教授(外文):LEE, SHYI-LONG
口試委員:李錫隆王伯昌李豐穎
口試委員(外文):LEE, SHYI-LONGWANG, BO-CHENGLi,Feng-Yin
口試日期:2020-07-22
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:66
中文關鍵詞:金簇最低能量穩定結構密度泛函理論
外文關鍵詞:Gold clustersLowest energy structuresDFT method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究以密度泛函理論的PW91PW91搭配LANLDZ為基底函數進行結構最佳化,研究Au5+/0/-最穩’定結構的差異,並使用分子軌域與correlation diagram解釋所找到的最穩定結構。結果顯示Au5最穩定結構為梯形結構 (C2v),而Au5+與Au5-最穩定的結構分別是沙漏型與A型,這些穩定結構的差異皆可用correlation diagram快速地檢驗。在價鍵的檢驗上,模糊價鍵理論有比Natural bonding orbitals更好的表現。此外,Au5中的房型結構被發現為過渡態,此TS是Au5梯型結構的翻轉過程,其翻轉能量障礙為0.04 eV。
In this study, the PW91PW91 method with LANL2DZ level was carried out to settle the dispute about the most stable structure of Au5+/0/-. Molecular orbital analyses and correlation diagram were adopted rationalize our computational result about the ground state geometry of Au5+/0/-. Our results show that the most stable geometry of Au5 is isosceles trapezoid shape (C2v). The less stable structure is linear shape (D∞h) with relative energies of 1.57 eV. In addition, the most stable geometry of Au5+ and Au5- are bitriangular (D2h) shape and A-shape (C2V), respectively. For bond orders analyzes, fuzzy bond order analyzes showed better performance than NBO analyzes. The preference of geometric change can be rationalized simply by using correlation diagram. Besides, the house shape of Au5 is found to be transition states (TS) of inversion of isosceles trapezoid shape. The inversion barrier is estimated to be 0.04 eV.
Acknowledgement……………………………………………………………………..I
Contents……………………………………………………………………………….II
Content of Figures…………………………………………………………………....IV
Content of Tables…………………………………………………………………….VI
Abstract……………………………………………………………………………...VII
中文摘要…………………………………………………………………………...VIII
Chapter 1. Introduction…………………………………………………………...…1
1.1 Gold cluster…1
1.2 Diatomic transition metal systems…1
1.3 Gold Trimer…4
1.4 Gold pentamer…5
1.5 Motivation and Goal…8
Chapter 2. Computational Method …10
2.1 Computational Methods in Details…10
2.2 Density Functional Theory (DFT)…10
2.2.1 DFT functional: PW91PW91….11
2.3 Basis Functions…12
2.3.1 Basis Set: LANL2DZ…13
2.4 Molecular Orbital Theory…13
2.4.1 Natural Bond Orbital (NBO) Analysis…15
2.4.2 Fuzzy bond order analysis…16
Chapter 3. Result and Discussion…18
3.1 initial structures…18
3.1.1 Au System…18
3.1.2 Atomic Orbital Analysis…18
3.2 Au5+/0/- System…20
3.2.1 Au5 with multiplicity 2…21
3.2.2 Au5 at higher multiplicity…24
3.2.3 NBO Analysees of stable structures of Au5 with multiplicity 0…25
3.2.4 Fuzzy bond order analyses of Au5….26
3.3 Au5+ and Au5- Systems….27
3.3.1 Optimized geometries parameters of Au5+ with multiplicity 1…27
3.3.1-1 Au5+ at higher multiplicity….31
3.3.1-2 Molecular Orbital and NBO Analysis of stable structures of Au5+ with multiplicity 1…33
3.3.2 Fuzzy bond order analysis of stable structures of Au5+/ with multiplicity 1…34
3.3.3 Optimized geometries of Au5- with multiplicity 1…35
3.3.4 Au5- at higher multiplicity…39
3.3.5 NBO Analysis of Au5-…40
3.3.6 Fuzzy bond order analysis of stable structures of Au5- with multiplicity 1-….42
3.4 Correlation diagram…42
3.4.1 Correlation diagram of H5+/0/- and Au5+/0/-…43
3.5 Fluxional Behavior in Au5+/0/-…48
Chapter 4. Conclusion…51

(1) Andres, R. P.; Bein, T.; Dorogi, M.; Feng, S.; Henderson, J. I.;Kubiak, C. P.; Mahoney, W.; Osifchin, R. G.; Reifenberger, R.“Coulomb Staircase” at Room Temperature in a Self-Assembled
Molecular Nanostructure. Science 1996, 272,1323-1325.

(2) Pyykk€o, P. Theoretical Chemistry of Gold. Angew. Chem., Int.Ed. 2004, 43, 4412-4456.

(3) Besner, S., Kabashin, A. V., Winnik, F. M., & Meunier, M. (2008). Ultrafast laser based “green” synthesis of non-toxic nanoparticles in aqueous solutions. Applied Physics A, 93(4), 955–959. doi:10.1007/s00339-008-4773-y

(4) Warshavski, O., Minai, L., Bisker, G., & Yelin, D. (2011). Effect of Single Femtosecond Pulses on Gold Nanoparticles. The Journal of Physical Chemistry C, 115(10), 3910–3917. doi:10.1021/jp110348x

(5) Corma, A., Concepción, P., Boronat, M., Sabater, M. J., Navas, J., Yacaman, M. J., … Mayoral, A. (2013). Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chemistry, 5(9), 775–781.

(6) Sarmah, A., & Roy, R. K. (2015). Interaction between Small Gold Clusters and Nucleobases: A Density Functional Reactivity Theory Based Study. The Journal of Physical Chemistry C, 119(31), 17940–17953.

(7) Zhao, Y.-R. (2015). Structures, Stabilities, and Electronic Properties for Rare-Earth Lanthanum Doped Gold Clusters. Zeitschrift Für Naturforschung A, 70(2).

(8) Schooss, D., Weis, P., Hampe, O., & Kappes, M. M. (2010). Determining the size-dependent structure of ligand-free gold-cluster ions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1915), 1211–1243.

(9) Häkkinen, H. (2008). Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chemical Society Reviews, 37(9),

(10) Li, J. (2003). Au20: A Tetrahedral Cluster. Science, 299(5608), 864–867.

(11) Wang, J., Wang, G., & Zhao, J. (2002). Density-functional study ofAun(n=2–20)clusters: Lowest-energy structures and electronic properties. Physical Review B, 66(3).

(12) Kant, A., & Strauss, B. (1964). Dissociation Energies of Diatomic Molecules of the Transition Elements. II. Titanium, Chromium, Manganese, and Cobalt. The Journal of Chemical Physics, 41(12), 3806–3808.

(13) Moskovits, M., & DiLella, D. P. (1980). Di‐iron and nickeliron. The Journal of Chemical Physics, 73(10), 4917–4924.

(14) Cossé, C., Fouassier, M., Mejean, T., Tranquille, M., DiLella, D. P., & Moskovits, M. (1980). Dititanium and divanadium. The Journal of Chemical Physics, 73(12), 6076–6085.

(15) Dong, J., Hu, Z., Craig, R., Lombardi, J. R., & Lindsay, D. M. (1994). Raman spectra of mass‐selected cobalt dimers in argon matrices. The Journal of Chemical Physics, 101(11), 9280–9282.

(16) Spain, E. M., & Morse, M. D. (1992). Bond strengths of transition-metal dimers: titanium-vanadium( TiV), vanadium dimer, titanium-cobalt (TiCo), and vanadium-nickel (VNi). The Journal of Physical Chemistry, 96(6), 2479–2486.

(17) Kirkwood, A. D., Bier, K. D., Thompson, J. K., Haslett, T. L., Huber, A. S., & Moskovits, M. (1991). Ultraviolet-visible and Raman spectroscopy of diatomic manganese isolated in rare-gas matrixes. The Journal of Physical Chemistry, 95(7), 2644–2652.

(18) Wang, H., Haouari, H., Craig, R., Lombardi, J. R., & Lindsay, D. M. (1996). Raman spectra of mass‐selected nickel dimers in argon matrices. The Journal of Chemical Physics, 104(10), 3420–3422.

(19) Morse, M. D., Hansen, G. P., Langridge‐Smith, P. R. R., Zheng, L., Geusic, M. E., Michalopoulos, D. L., & Smalley, R. E. (1984). Spectroscopic studies of the jet‐cooled nickel dimer. The Journal of Chemical Physics, 80(11), 5400–5405.

(20) Spain, E. M., Behm, J. M., & Morse, M. D. (1992). The 846 nm A’ 3Σ−u←X 3Σ−g band system of jet‐cooled V2. The Journal of Chemical Physics, 96(4), 2511–2516.

(21) Doverstål, M., Lindgren, B., Sassenberg, U., Arrington, C. A., & Morse, M. D. (1992). The 3Π0u ← X 3Δ1g band system of jet‐cooled Ti2. The Journal of Chemical Physics, 97(10), 7087–7092.

(22) Pinegar, J. C., Langenberg, J. D., Arrington, C. A., Spain, E. M., & Morse, M. D. (1995). Ni2 revisited: Reassignment of the ground electronic state. The Journal of Chemical Physics, 102(2), 666–674.

(23) Doverstål, M., Karlsson, L., Lindgren, B., & Sassenberg, U. (1997). The 3Δu−X3Δg band system of jet-cooled Ti2. Chemical Physics Letters, 270(3-4), 273–277.

(24) Hare, C. R., Sleight, T. P., Cooper, W., & Clarke, G. A. (1968). Application of extended Hueckel theory to the calculation of the potential energy curve of diatomic copper. Inorganic Chemistry, 7(4), 669–673.

(25) Cooper, W. F., Clarke, G. A., & Hare, C. R. (1972). Molecular orbital theory of the diatomic molecules of the first row transition metals. The Journal of Physical Chemistry, 76(16), 2268–2273.

(26) Lin, S.-S., & Kant, A. (1969). Dissociation energy of Fe2. The Journal of Physical Chemistry, 73(7), 2450–2451.

(27) Proceedings of the Chemical Society. February 1962. (1962). Proceedings of the Chemical Society, (February), 37.

(28) Shim, I., & Gingerich, K. A. (1982). Ab initio HF–CI calculations of the electronic “‘band structure’” in the Fe2 molecule. The Journal of Chemical Physics, 77(5), 2490–2497.

(29) Barden, C. J., Rienstra-Kiracofe, J. C., & Schaefer, H. F. (2000). Homonuclear 3d transition-metal diatomics: A systematic density functional theory study. The Journal of Chemical Physics, 113(2), 690–700.

(30) Bauschlicher, C. W., Langhoff, S. R., & Partridge, H. (1989). Theoretical study of the structures and electron affinities of the dimers and trimers of the group IB metals (Cu, Ag, and Au). The Journal of Chemical Physics, 91(4), 2412–2419.

(31) K. P. Huber and G. Herzberg, MOLECULAR SPECTRA and MOLECULAR -STRUCTURE
IV. CONSTANTS OF DIATOMIC MOLECULES,

(32) Bauschlicher, C. W. (1989). On the electron affinity of Au3. Chemical Physics Letters, 156(1), 91–94.

(33) Ho, J., Ervin, K. M., & Lineberger, W. C. (1990). Photoelectron spectroscopy of metal cluster anions: Cu−n, Ag−n, and Au−n. The Journal of Chemical Physics, 93(10), 6987–7002.

(34) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H., gaussian 09 revision a.02 gaussian inc. wallingford ct 2009, 200.

(35) Tomaś̌Rajský † and Miroslav Urban*,†,‡ “Aun (n = 1~11) Clusters Interacting With Lone-Pair Ligands”

(36) Chiodo, S., Russo, N., & Sicilia, E. (2006). LANL2DZ basis sets recontracted in the framework of density functional theory. The Journal of Chemical Physics, 125(10), 104107.

(37) Kohn, W., Becke, A. D., & Parr, R. G. (1996). Density Functional Theory of Electronic Structure. The Journal of Physical Chemistry, 100(31), 12974–12980.

(38) Ban, F., Rankin, K. N., Gauld, J. W., & Boyd, R. J. (2002). Recent applications of density functional theory calculations to biomolecules. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 108(1), 1–11.

(39) Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82(1), 299–310.

(40) Wadt, W. R., & Hay, P. J. (1985). Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. The Journal of Chemical Physics, 82(1), 284–298.

(41) Calaminici, P., Köster, A. M., Carrington, T., Roy, P., Russo, N., & Salahub, D. R. (2001). V3: Structure and vibrations from density functional theory, Franck–Condon factors, and the pulsed-field ionization zero-electron-kinetic energy spectrum. The Journal of Chemical Physics, 114(9), 4036–4044.

(42) Chiodo, S., Kondakova, O., Michelini, M. del C., Russo, N., Sicilia, E., Irigoras, A., & Ugalde, J. M. (2004). Theoretical Study of Two-State Reactivity of Transition Metal Cations: The “Difficult” Case of Iron Ion Interacting with Water, Ammonia, and Methane. The Journal of Physical Chemistry A, 108(6), 1069–1081.

(43) Chiodo, S., Russo, N., & Sicilia, E. (2004). Newly developed basis sets for density functional calculations. Journal of Computational Chemistry, 26(2), 175–184.

(44) Bravo-Pérez, G., Garzón, I. L., & Novaro, O. (1999). Ab initio study of small gold clusters. Journal of Molecular Structure: THEOCHEM, 493(1-3), 225–231.

(45) Kittel, C., Introduction to solid state. John Wiley & Sons: 1966.

(46) Zheldakov, I. L., N. Ryazantsev, M., & Tarnovsky, A. N. (2011). Wavepacket Motion via a Conical Intersection in the Photochemistry of Aqueous Transition-Metal Dianions. The Journal of Physical Chemistry Letters, 2(13), 1540–1545.

(47) Xiao, L., Tollberg, B., Hu, X., & Wang, L. (2006). Structural study of gold clusters. The Journal of Chemical Physics, 124(11), 114309.

(48) Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1993). Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 48(7), 4978–4978.

(49) Perdew, J. P., Burke, K., & Wang, Y. (1996). Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Physical Review B, 54(23), 16533–16539.

(50) Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46(11), 6671–6687.

(51) Furche, F., Ahlrichs, R., Weis, P., Jacob, C., Gilb, S., Bierweiler, T., & Kappes, M. M. (2002). The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations. The Journal of Chemical Physics, 117(15), 6982–6990.

(52) R. Hoffmann, A chemist’s view of bonding in extended structures (VCH Publishers, New York, 1988).
(53) Kong, Yi-Ting, Lee, Shyi-Long. (2017). Theoretical Studies of Au3+/0/- Clusters Using DFT Method
(54) Chen, Kuan,Yu, Lee, Shyi-Long. (2020). Probing the effect of different atomicity nanosized gold clusters for catalysis with thiophenol oxidation to disulfides: A computational Study
(55) Mayer, I., & Salvador, P. (2004). Overlap populations, bond orders and valences for “fuzzy” atoms. Chemical Physics Letters, 383(3-4), 368–375. doi:10.1016/j.cplett.2003.11.048.

(56) J. M. Haile, “Molecular Dynamics Simulation: Elementary Methods”

(57) Tuckerman, M., Berne, B. J., & Martyna, G. J. (1992). Reversible multiple time scale molecular dynamics. The Journal of Chemical Physics, 97(3), 1990–2001. doi:10.1063/1.463137

(58) Bryan R. Goldsmith,1,2* Jacob Florian,2 Jin-Xun Liu,2 Philipp Gruene,1 Jonathan T. Lyon,1,3 David M. Rayner,4 André Fielicke,1* Matthias Scheffler,1 and Luca M. Ghiringhelli1* “Two-to-three dimensional transition in neutral gold clusters: the crucial role of van der Waals interactions and temperature”

(59) Hong Xiao Shi,†,‡ Wei Guo Sun,† Xiao Yu Kuang,*,† Cheng Lu,*,†,§ Xin Xin Xia,† Bo Le Chen,†and Andreas Hermann*,∥† Institute of Atomic and Molecular P “Probing the Interactions of O2 with Small Gold Cluster Aun Q (n = 2− 10, Q = 0, −1): A Neutral Chemisorbed Complex Au5O2 Cluster Predicted”

(60) Han Myoung Lee* and Kwang S. Kim* “Observable Structures of Small Neutral and Anionic Gold Cluster”

(61) Xi-Bo Li, Hong-Yan Wang, Xiang-Dong Yang, Zheng-He Zhu, and Yong-Jian Tang “Size dependence of the structures and energetic and electronic properties of gold clusters”

(62) F. Remacle, E. S. Kryachko “Structure and energetics of two- and three-dimensional neutral, cationic, and anionic gold clusters Au-5 <= n <=(Z) (Z=0, +/- 1)”

(63) YANG SHENG HUI, ZHU XUN PENG “Investigation into Temperature and Size Effects on Behaviors of Water Nanoclusters”

(64) G. Bravo-Perez ), I.L. Garzon, O. Novaro “Non-additive effects in small gold clusters”

(65) Hannu Ha¨kkinen and Uzi Landman “Gold clusters (Au N, 2<~ N<~ 1 0) and their anions”


(66) Tomaś̌ Rajský† and Miroslav Urban “Aun (n = 1,11) Clusters Interacting With Lone-Pair Ligands”

(67) Xiao-Feng Yang, Yi-Lei Wang, Ya-Fan Zhao,b Ai-Qin Wang,a Tao Zhang*a and Jun Li* “Adsorption-induced structural changes of gold cations from two- to three-dimensions”

(68) Xunlei Ding, Zhenyu Li, Jinlong Yang, J. G. Hou, and Qingshi Zhu “Adsorption energies of molecular oxygen on Au clusters”

(69) Stefan Gilb, Patrick Weis, Filip Furche, Reinhart Ahlrichs, and Manfred M. Kappes “Structures of small gold cluster cations”

(70) Noko S. Phala *, Gu¨nter Klatt, Eric van Steen “A DFT study of hydrogen and carbon monoxide chemisorption onto small gold clusters”

(71) Joani Mato‡ & Emilie B. Guidez*‡ “Accuracy of the PM6 and PM7 Methods on Bare and Thiolate-Protected Gold Nanoclusters”

(72) Jos´e Rogan, Ricardo Ram´ırez, Aldo H. Romero, and Miguel Kiwi “Rearrangement collisions between gold clusters⋆”

(73) Andreas Hermann, Robert P. Krawczyk, Matthias Lein, and Peter Schwerdtfeger* ” Convergence of the many-body expansion of interaction potentials: From van der Waals to covalent and metallic systems”

(74) A. V. Walker” Structure and energetics of small gold nanoclusters and their positive ions”

(75) Xiang-jun Kuang Xin-qiang Wang Gao-bin Liu “All-Electron Scalar Relativistic Calculation on the Adsorption of Carbon Monoxide onto Small Gold Clusters”

(76) Luiz F. L. Oliveira,†,‡ Nathalie Tarrat,§ Jeró ̂me Cuny,† Joseph Morillo,§,∥ Didier Lemoine,‡ Fernand Spiegelman,† and Mathias Rapacioli*,†” Benchmarking Density Functional Based Tight-Binding for Silver and Gold Materials: From Small Clusters to Bulk”

(77) Johansson, M. P., Lechtken, A., Schooss, D., Kappes, M. M., & Furche, F. (2008). 2D-3D transition of gold cluster anions resolved. Physical Review A, 77(5).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top