跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:2119:b261:d24c:ce10) 您好!臺灣時間:2025/01/21 07:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林冠廷
研究生(外文):Lin,Guan-Ting
論文名稱:參雜含銅、鋁及鋅之稀土合金粉對熱變形釹鐵硼磁石矯頑磁力提升之研究
論文名稱(外文):Coercivity enhancement of hot-deformed Nd-Fe-B magnets by doping Cu, Al and Zn containing rare-earth alloys.
指導教授:張晃暐張文成張文成引用關係
指導教授(外文):Chang,Huang-WeiChang,Wen-Cheng
口試委員:張晃暐張文成蔡佳霖
口試委員(外文):Chang,Huang-WeiChang,Wen-ChengTsai,Jai-Lin
口試日期:2020-07-21
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:183
中文關鍵詞:熱壓熱變形釹鐵硼磁石
外文關鍵詞:hot-deformed NdFeB magnets
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗主要以商用MQU-F磁粉並參雜2 wt.%不同稀土合金粉,以熱壓熱變形技術製備NdFeB磁石,探討其對磁性及顯微組織之影響。首先,探討R80Al20 (R=La、Ce、Tb、Dy)合金粉之參雜,對不同壓縮率之熱變形NdFeB磁石磁性及微結構之影響。參雜輕稀土合金R80Al20 (R=La、Ce)之磁石在壓縮率為68 %下,皆有最高矯頑磁力,分別為19.3 kOe與20.1 kOe。其中最佳磁性為參雜Ce80Al20,其磁性為Br=12.7 kG,iHc=20.0 kOe,(BH)max=39.6 MGOe。參雜重稀土合金R80Al20(R=Tb、Dy)之磁石在壓縮率為72 %下,磁石皆有最高矯頑磁力,分別為24.2 kOe與23.7 kOe。其中參雜Dy80Al20之磁石,其磁性為Br=13.6 kG,iHc=23.5 kOe,(BH)max=45.8 MGOe,iHc+(BH)max=69.3,每單位重量Dy所能提升iHc量為4.43 kOe/wt.% Dy。第三部分則用(Nd75Pr25)70Cu30合金粉比較參雜法、熱壓時擴散法與熱變形時擴散法對熱變形NdFeB磁石之影響。可發現以熱壓時擴散法後並經熱處理之MQ3磁石,有較好的磁性,Br=13.1 kG,iHc=19.5 kOe,(BH)max=42.5 MGOe。與本實驗室先前參雜(Pr71Nd9Ce20)70Cu30合金粉之磁石比較,本研究所參雜Ce80Al20合金粉之熱變形NdFeB磁石與其有相同矯頑磁力(20.1 kOe),以經濟考量上則具有成本競爭優勢。另,本實驗參雜Dy80Al20合金粉之熱變形NdFeB磁石iHc (23.7 kOe)較過去含Dy70Cu30(19.4 kOe)與Dy80Ga20(17.7 kOe)之熱變形磁石高,且效益高達4.54 kOe/wt.% Dy。
關鍵字:熱壓熱變形磁石

In this work, magnetic properties and microstructure of hot-deformed NdFeB magnets made by commercial NdFeB MQU-F powders doped with 2 wt.% low-melting rare-earth-containing alloys are studied. At first, the doping effect of R80Al20(R=La、Ce、Tb、Dy) powders is discussed. The enhanced coercivity of 19.3 kOe and 20.1 kOe are found, respectively, for the magnet doped with R80Al20 (R = La, Ce) at reduction ratio of 68 %. The magnets with Ce80Al20 exhibit higher magnetic properties of Br = 12.7 kG, iHc = 20.0 kOe, (BH)max = 39.6 MGOe. The further enhanced coercivity of 24.2 kOe and 23.7 kOe are attained for for the magnet doped with R80Al20 (R = Dy, Tb) at reduction ratio of 72 %, respectively. The magnets with doping Dy80Al20 exhibit the optimal magnetic properties of Br = 13.6 kG, iHc = 23.5 kOe, (BH)max = 45.8 MGOe, iHc + (BH)max = 69.3, the highest iHc enhancement per unit weight percentage of Dy usage could reach 4.43 kOe/wt.% Dy. Besides, (Nd75Pr25)70Cu30 alloy powder was used to compare the coercivity enhancement for the magnets prepared by 3 processes, including above doping, diffusion processes during hot-pressing and hot-deforming. MQ3 magnets after diffusion during hot-pressing exhibit better magnetic properties, Br = 13.1 kG, iHc = 19.5 kOe,(BH)max = 42.5 MGOe. Finally, high coercivity of 20.1 kOe found for the hot-deformed NdFeB magnets doped with Ce80Al20 alloy in this study is comparable to that doped with (Pr71Nd9Ce20)70Cu30 alloy, reported by previous literatures, but it has cost-effective in improving coercivity for economic consideration. Besides, the magnets doped with Dy80Al20 alloy powders exhibit superior coercivity (23.7 kOe) to those with Dy70Cu30 (19.4 kOe) and Dy80Ga20 (17.7 kOe), as previously reported, and most importantly, high efficiency of coercivity enhancemnet of 4.54 kOe/wt. % Dy is attained.
Key word : Hot-deformed magnets

目錄
摘要 I
Abstract IV
目錄 V
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1-1 前言 1
1-2 磁性材料分類與簡介 2
1-3 稀土永久磁石發展與簡介 6
1-3-1 R2Fe14B稀土永磁簡介 7
1-3-2 R2Fe14B化合物晶體結構之簡介 9
1-4 熱變形NdFeB磁石簡介 11
1-5 熱變形磁石之文獻回顧 16
1-6 研究動機與目的 33
第二章 理論基礎 35
2-1 磁性來源 35
2-2 物質的磁性分類 37
2-3 磁異向性(Magnetic anisotropy) 41
2-4 磁滯曲線 43
2-5 稀土永磁的矯頑機制 45
2-5-1 反向磁區孕核成長型 46
2-5-2 磁區壁栓固型機制 47
2-5-3 單磁區/微晶型機制 47
2-6 晶粒大小對本質矯頑磁力的影響 48
2-7 磁粒子大小對磁性的影響 50
2-8 熱變形NdFeB之織構成形機制[49] 52
2-8-1 變形機制 52
2-8-2 流變應力 54
2-8-3 翻轉機制 56
第三章 實驗方法 58
3-1 實驗流程 58
3-2 合金粉製備 61
3-2-1 合金配置 61
3-2-2 電弧熔煉 61
3-2-3 熔融旋焠 62
3-3 MQ3磁石製程參數 63
3-4真空熱壓機 66
3-5 高溫管狀爐熱處理 67
3-6 分析與量測 69
3-6-1 切割與研磨 69
3-6-2 B-H tracer 磁性量測 69
3-6-3 XRD-結構鑑定 70
3-6-4 SEM-微觀組織觀察 71
3-6-5 TEM顯微結構與EDS成分分析 72
第四章 實驗結果與討論 74
4-1 R80Al20(R=La、Ce、Tb、Dy)合金粉參雜效應對熱變形NdFeB磁石磁性及微結構之影響 75
4-1-1 Ce80Al20合金粉參雜效應對熱變形NdFeB磁石磁性及微觀結構之影響 78
4-1-2 La80Al20合金粉參雜效應對熱變形NdFeB磁石磁性及微觀結構之影響 89
4-1-3 Dy80Al20合金粉參雜效應對熱變形NdFeB磁石磁性及微觀結構之影響 98
4-1-4 Tb80Al20合金粉參雜效應對熱變形NdFeB磁石磁性及微觀結構之影響 108
4-1-5 TEM顯微結構分析與EDS成分分析 116
4-2 Ce80Cu20-xZnx(x=0、4、8、12)合金粉參雜效應對熱變形NdFeB磁石磁性及微觀結構之影響 120
4-2-1 合金成分與分析 122
4-2-2 磁特性分析 123
4-2-3 XRD結構分析 127
4-2-4 SEM顯微結構分析 130
4-2-5 TEM顯微結構分析與EDS成分分析 133
4-3 (Nd75Pr25)70Cu30參雜與晶界擴散效應對熱變形NdFeB磁石磁性及結構之影響 135
4-3-1 參雜法對熱變形NdFeB磁石磁性及結構之影響 137
4-3-2 熱壓時擴散法之熱變形NdFeB磁石磁性及結構之影響 141
4-3-3 熱變形時擴散法之熱變形NdFeB磁石磁性及結構之影響 144
4-3-4 綜合比較 147
4-4 綜合比較 150
4-4-1 參雜R80Al20(R= Ce、La、Dy、Tb)合金粉之MQ3磁石綜合比較 150
4-4-2 Ce80Al20與Ce80Cu20-xZnx(x=0、4、8、12)合金粉之MQ3磁石綜合比較 154
4-4-3 R70Cu30與Ce80Al20合金粉之MQ3磁石綜合比較 157
4-4-4 DyR(R=Al、Cu、Ga)合金粉之MQ3磁石綜合比較 158
4-4-5 綜合比較圖 160
第五章 結論 161
第六章 參考資料 163


[1]V. G. C. K. Michael Weickhmann, Hanau, "Nd-Fe-B Magnets, Properties and Applications."
[2]A. E. B. Clark, H. S., "Magnetostriction of Tb‐Fe and Tb‐Co Compounds," AIP Conference Proceedings 5, pp. 1498-1498, 1972.
[3]A. E. Clark, Belson, H. S. & Strakna, R. E., "Elastic properties of rare‐earth‐iron compounds," Journal of Applied Physics, vol. 44, pp. 2913-2914, 1973.
[4]A. E. Clark, Belson, H. S. & Tamagawa, N., "Magnetocrystalline Anisotropy in Cubic Rare Earth‐Fe2 Compounds," AIP Conference Proceedings 10, pp. 749-753, 1973.
[5]G. C. Hadjipanayis, R. C. Hazelton, and K. R. Lawless, "Cobalt‐free permanent magnet materials based on iron‐rare‐earth alloys (invited)," Journal of Applied Physics, vol. 55, pp. 2073-2077, 1984.
[6]J. J. Croat, "Preparation and coercive force of melt‐spun Pr‐Fe alloys," Applied Physics Letters, vol. 37, pp. 1096-1098, 1980.
[7]J. J. Croat, "Observation of large room‐temperature coercivity in melt‐spun Nd0.4Fe0.6," Applied Physics Letters, vol. 39, pp. 357-358, 1981.
[8]J. J. Croat, "Magnetic properties of melt‐spun Pr‐Fe alloys," Journal of Applied Physics, vol. 52, pp. 2509-2511, 1981.
[9]J. J. Croat, J. F. Herbst, R. W. Lee, and F. E. Pinkerton, "Pr‐Fe and Nd‐Fe‐based materials: A new class of high‐performance permanent magnets (invited)," Journal of Applied Physics, vol. 55, pp. 2078-2082, 1984.
[10]N. C. Koon and B. N. Das, "Magnetic properties of amorphous and crystallized (Fe0.82B0.18)0.9Tb0.05La0.05," Applied Physics Letters, vol. 39, pp. 840-842, 1981.
[11]N. C. Koon and B. N. Das, "Crystallization of FeB alloys with rare earths to produce hard magnetic materials (invited)," Journal of Applied Physics, vol. 55, pp. 2063-2066, 1984.
[12]J. J. Becker, "Rapidly quenched metals for permanent magnet materials (invited)," Journal of Applied Physics, vol. 55, pp. 2067-2072, 1984.
[13]M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, and Y. Matsuura, "New material for permanent magnets on a base of Nd and Fe (invited)," Journal of Applied Physics, vol. 55, pp. 2083-2087, 1984.
[14]S. T. Fidler J, Suess D, "Grain boundaries in high performance magnets , reason for poor or excellent properties " Book Institute of Materials, vol. 743, pp. 1147-1164, 2001.
[15]Y. Matsuura, "Recent development of Nd–Fe–B sintered magnets and their applications," Journal of Magnetism and Magnetic Materials, vol. 303, pp. 344-347, 2006.
[16] R. D. S. o. N. D. Y. K. a. S. S. M. Co., 日本應用磁氣學會誌, vol. 24, p. 13, 2000.
[17]W. Rodewald, B. Wall, M. Katter, and K. Uestuener, "Topology of Nd-Fe-B magnets with a high energy density," Magnetics, IEEE Transactions on, vol. 39, pp. 2932-2934, 2003.
[18]J. F. Herbst, J. J. Croat, and W. B. Yelon, "Structural and magnetic properties of Nd2Fe14B (invited)," Journal of Applied Physics, vol. 57, pp. 4086-4090, 1985.
[19]C. Abache and H. Oesterreicher, "Magnetic properties of compounds R2Fe14B," Journal of Applied Physics, vol. 57, pp. 4112-4114, 1985.
[20]S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa, and H. Yamauchi, "Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals," Journal of Applied Physics, vol. 59, pp. 873-879, 1986.
[21]K. Buschow, "New permanent magnet materials," Materials science reports, vol. 1, pp. 1-63, 1986.
[22]B. M. Ma, J. W. Herchenroeder, B. Smith, M. Suda, D. N. Brown, and Z. Chen, "Recent development in bonded NdFeB magnets," Journal of Magnetism and Magnetic Materials, vol. 239, pp. 418-423, 2002.
[23]R. D. Brown, J. R. Cost, G. P. Meisner, and E. G. Brewer, "Neutron irradiation study of Nd‐Fe‐B permanent magnets made from melt‐spun ribbons," Journal of Applied Physics, vol. 64, pp. 5305-5307, 1988.
[24]A. L. Altieri and P. H. Steen, "Substrate Heating in the Planar-Flow Melt Spinning of Metals," Journal of Thermal Science and Engineering Applications, vol. 6, pp. 041011-041011, 2014.
[25]F. R. a. S. Bader, "Rare earth replacement magnets," Journal of Physics: Condensed Matter, vol. 26, p. 060301, 2014.
[26]J. Ormerod and S. Constantinides, "Bonded permanent magnets: Current status and future opportunities (invited)," Journal of Applied Physics, vol. 81, pp. 4816-4820, 1997.
[27]N. K. S. D. N. Brown, He Feng and D.J. Miller, "High Density Nanocrystalline Rare Earth and Dysprosium-free Magnets," REPM'12 - Proceedings of the 22nd International Workshop on Rare-Earth Permanent Magnets and their Applications, vol. O2-0830, pp. 79-84, 2012.
[28]H. A. D. M. Leonowicz, Mater. Lett, vol. 19, p. 275, 1994.
[29]L. Li and C. D. Graham, "The origin of crystallographic texture produced during hot deformation in rapidly-quenched NdFeB permanent magnets," Magnetics, IEEE Transactions on, vol. 28, pp. 2130-2132, 1992.
[30]B.-M. M. D. Brown, and Z. Chen, "Developments in the processing and properties of NdFeb-type permanent magnets," Journal of Magnetism and Magnetic Materials, vol. 248, pp. 432-440, 2002.
[31]C. D. Fuerst and E. G. Brewer, "High‐remanence rapidly solidified Nd‐Fe‐B: Die‐upset magnets (invited)," Journal of Applied Physics, vol. 73, pp. 5751-5756, 1993.
[32]灰塚. 弘, "世界最高性能省Dy 熱間加工リング磁石," ㈱ダイドー電子営業部, p. 85.
[33]D. N. Brown, Y. K. Lim, R. A. Remoroza, and D. J. Miller, "Optimization of melt spun RE-Fe-B powder composition for fully dense, high energy magnets," Journal of Applied Physics, vol. 109, p. 07A742, 2011.
[34]Xin Tang et al., “Enhanced texture in die-upset nanocompositemagnets by Nd-Cu grain boundary diffusion” APPLIED PHYSICSLETTERS, vol. 102, p. 072409, 2013.
[35]Y.I. Lee et.al., “Coercivity enhancement in hot deformed Nd2Fe14B-typemagnets by doping low-melting RCu alloys (R = Nd, Dy, Nd + Dy)” Journal of Magnetism and Magnetic Materials , vol. 439, p. 1–5, 2017.
[36]H.W. Chang et al., “Significant coercivity enhancement of hot deformed NdFeB magnets by doping Ce-containing (PrNdCe)70Cu30 alloys powders” Scripta Materialia, vol. 146, p. 222–225, 2018.
[37]T. Akiya et al., “Low temperature diffusion process using rare earth-Cu eutectic alloysfor hot-deformed Nd-Fe-B bulk magnets” JOURNAL OF APPLIED PHYSICS, vol.115, p. 17A766, 2014.
[38]Lihua Liu et al., “Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process using Nd62Dy20Al18 alloy “ Scripta Materialia, vol.129, p. 44–47, 2017.
[39]Xu Tang et al., “Grain boundary diffusion behaviors in hot-deformed Nd2Fe14B magnets by PrNd-Cu low eutectic alloys“ Journal of Magnetism and Magnetic Materials, vol.445, p. 66–70, 2018.
[40]Qiaobo Liu et al., “Effect of Tb-Fe diffusion on magnetic properties and thermal stability of hot-deformed magnets“ Journal of Alloys and Compounds, vol.773, p. 1108-1113, 2019.
[41]Wenzong Yina et al., “Effect of pressless heat treatment on the magnetic performance and microstructure of hot-deformed Nd-Fe-B magnet“ Journal of Magnetism and Magnetic Materials, vol.482, p. 9–13, 2019
[42] Lihua Liu et al., “Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process “ Journal of Alloys and Compounds vol.666, p. 432-439, 2016
[43]Bin Chen et al., “Coercivity enhancement of hot-deformed (Ce,Nd,Pr)-Fe-B magnets by grain boundary diffusion of Pr-Cu alloy “ Journal of Magnetism and Magnetic Materials, vol.497, p. 166002, 2020
[44] B. D. Cullity, C. D. Graham, "Introduction to magnetic materials," John Wiley & Sons, 2009.
[45] "磁性技術手冊," 中華民國磁性技術協會, 2002.
[46] G. Hilscher, R. Grössinger, S. Heisz, H. Sassik, and G. Wiesinger, "Magnetic and anisotropy studies of Nd-Fe-B based permanent magnets," Journal of Magnetism and Magnetic Materials, vol. 54–57, Part 1, pp. 577-578, Feb. 1986.
[47] J. Becker, "Reversal mechanism in copper-modified cobalt-rare-earths," Magnetics, IEEE Transactions on, vol. 12, pp. 965-967, 1976.
[48] N. BARRETT, "工程材料原理," 科技圖書股份有限公司, 1991
[49] Shu.Liu"Anisotropic Nanocrystalline Nd-Fe-B-Based Magnets Produced by Spark Plasma Sintering Technique"IEEE Transactions on Magnetics, vol. 51, Issue: 11, Nov. 2015.
[50] A. K. M. J. E. B. a. J. E. Dorn, Trans. ASM, vol. 62, p. 155, 1969.
[51] D. H. W. Grünberger, A. Kirchner, K.-H. Müller and L. and Schultz, J. Alloys Comp, vol. 57, p. 293, 1997.
[52] F. Wakai, Acta Metall. Mater, vol. 42, p. 1163, 1994.
[53] P. Y. Luo and N. Zhang, 10th REPM, p. 275, 1989.
[54] L. L. a. C. D. G. Jr., IEEE Trans. Magn, vol. 28, p. 2130, 1992.
[55] "Introducing Anisotropic Powder," Magnequench, p. 4, 2009.
[56] W. Wiley-VCH Verlag GmbH & Co. KGaA, "100th Anniversary of the Discovery of X-ray Diffraction," ChemViews Magazine, 2012.
[57] 李文麐, "以濺鍍法製備BiFeO膜及其結構之研究," 私立東海大學碩士論文, 中華民國九十九年七月.
[58] 儀科中心簡訊 110 期:中華民國 101 年 4 月 30 日出版.
[59] Calphad: Comput. Coupling Phase Diagrams Thermochem., 16, ,87-92, 1992.
[60] 李衍毅,“熱變形NdFeB磁石製程技術及磁性優化之研究," 國立中正大學博士論文, 中華民國一零八年六月.
[61] Y. I. Lee et al., “Comparison on the Coercivity Enhancement of Hot-Deformed Nd2Fe14B-Type Magnets by Doping R70Cu30 (R = Nd, Dy, and Tb) Alloy Powders” IEEE TRANSACTIONS ON MAGNETICS, vol. 53, NO. 11, 2017.
[62] H.W. Chang et al., “Significant coercivity enhancement of hot deformed NdFeB magnets by doping Ce-containing (PrNdCe)70Cu30 alloys powders” Scripta Materialia, vol. 146, p. 222–225, 2018.
[63] Y.I. Lee et.al., “Coercivity enhancement of hot-deformed NdFeB magnets by doping R80Ga20 (R=Pr, Dy, Tb) alloys” Journal of Magnetism and Magnetic Materials, vol. 478, p. 43–47, 2019.

電子全文 電子全文(網際網路公開日期:20250812)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top