跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 19:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏源
研究生(外文):Po-Yuan Huang
論文名稱:短雷射脈衝在一元簡單液體中引起的光柯爾效應和一元與二元簡單液體中引起的熱效應研究
論文名稱(外文):Study of short-pulse-induced optical-Kerr-effect in unitary simple liquids and the thermal effects in unitary and binary simple liquids
指導教授:魏台輝
指導教授(外文):Tai-Huei Wei
口試委員:韓殿君段必輝李乙氣陳慶緒
口試委員(外文):Dian-Jiun HanPi-Hui TuanYi-Ci LiChing-Hsu Chen
口試日期:2020-07-21
學位類別:博士
校院名稱:國立中正大學
系所名稱:物理系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:106
中文關鍵詞:短雷射脈衝光柯爾效應熱效應熱聲波純熱擴散熱擴散
外文關鍵詞:Short PulseOptical-Kerr-EffectThermal EffectThermoacoustic WaveThermal DiffusivityThermal Diffusion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以1,2-二氯乙烷(C2H4Cl2)與1,2-二溴乙烷(C2H4Br2)為樣品,探討簡單液體分子的三種光學效應:(1)皮秒(picosecond,簡稱ps)脈衝與飛秒(femtosecond,簡稱fs)脈衝在一元簡單液體中造成的光柯爾(透鏡)效應(optical-Kerr-effect);(2)高重複率飛秒雷射脈衝在一元簡單液體中造成的熱(透鏡)效應;以及(3)高重複率飛秒雷射脈衝在二元簡單液體中造成的熱效應。
關於一元簡單液體中的光柯爾效應,其特別之處在於簡單液體分子具有高度不對稱性且分子間阻力較小,所以光柯爾效應除包含電子運動之外,尚包括原子核運動的貢獻,其中電子運動的貢獻是瞬時的,而原子核運動的貢獻在皮秒至秒或次皮秒時域內是隨時間增加而逐漸累積的(accumulated with time)。本論文中我們分別以18 fs與19 ps脈衝為光源,調查光柯爾效應與雷射脈衝時寬與光強之間的關係。透過本研究,我們可了解原子核運動對光柯爾效應的影響,進而了解分子間的作用力,值得一提的是,在蛋白質水溶液中,原子層級的分子間靜電力的瞭解正是蛋白質科學的基礎。
一元簡單液體中光致熱效應包括以下五項過程:(1)吸收、(2)非輻射性鬆弛造成的空間中不均勻溫度分布、(3)空間中不均勻溫度分布驅動的熱聲波、(4)熱聲波造成的密度改變、以及(5)純熱擴散(thermal diffusivity)。針對本項目,我們的研究目的在於分辨樣品的吸收機制。二元簡單液體中光致熱效應除包括一元簡單液體中光致熱效應的五項過程外,另外還包括熱擴散(thermal diffusion)。在本論文中,我們的研究目的在於探討兩成分的分子間作用。
在以上三項議題中,我們都以Z-scan為技術,而針對以上第一項議題,我們分別以10 Hz、820 nm的18 fs (HW1/eM) 與10 Hz、532 nm的19 ps (HW1/eM)脈衝為光源,調查短脈衝在一元簡單液體中的光柯爾效應。針對後兩項議題,我們以82MHz、820nm的18fs (HW1/e¬¬M)脈衝為光源,分別藉電子快門將脈衝截為數十毫秒(millisecond,簡稱ms)與秒(second,簡稱s)的脈衝串,使長於樣品的純熱擴散時間以及質量擴散時間;同時也使脈衝串間的時距分別長於數十ms與數s。

In this thesis, we take 1,2-dichloroethane (C2H4Cl2) and 1,2-dibromoethane (C2H4Br2) as the samples to study three optical processes of simple liquid molecules: (1) optical-Kerr-effect caused by picosecond (ps) and femtosecond (fs) laser pulses, (2) thermal (lensing) effect induced by fs laser pulses delivered at high repetition rates, and (3) thermal (lensing) effect caused by fs laser pulses in binary simple liquids.
Optical-Kerr-effect in unitary simple liquids is special because simple liquid molecules have a high degree of asymmetry and less intermolecular resistance. Consequently, the optical-Kerr-effect includes the contributions of the nuclear motions in addition to electronic motions. Because the contribution of electronic motions is well within a fs laser pulse and that of nuclear motions accumulates within the extent of a ps laser pulse, we investigated the optical-Kerr-effect of C2H4Cl2 and C2H4Br2 with 18 fs and 19 ps pulses. Through this study, we can distinguish the contributions to the optical-Kerr-effect. Furthmore, understanding the contributions of unclear motions to the optical-Kerr-effect. The atomic level of electrostatic forces between protein and water molecules is the fundamentals of understanding protein science.
In the sequence of time, photo-induced thermal effect in unitary simple liquids evolves through the following five steps: (1) photo excitation, (2) non-radiative relaxation induced non-uniform spatial temperature distribution, (3) non-uniform spatial temperature distribution driven thermoacoustic wave, (4) thermoacoustic wave caused density change, and (5) thermal diffusivity. Because photo absorption of simple liquids by individual fs laser pulses is weak in the visible and near infrared regimes, direct measurements of it demands transmittance measuring techniques with high sensitivity. By preparing the pulses in separation by a time much shorter the samples thermal diffusivity time constants, we can measure the thermal effect induced by individual pulses and siginificantly accumulates across pulses confined within the thermal diffusivity time constants to deduce the liquids absorption properties. In this study, we study the thermal effect of C2H4Cl2 and C2H4Br2, with CS2 and H2O serving as references, to understand their absorption properities.
In contrast, photo-induced thermal effect in binary simple liquids evolves with time through thermal diffusion in addition to the five steps relating to the unitary simple liquids. Considering that diffusion is an important biophysical process in addition to solvation, transport and biomolecular interactions, we also study how the thermal diffusion in binary CH3OH-CCl4 liquid affect its thermal effect. of this thsis, we extend our study
On the above three issues, we used Z-scan as the technology. About the first issue, we used 10 Hz 820 nm 18 femtosecond (fs) (HW1/eM) pulses and 10 Hz 532 nm 19 ps (HW1/eM) pulses as light sources to investigate the short pulse induced optical-Kerr-effect. For the last two issues, we used 82 MHz 820 nm 18 fs (HW1/e¬¬M) laser pulses chopped into trains as the light source. For the unitary simple liquids, the pulse trains width and separation are adjusted comparable with the samples thermal diffusivity time constants, in the sub-millisecond to millisecond order; for the binary simple liquids, the pulse trains width and separation are adjusted comparable with the samples thermal diffusion time constants, in the sub-second to second order.

摘要 i
Abstract ii
第一章 緒論 1
1-1 簡介 1
1-2 背景 2
1-3 研究動機與目的 7
1-3-1 一元簡單液體中的光柯爾效應 7
1-3-2 一元簡單液體中的熱效應 9
1-3-3 二元簡單液體的熱效應 11
第二章 理論 13
2-1 一元簡單液體的光柯爾效應 13
2-2 一元簡單液體的熱效應 21
2-2-1 不包含熱效應的非線性吸收與折射 22
2-2-2 包含熱效應的非線性吸收與折射 28
2-2-3 熱效應造成折射率改變推導 31
2-3 二元簡單液體的熱效應 36
第三章 實驗架設與原理 46
3-1 實驗樣品 46
3-2 Z-scan 技術與原理 49
3-3 皮秒脈衝實驗架設與相關量測技術 54
3-3-1 Nd:YAG皮秒雷射系統簡介 54
3-3-2 針孔掃描技術 55
3-3-3 皮秒脈衝自相干架設與原理 57
3-4 飛秒脈衝串實驗架設與相關量測技術 61
3-4-1 摻鈦藍寶石雷射系統簡介 62
3-4-2 飛秒脈衝自相干儀架設與原理 66
3-5飛秒個別脈衝實驗架設與相關量測技術 71
第四章 實驗結果與討論 76
4-1 細節計算 76
4-2 短脈衝在兩種時域下(19 ps與18 fs)之光柯爾效應擬合結果及討論 77
4-3 二溴乙烷(C2H4Br2) 與二氯乙烷(C2H4Cl2)的Z-scan實驗結果與討論 80
4-4 二元簡單液體的熱效應 89
第五章 結論 91
5-1 兩種時域下(19 ps與18 fs)的短脈衝雷射在簡單液體中引起的光柯爾效應 91
5-2 短脈衝在一元簡單液體中引起的熱透鏡效應 91
5-3 短脈衝在二元簡單液體中引起的熱透鏡效應 94
參考文獻 95

1Y. R. Shen, The Principles of Nonlinear Optics, (Wiley-Interscience, New York, 1984).
2.R. W. Boyd, Nonlinear Optics (Academic Press, 1992)
3.Y. C. Li, Y. T. Kuo, P. Y. Huang, C. I. Lee, and T. H. Wei, “Ultrashort-laser-pulse-induced thermal lensing in pure H2O and a NaCl-H2O solution,” RSC Adv. 6, 114727–114737 (2016).
4.Y. C. Li, Y. T. Kuo, P. Y. Huang, S. S. Yang, C. I. Lee, and T. H. Wei, “Thermal lensing effect of CS2 studied with femtosecond laser pulses,” Phys. Chem. Chem. Phys. 17, 24738–24747 (2015).
5.M. Falconieri, Thermo-optical effects in Z-scan measurement using high-repetition-rate lasers, J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999).
6.A. Gnoli, L. Razzari, and M. Righini, Z-scan measurements using high repetition rate lasers: how to manage thermal effects, Opt. Exp. 13, 7976–7981 (2005).
7.M. Falconieri, G. Salvetti, Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2, Appl. Phys. B 69, 133–136 (1999).
8.C. C. Wu, T. M. Liu, T. Y. Wei, L. Xin, Y. C. Li, L. S. Lee, C. K. Chang, J. L. Tang, S. S. Yang, and T. H. Wei, Kramers–Kronig relation between nonlinear absorption and refraction of C60 and C70, Opt. Express, 18, 22637 (2010).
9.R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, and E. W Van Stryland, Self-focusing and self-defocusing by cascaded second-order effects in KTP, Opt. LETTERS, 17,28 (1992).
10.T. H. Wei, D. J. Hagau, M.J. Sence, E. W. Van Strylaud, j. W. Perry, and D.R. Coulter, Direct Measurements of Nonlinear Absorption and Refraction in Solutions of Phthalocyanines, Appl. Phys. B 54, 46-51 (1992).
11.J. M. Harris and N. J. Dovichi, Thermal lens calorimetry, Analyt. Chem. 52, 695A (1980).
12.M. Sheik-Bahae, A. A. Said and E. W. Van Stryland, High-sensitivity, single-beam n2 measurements, Opt. Lett. 14, 955–957 (1989).
13 M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan and E. W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam, IEEE J. Quantum Electron. 26, 760–769 (1990).
14.J. P. MORELANDt AND S. A. COLLINS, JR., “Optical Heterodyne Detection of a Randomly Distorted Signal Beam,” J. Opt. Soc. Am. 59, 10-13 (1969).
15.H. Z. Cummins, Light beating spectroscopy, in Photon Correlation and Light Beating Spectroscopy, eds. H. Z. Cummins and E. R. Pike (Plenum Press, New York, 1974), p. 232.
16G. D. Goodno, G. Dadusc and R. J. D. Miller, Ultrafast heterodyne-detected transient grating spectroscopy using di®ractive optics, J. Opt. Soc. Am. B 15, 1791–1794 (1998).
17J. K. Wahlstrand, R. Merlin, X. Li, S. T. Cundiff and O. E. Martinez, Impulsive stimulated Raman scattering: Comparison between phase-sensitive and spectrally ltered techniques, Opt. Lett. 30 926–928 (2005).
18M. J. Weber, D. Milam and W. L. Smith, Nonlinear refractive index of glasses and crystals, Opt. Eng. 17, 463–469 (1978).
19M. J. Morgan, C. Y. She and R. L. Carman, Interferometric measurements of nonlinear refractive-index coefficient relative to CS2 in laser-system-related materials, IEEE J. Quantum Electron. 11, 259–263 (1975).
20.S. R. Friberg and P. W. Smith, Nonlinear optical glasses for ultra-fast optical switches, IEEE J. Quantum Electron. 23, 2089–2094 (1987).
21R. Adair, L. L. Chase and S. A. Payne, Nonlinear refractive index measurement of glasses using three-wave frequency mixing, J. Opt. Soc. Am. B 4, 875–881 (1987).
22.A. Owyoung, Ellipse rotations studies in laser host materials, IEEE J. Quantum Electron. 9, 1064–1069 (1973).
23.W. E. Williams, M. J. Soileau and E. W. Van Stryland, Optical switching and n2 measurements in CS2, Opt. Commun. 50, 256–260 (1984).
24.D. McMorrow, W. T. Losthaw, and G. A. K. Wallace, Femtosecond Optical Kerr Studies on the Origin of the Nonlinear Responses in Simple Liquids, IEEE J. Quantum Electron. 24, 443 (1988).
25.Q. Zhong and J. T. Fourkas, Optical Kerr Effect Spectroscopy of Simple Liquids, J. Phys. Chem. B, 112, 15529–15539 (2008).
26.Y. T. Kuo, P. Y. Huang, Y. C. Li, J. L. Tang and T. H. Wei, “Picosecond nonlinear refraction of C2H4Cl2 and C2H4Br2 at 532 nm studied with Z-scan technique”, J. Nonlinear Optic. Phys. Mat., 27, 1850015 (2018).
27.X. Q. Yan, Z. B. Liu, S. Shi, W. Y. Zhou, J. G. Tian, Analysis on the origin of the ultrafast optical nonlinearity of carbon disulfide around 800 nm, Opt. Express, 18, 26169 (2010).
28.李洛忻,溶劑對有機染料吸收性質的影響,碩士論文,中正大學物理系,台灣,嘉義民雄,2011。
29Agust´ın Salazar, On thermal diffusivity, Eur. J. Phys., 24, 351–358 (2003).
30C. Ludwig, Sitzber. Akad. Wiss. Vien Math.-Naturw, p. 539 (1856).
31C. Soret, Arch. Geneve. 3, 48 (1879).
32P. Y. Huang, Y. C. Li, Y. T. Kuo and T.-H. Wei, “Short-pulse-induced thermal lensing effects in C2H4Cl2 and C2H4Br2”, Journal of the Optical Society of America B, 37, 1738-1748 (2020).
33S. Palese, L. Schilling, R. J. D. Miller, P. R. Staver, and W. T. Lotshaw, J. Phys. Chem. 98, 6308 (1994).
34I. A. Haisler, R. R. B. Correia, T. Buckup, S. L. S. Cunha, and N. P. da Silveira, Time-resolved optical Kerr-effect investigation on CS2/polystyrene mixtures, J. Chem. Phys., 123, 054509 (2005).
35J. L. Tang, C. W. Chen, J. Y. Lin, Y. D. Lin, C. C. Hsu, T. H. Wei and T. H. Huang, Ultrafast motion of liquids C2H4Cl2and C2H4Br2 studied with a femtosecond laser, Opt. Comm., 266, 669 (2006).
36.S. Wiegand, Thermal Diffusion in Liquid Mixtures and Polymer Solutions, J. Phys.: Condens. Matter, 16, R357 (2004).
37.B. J. de Gans, R. Kita, B. Muller and S. Wiegand, Negative Thermo-Diffusion of Polymers and Colloids in Solvent Mixtures, J. Chem. Phys., 118, 8073 (2003).
38.B. J. de Gans, R. Kita, S. Wiegand and J. L.-Strathmann, Unsual Thermal Diffusion in Polymer Solutions, Phys. Rev. Lett., 91, 245501 (2003).
39.R. Kita, S. Wiegand and J. L.-Strathmann, Sign Change of the Soret Coefficent of Poly(ethylene oxide) in Water/Ethanol Mixtures Observed by Thermal Diffusion Forced Rayleigh Scattering, J. Chem. Phys., 121, 3874 (2004).
40F. A. Hopf and G. I. Stegeman, Applied classical electrodynamics, (Wiley-Interscience, New York, 1985).
41.Fowles G. Introduction to Modern Optics. 2nd ed. New York: Dover Publications; 1989.
42.Kerr J. A new relation between electricity and light: Dielectrified media birefringent. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50 (332): 337-348 (1875).
43.J. Reintjes, and R. L. Carman, Direct observation of the orientational Kerr Effect in the self-focusing of picosecond pulses, Phys. Rev. Lett. 28, 1697 (1972).
44.E. P. Ippen and C. V. Shank, Picosecond response of a high repetition rate CS2 optical Kerr gate, Appl. Phys. Lett. 26, 92 (1975).
45.D. V. O’Connor, and D. Phillip, Time-correlated Single photon counting (Academic, New York, 1984).
46.S. D. Fanchenko, and B. A. Frolov, Zh. Eksp. Teor. Fiz. Pis’ma Red., p.147 (1972).
47.F. J. Duarte , Springer Ser. Opt. Sci. Vol. 65 (Springer, Berlin, Heidelberg, 1991).
48.W. G. Hyzer, and W. G. Chace., Ed. Proceedings of the ninth international congress on high-speed photography (SMPTE, Denver, 1970), p.112.
49.R. W. Hellwarth, Theory of stimulated Raman scattering, Phys. Rev. 130, 1850 (1963).
50.R. W. Hellwarth, Analysis of stimulated Raman scattering of a giant laser pulse, Opt. Lett. 2, 847 (1963).
51.Y. Sato, R. Morita and M. Yamashita, Study on Ultrafast Dynamic Behaviors of Different Nonlinear Refractive Index Components in CS2, Jpn. J. Appl. Phys., 36, 2109 (1997).
52.E. Garmire, F. Pandarese, and C. H. Townes, Coherently driven molecular vibrations and light modulation, Phys. Rev. Lett. 11, 160 (1963).
53.N. Bloembergen, and Y. R. Shen, Coupling between vibrations and light waves in Raman laser media, Phys. Rev. Lett. 12, 504 (1964).
54.M. Denariez, and G. Bret, Investigation of Rayleigh wing and Brillouin-stimulated scattering in liquids, Phys. Rev., 171, 160 (1968).
55. A. Dogariu, T. Xia, D. J. Hagan, A. A. Said, E. W. Van Stryland, and N. Bloembergen, Purely refractive transient energy transfer by stimulated Rayleigh-wing scattering, J. Opt. Soc. Am. B, 14, 796 (1997).
56.J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, Long-Transient Effects in Lasers with Inserted Liquid Samples, J. Appl. Phys. 36, 3 (1965).
57.I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses, J. Opt. Soc. Am. B 12, 2053 (1995).
58.B. Bendow, L. H. Skolnik, and E. F. Cross, Investigations of Laser-Induced Thermal Lensing and Interference from Infrared Transmitting Materials, Appl. Optics 13, 729 (1974).
59.B. Bendow, and P. D. Gianino, Optics of Thermal Lensing in Solids, Appl. Optics 12, 710 (1973).
60.M. A. Arain, V. Quetschke, J. Gleason. L. F. Williams, M. Rakhmanov, J. Lee, R. J. Cruz, G. Mueller, D. B. Tanner, and D. H. Reitze, Adaptive beam shaping by controlled thermal lensing in optical elements, Appl. Optics 46, 2153 (2007).
61.S. M. Mian, S. B. McGee, and N. Melikechi, Experimental and theoretical investigation of thermal lensing effects in mode-locked femtosecond Z-scan experiments, Opt. Commun. 207, 339 (2002).
62.L. Rodriguez, and M Chiesa, Appl. Optics 50, 3240 (2011).
63.A. J. Twarowski and D. S. Kliger, Chem. Phys. 20, 259 (1977).
64.L. Rodriguez, L. Echevarria, and A. Fernandez, Opt. Commun. 277, 181 (2007).
65.A. O. Marcano, K. Williams, and N. Melikechi, Opt. Commun. 281, 2598 (2008).
66.S. Sedghani, V. Eckhouse, A. A. Friesem, and N. Davidson, Opt. Commun. 276, 139 (2007).
67.M. Mehendale, T. R. Nelson, F. G. Omenetto, and W. A. Schroeder, Opt. Commun. 136, 150 (1997).
68.K. X. Liu, C. J. Flood, D. R. Walker, and H. M. Van Driel, Opt. Lett. 17, 1361 (1992).
69.J. R. Lincoln and A.I. Ferguson, Opt. Lett. 19, 2119 (1994).
70.J.- F. Cormier, M. Piche , and F. Salin, Opt. Lett. 19, 1225 (1994).
71.S. R. J. Brueck, H. Kildal, and L. J. Belanger, Opt. Commun. 34, 199 (1980).
72T. H. Wei, T. H. Huang, and J. K. Hu, Electronic energy dissipation in chloro-aluminum phthalocyanine/methanol system following nonlinear interaction with a train of picosecond pulses, J. Chem. Phys., 116 (2002).
73S. S. Yang, T. H. Wei, T. H. Huang, and Y. C. Chang, Z-scan study of thermal nonlinearities in silicon naphthalocyanine-toluene solution with the excitations of the picosecond pulse train and nanosecond pulse, Opt. exp. 15, 1720 (2007).
74C. K. Chang, C. C. Leu, T. H. Wei, S. S. Yang, T. H. Huang, Y. S., Study of transient thermal lensing effect in C60-toluene solution, Chemical Physics Letters 484 225–230 (2010).
75P. N. Butcher, and D. Cotter, The Element of Nonlinear Optics, (Cambridge, 1990), Chap. 7.
76.Y. X. Yan, and K.A. Nelson, Impulsive stimulated light scattering. I. General theory, J. Chem. Phys., 87, 6240 (1987).
77.W. Lotshaw, D. McMorrow, C. Kalpouzos, and G. A. Kenney-Wallace, Femtosecond dynamics of the optical kerr effect in liquid nitrobenzene and chlorobenzene, Chem. Phys. Lett., 136, 323 (1987).
78.S. J. Rosenthal, N. F. Scherer, M. Cho, X. Xie, M. E. Schmidt, and G. R. Fleming, in Ultrafast Phenomena, edited by J. L. Martin, A. Migus, G. A. Mourou, and A. H. Zewail (Springer, Berlin, 1993), Vol. 8, p. 616.
79.T. H. Huang, C. C. Hsu, T. H. Wei, M. J. Chen, S. Chang, W. S. Tse, H. P. Chiang, and C. T. Kuo, The ultrafast dynamics of liquid CBrCl3 studied with optical Kerr effect and Raman scattering, Mol. Phys., 96, 389 (1999).
80.J. L. Tang, C. W. Chen, J. Y. Lin, Y. D. Lin, C. C. Hsu, T. H. Wei, and T. H. Huang, Ultrafast motion of liquids C2H4Cl2 and C2H4Br2 studied with a femtosecond laser, Optics Commun., 266, 669 (2006).
81.N. A. Smith and S. R. Meech, Optically-heterodyne-detected optical Kerr effect (OHD-OKE): applications in condensed phase dynamics, Int. Rev. Phys. Chem., 21, 75 (2002).
82.S. Ruhman, A. G. Joly, B. Köhler, L. R. Williams, and K. A. Nelson, Intramolecular and intermolecular dynamics in molecular liquids through femtosecond time-resolved impulsive stimulated scattering, Revue Phys. Appl., 22, 1717 (1987).
83.S. Ruhman, B. Köhler, A. G. Joly, and K. A. Nelson, Molecular dynamics in liquids from femtosecond time- resolved impulsive stimulated scattering, IEEE J. Quantum. Electron., 1988, 24, 470.
84.I. A. Haisler, R. R. B. Correia, T. Buckup, S. L. S. Cunha, and N. P. da Silveira, Time-resolved optical Kerr-effect investigation on CS2/polystyrene mixtures, J. Chem. Phys., 2005, 123, 054509.
85.D. McMorrow, N. Thantu, J. S. Melinger, S. K. Kim, and W. T. Lotshaw, Probing the microscopic molecular environment in liquids: Intermolecular dynamics of CS2 in alkane solvents, J. Phys. Chem., 100, 10389 (1996).
86.B. Köhler, and K. A. Nelson, Femtosecond molecular dynamics of liquid carbon disulphide at high pressure, J. Phys.: Condens. Matter, 2, SA109 (1990).
87.A. Tokmakoff, and G. R. Fleming, Two-dimensional Raman spectroscopy of the intermolecular modes of liquid CS2, J. Chem. Phys., 106, 2569 (1997).
88.T. H. Huang, C. C. Hsu, T. H. Wei, S. Chang, S. M. Yen, C. P. Tsai, R. T. Liu, C. T. Kuo, W. S. Tse, and C. Chia, The transient optical Kerr effect of simple liquids studied with an ultrashort laser with variable pulsewidth, IEEE J. Sel. Topics Quantum Electron., 2, 756 (1996).
89M. Schubert and B. Wilhelmi, Nonlinear Optics and Quantum electronics, (Wiley, 1986), p. 107.
90.L. D. Landau, and E. M. Lifshitz, Fluid Mechanics, (Butterworth-Heinemann: New York, NY, (1987).
91.Laurent Helden, Ralf Eichhorn and Clemens Bechinger, Direct measurement of thermophoretic forces, Soft Matter, 11, 2379 (2015).
92.Mark W. Zemansky, and Richard H. Dittman, Heat and Thermodynamics, Seven Edition (1997).
93.D. A. McQuarrie, Statistical Mechanics, New York: Harper and Row (1976).
94.D. I. Kovsh, D. J. Hagan, and E. W. Van Stryland, Numerical modeling of thermal refraction in liquids in the transient regime, Opt. Exp. 4, 315–327 (1999).
95.Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, and David P. Dewitt, Fundamentals of Heat and Mass Transfer (7rd ed.). John Wiley & Sons, (2011).
96.J. O. Wilkes and S. W. Churchill, A.1.Ch.E.Journal, Vol. 12, No. 1, 161 (1966).
97.W. Köhler and P. Rossmanith, Aspect of thermal diffusion forced Rayleigh scattering: Heterodyne detection, active phase tracking, and experiental constraints, J. Phys. Chem., 99, 5838 (1995).
98.W. Köhler, Thermodiffusion in polymer solutions as observed by forced Rayleigh scattering, J. Chem. Phys., 98, 660 (1993).
99.W. Köhler and P. Rossmanith, A New Holographic Grating Technique for the Measurement of Diffusion and Thermal Diffusion of Polymers in Solution, Int. J. Polymer Analysis & Characterization, 1, 49 (1995).
100.W. Köhler and R. Schafer, Polymer analysis by thermal-diffusion forced Rayleigh scattering, New Development in Polymer Analytics II, vol. 151, pp. 1-59 (2000).
101.Diels, J.-C. M., Fontaine, J. J., McMichael, I. C. & Simoni, F. Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy. Appl. Opt. 24, 1270-1282 (1985).
102.M. Born, and E. Wolf, Principles of Optics, 5th ed., (Pergamon, 1975), p. 383.

電子全文 電子全文(網際網路公開日期:20230901)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top