(3.238.186.43) 您好!臺灣時間:2021/02/25 02:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡旻超
研究生(外文):TSAI, MING-CHAO
論文名稱:一個基於微型化高靈敏度ISFET系統整合晶片
論文名稱(外文):A miniaturized high sensitivity ISFET and integrated multi-sensor readout system
指導教授:蔡宗亨蔡宗亨引用關係
指導教授(外文):TSAI,TSUNG-HENG
口試委員:江政達鄭光偉廖育德
口試委員(外文):CHIANG, CHENG-TACHENG, KUANG-WEILIAO, YU-TE
口試日期:2020-07-30
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:90
中文關鍵詞:離子場效電晶體電容式感測器感測器讀取電路逐漸趨近式類比/電容數位轉換器
外文關鍵詞:Ion-sensitive field-effect transistorcapacitive sensorsensor readoutSAR ADC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文實現一個高度整合的多感測器系統,此多感測系統包含兩個傳感器,一個放大器以及可重組式逐漸趨近式電容暨類比數位轉換器所組成,在生醫需求上,本作品嘗試結合微型化與高靈敏度的ISFET整合於本此晶片之中,達成多感測系統整合。在過去檢測pH值上常會採用未經修飾的ISFET技術,而此技術相容於CMOS 製程。此類整合晶片由於其本質的特性會受到分壓效應的影響,會造成後端讀取電路的困難,例如訊號衰減與偏壓點的偏離。因此本作品希望透過後製程方法,在有限的面積下解決此電容分壓效應的問題,以減輕後端電路設計的複雜度。
本作品提出的多感測器整合電路中包含指叉擴展型MEMS壓力感測器、pH 感測器以及可重組式逐漸趨近式電容暨類比數位轉換器。透過本作品中可重組式架構可提升電容數位轉換器下的轉換效率並降低整體功率消耗。在ISFET改善靈敏度後可與CMOS MEMS壓力傳感器整合使其更適合運用於無線腦創傷生醫讀取系統應用。採用UMC 0.18μm 1P6M製程,面積為2.03mm2,功率消耗約為50μW。
關鍵字:離子場效電晶體、電容式感測器、感測器讀取電路、逐漸趨近式類比/電容數位轉換器

A highly integrated multi-sensor system is implemented in this work. This multi-sensor system consists of two sensors, an amplifier, and a reconfigurable successive-approximation-register capacitance/analog-to-digital converter. In the past, the unmodified ISFET technology is often used to detect the pH value, and this technology is compatible with the CMOS process. However, some drawbacks such as the voltage division effect, the deviation of the signal attenuation and the bias point deviation usually compromise the sensitivity and accuracy. In this work, a post-processing method is proposed to solve the voltage division effect in a limited area and reduce the complexity of the back-end circuit.
For wireless brain trauma monitoring applications, this work attempt to integrate a miniaturized and high-sensitivity ISFET with a CMOS-MEMS capacitive transducer to achieve a multi-sensor system. The readout circuits are also integrated on the same chip. Through the reconfigurable architecture proposed in this work, the conversion efficiency of the capacitance-to-digital converter can be improved and the overall power consumption can be reduced. The prototype chip is fabricated using the UMC 0.18 μm 1P6M CMOS technology with an area of 2.03 mm2. The power consumption is about 50 μW.
Keywords: MEMS, Ion-sensitive field-effect transistor, capacitive sensor, sensor readout, SAR ADC/CDC

致謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 IX
第1章 緒論 1
1.1. 研究背景與動機 1
1.2. 章節架構 5
第二章 雙感測器讀取原理與設計 6
2.1. PH值感測原理與實現 6
2.1.1 離子感測器原理 6
2.1.2 氫離子吸附模型: 10
2.1.3 架構靈敏度的影響(分壓效應): 13
2.1.4 材質靈敏度的影響 14
2.1.5 文獻回顧 15
2.1.6 實現方法與架構的調整&後製程 21
2.2. 電容式壓力感測器 25
第三章 雙感測器讀取電路設計概念 30
3.1. 雙感測器讀取系統種類: 30
3.2. 離子式場效電晶體(ISFET)感測電路種類: 33
3.2.1 ISFET電壓式感測電路種類 34
3.3. 可重組逐漸趨近式類比數位轉換器概念 36
3.4. 可重組逐漸趨近式類比數位轉換器系統分析 40
3.4.1 取樣電路(Sample and Hold) 40
3.4.2 導通電阻/取樣時間 41
3.4.3 電容陣列設計考量 42
3.4.4 時脈控制 43
第四章 系統模擬與電路實現 44
4.1. 簡介 44
4.1.1 pH前端感測電路 45
4.1.2 運算放大器設計 47
4.1.3 可重組式逐漸趨近式電容數位轉換器架構與操作概念 50
4.1.4 SAR ADC/CDC切換流程 52
4.1.5 SAR ADC/CDC控制邏輯 53
4.1.6 時脈訊號產生電路 54
4.1.7 單位電容設計 55
4.1.8 動態比較器設計 58
4.1.9 動態比較器模擬結果 59
4.2. 系統模擬結果 60
4.2.1 靜態參數 60
4.2.2 動態參數 61
4.2.3 功率消耗 62
第五章 晶片佈局與量測 63
5.1. 晶片佈局考量 63
5.2. 量測環境規劃 63
5.3. ISFET的防水封裝 66
5.4. 蝕刻後製程 67
5.5. 結論與未來展望 73
參考文獻 74

[1].Narayan, Raj K., et al., “Clinical trials in head injury,” Journal of neurotrauma, vol. 19, no. 5, pp. 503-557, 2002
[2].http://www.neurosurg.cam.ac.uk/files/2017/09/5-CBF-monitoring.pdf
[3].Zhong, Jun, et al., “Advances in ICP monitoring techniques,” Neurological research, vol. 25, no. 4, pp. 339-350, 2003
[4].Percival, Steven L., et al. "The effects of pH on wound healing, biofilms, and antimicrobial efficacy." Wound Repair and Regeneration 22.2 (2014): 174-186
[5].Orlowski, Piotr, et al. "Modelling of pH dynamics in brain cells after stroke." Interface focus 1.3 (2011): 408-416.
[6].Gupta, Arun K., et al. "Extracellular brain pH and outcome following severe traumatic brain injury." Journal of neurotrauma 21.6 (2004): 678-684
[7].F. Wang, X. Zhang, M. Shokoueinejad, B. J. Iskandar, J. E. Medow and J. G. Webster, "A Novel Intracranial Pressure Readout Circuit for Passive Wireless LC Sensor," in IEEE Transactions on Biomedical Circuits and Systems, vol. 11, no. 5, pp. 1123-1132, Oct. 2017
[8].U. Kawoos, G. K. Mugalodi, “A Permanently Implantable Intracranial Pressure Monitor,” IEEE Annual Northeast Bioengineering Conference, pp. 17-19, 2005
[9].https://www.istockphoto.com/fr/vectoriel/vue-lat%C3%A9rale-de-cerveau-italien-gm153476886-17857765
[10].Bausells, Joan, et al. "Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology." Sensors and Actuators B: Chemical 57.1-3 (1999): 56-62
[11].Rassaei, Liza, et al. "Lactate biosensors: current status and outlook." Analytical and bioanalytical chemistry 406.1 (2014): 123-137
[12].Al-Ahdal, Abdulrahman, and Christopher Toumazou. "ISFET-based chemical switch." IEEE Sensors Journal 12.5 (2011): 1140-1146
[13].Yates, David E., Samuel Levine, and Thomas W. Healy. "Site-binding model of the electrical double layer at the oxide/water interface." Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 70 (1974): 1807-1818
[14].M. M. Ghanbari, J. M. Tsai, A. Nirmalathas, R. Muller and S. Gambini, "An Energy-Efficient Miniaturized Intracranial Pressure Monitoring System," in IEEE Journal of Solid-State Circuits, vol. 52, no. 3, pp. 720-734, March 2017
[15].桑崇陞, and 許鉦宗. "臨界電壓可調式延伸閘極電晶體之生醫感測研究. " Diss. 2012
[16].蘇仁福. "以溶膠-凝膠法製備鈦酸鉛鑭薄膜作為氫離子場效電晶體感測器之研究". Diss. 撰者, 2002
[17].Martinoia, Sergio, and Giuseppe Massobrio. "A behavioral macromodel of the ISFET in SPICE." Sensors and Actuators B: Chemical 62.3 (2000): 182-189
[18].Li, Dong-Che, Po-Hung Yang, and Michael S-C. Lu. "CMOS open-gate ion-sensitive field-effect transistors for ultrasensitive dopamine detection." IEEE transactions on electron devices 57.10 (2010): 2761-2767
[19].Yates, David E., Samuel Levine, and Thomas W. Healy. "Site-binding model of the electrical double layer at the oxide/water interface." Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 70 (1974): 1807-1818
[20].Van Hal, R. E. G., J. C. T. Eijkel, and P. Bergveld. "A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters." Sensors and Actuators B: Chemical 24.1-3 (1995): 201-205
[21].Kaisti, Matti, Qi Zhang, and Kalle Levon. "Compact model and design considerations of an ion-sensitive floating gate FET." Sensors and Actuators B: Chemical 241 (2017): 321-326
[22].Huang, Xiwei, et al. "A dual-mode large-arrayed CMOS ISFET sensor for accurate and high-throughput pH sensing in biomedical diagnosis." IEEE Transactions on Biomedical Engineering 62.9 (2015): 2224-2233
[23].Kaisti, Matti. "Detection principles of biological and chemical FET sensors." Biosensors and Bioelectronics 98 (2017): 437-448
[24].Sohbati, Mohammadreza, and Christofer Toumazou. "Dimension and shape effects on the ISFET performance." IEEE Sensors Journal 15.3 (2014): 1670-1679
[25].Miscourides, Nicholas, and Pantelis Georgiou. "ISFET arrays in CMOS: A head-to-head comparison between voltage and current mode." IEEE Sensors Journal 19.4 (2018): 1224-1238
[26].Moser, Nicolas, et al. "ISFETs in CMOS and emergent trends in instrumentation: A review." IEEE Sensors Journal 16.17 (2016): 6496-6514
[27].Moser, Nicolas, et al. "A scalable ISFET sensing and memory array with sensor auto-calibration for on-chip real-time DNA detection." IEEE transactions on biomedical circuits and systems 12.2 (2018): 390-401
[28].Yan, Liu, et al. "An auto-offset-removal circuit for chemical sensing based on the PG-ISFET." 2009 IEEE International Symposium on Circuits and Systems. IEEE, 2009
[29].Cacho-Soblechero, Miguel, et al. "Programmable ion-sensing using oscillator-based isfet architectures." IEEE Sensors Journal 19.19 (2019): 8563-8575.
[30].Georgiou, Pantelis, and Chris Toumazou. "CMOS-based programmable gate ISFET." Electronics Letters 44.22 (2008): 1289-1291.
[31].Al-Ahdal, Abdulrahman, Pantelis Georgiou, and Christofer Toumazou. "ISFET's threshold voltage control using bidirectional electron tunnelling." 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2012.
[32].Hu, Yuanqi, and Pantelis Georgiou. "Trapped charge cancellation for CMOS ISFET sensors via direct tunnelling." 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2018.
[33].Yang, Jyun-Jie, Gordon Tsai, and Tsung-Heng Tsai. "A 53.36 pF/MPA CMOS-MEMS Pressure Sensor with Compact Size and Integrated Digital Readout." 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2020.
[34].吳德祥, "使用循環式游標尺延遲線之擴展型CMOS MEMS壓力感測系統, "碩士論文,國立中正大學, 2018.
[35].Hu, Yuanqi, and Pantelis Georgiou. "A robust ISFET pH-measuring front-end for chemical reaction monitoring." IEEE Transactions on Biomedical Circuits and Systems 8.2 (2014): 177-185.
[36].Jiang, Yu, et al. "A high-sensitivity potentiometric 65-nm CMOS ISFET sensor for rapid E. coli screening." IEEE transactions on biomedical circuits and systems 12.2 (2018): 402-415.
[37].Wang, Kaiming, et al. "A TDC based ISFET readout for large-scale chemical sensing systems." 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2012.
[38].Lin, Yu-Chuan, and Hen-Wai Tsao. "A high-speed high-accuracy voltage-to-time-difference converter for time domain analog-to-digital converters." 2015 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2015.
[39].Teh, Jian Sen, et al. "A 28.4 pj per conversion ISFET-based pH sensing design for low-energy applications." 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). IEEE, 2015.
[40].Huang, Yu-Jie, et al. "A self-powered CMOS reconfigurable multi-sensor SoC for biomedical applications." IEEE Journal of Solid-State Circuits 49.4 (2014): 851-866.
[41].H. Omran, A. Alhoshany, H. Alahmadi and K. N. Salama, "A 33fJ/Step SAR Capacitance-to-Digital Converter Using a Chain of Inverter-Based Amplifiers," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 2, pp. 310-321, Feb. 2017.
[42].Alhoshany, Abdulaziz, and Khaled N. Salama. "A precision, energy-efficient, oversampling, noise-shaping differential SAR capacitance-to-digital converter." IEEE Transactions on Instrumentation and Measurement 68.2 (2018): 392-401.
[43].S. Oh et al., "A Dual-Slope Capacitance-to-Digital Converter Integrated in an Implantable Pressure-Sensing System," in IEEE Journal of Solid-State Circuits, vol. 50, no. 7, pp. 1581-1591, July 2015.
[44].吳典耕, "可抵抗製程變異之高靈敏度電容式觸覺感測器, "碩士論文,國立中正大學, 2013
[45].Palan, B., et al. "New ISFET sensor interface circuit for biomedical applications." Sensors and Actuators B: Chemical 57.1-3 (1999): 63-68.
[46].Shepherd, Leila, Pantelis Georgiou, and Chris Toumazou. "A novel voltage-clamped CMOS ISFET sensor interface." 2007 IEEE International Symposium on Circuits and Systems. IEEE, 2007.
[47].Aslanzadeh, Shaghayegh, et al. "A Differential Low-Power Voltage-Clamped ISFET Topology for Biomedical Applications." 2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS). IEEE, 2018.

[48].Razavi, Behzad. “Design of analog CMOS integrated circuits.” Tata McGraw-Hill Education, 2002.
[49].Harpe, Pieter JA, et al. "A 26$\mu $ W 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios." IEEE Journal of Solid-State Circuits 46.7 (2011): 1585-1595.
[50].M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink, and B. Nauta, “A 10-bit charge-redistribution ADC consuming 1.9 μW at 1MS/s,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1007–1015, May 2010.
[51].Hussaini, Said, et al. "A 15-nW per Sensor Interference-Immune Readout IC for Capacitive Touch Sensors." IEEE Journal of Solid-State Circuits 54.7 (2019): 1874-1882.
[52].Chan, Wai Pan, et al. "A monolithically integrated pressure/oxygen/temperature sensing SoC for multimodality intracranial neuromonitoring." IEEE Journal of Solid-State Circuits 49.11 (2014): 2449-2461.
[53].Huang, Yu-Jie, et al. "A self-powered CMOS reconfigurable multi-sensor SoC for biomedical applications." IEEE Journal of Solid-State Circuits 49.4 (2014): 851-866.


電子全文 電子全文(網際網路公開日期:20250819)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔