跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 08:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:董秉庭
論文名稱:駕駛疲勞及分心偵測技術開發及車載系 統之實現
論文名稱(外文):The Development of a Driving Monitor System for Fatigue and Distraction Detection
指導教授:林惠勇
指導教授(外文):Lin, HUEI-YUNG
口試委員:王傑智林文杰陳冠文陳彥霖
口試委員(外文):WANG, CHIEH-CHIHLIN, WEN-CHIEHCHEN, KUAN-WENCHEN, YEN-LIN
口試日期:2020-07-30
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:56
中文關鍵詞:疲勞偵測分心偵測卷積神經網路駕駛監控系統
外文關鍵詞:Fatigue detectionDistraction detectionConvolutional neural net- workDriving monitoring system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract ii
誌謝 iii
中英文字對照 ix
1 緒論 1
1.1 研究動機 1
1.2 論文架構 2
相關論文回顧 3
方法架構及流程 8
3.1 疲勞駕駛 8
3.1.1 S3FD 9
3.1.2 人臉特徵點偵測 11
3.1.3 頭部姿態 16
3.1.4 檢測睡意參數 18
3.1.5 評估方式 12
3.2 分心駕駛 18
3.2.1 分心駕駛CNN網路架構 20
3.3 資料集 20
3.3.1 疲勞駕駛資料集 20
3.3.2 分心駕駛數據集 21
3.4 硬體裝置與開發平台 23
實驗結果 24
4.1 疲勞駕駛 24
4.2 分心駕駛 29
4.3 硬體實現 35
結論與未來展望
5.1 結論 38
5.2 未來展望 39
參考文獻 40

[1] “Car accident,” [online] Available:https:// roadsafety.tw/ Dashboard/ Custom?type= 近五年逐月交通事故趨勢.
[2] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li, “S3̂fd: Single shot scaleinvariant face detector,” in 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 192–201.
[3] A. Bulat and G. Tzimiropoulos, “How far are we from solving the 2d & 3d face alignment problem? (and a dataset of 230,000 3d facial landmarks),” 03 2017.
4] “68 facial landmarks,” [Online]. Available:https://ibug.doc.ic.ac.uk/resources/300-W/.
[5] F. Rynkiewicz and P. Napieralski, “Blinking extraction in eye gaze system for stereoscopy movies,” 09 2017.
[6] S. Relangi, M. Nilesh, K. Kumar, and A. Naveen, Full Length Driver Drowsiness Detection Model—Utilising Driver Specific Judging Parameters, 02 2020, pp.791–798.
[7] “Head pose 2d-3d,” [online] Available:https://codertw.com/程式語言/55674/.
[8] “Blink detector,” [online] Available:https:// github.com/ kairess/eye_blink_detector.
[9] “Distract cnn,” [online] Available:https:// github.com/ nkkumawat/ Driver-Distraction-Detection/branches.
10] S. Junaedi and H. Akbar, “Driver drowsiness detection based on face feature andperclos,” Journal
[11] “10 classes,” [online] Available:https:// medium.com/ swlh/ distracted-driverdetection- using-sequential-class-58fed8e9c702.
[12] J. Krajewski, D. Sommer, U. Trutschel, D. Edwards, and M. Golz, “Steering wheel behavior based estimation of fatigue,” 01 2009.
[13] J. Berglund, “In-vehicle prediction of truck driver sleepiness : Steering related variables,” 2007.
[14] Z. Li, S. Li, B. Cheng, and J. Shi, “Online detection of driver fatigue using steering wheel angles for real driving conditions,” Sensors, vol. 17, p. 495, 03 2017.
[15] T. Wakita, K. Ozawa, C. Miyajima, K. Igarashi, K. Itou, K. Takeda, and F. Itakura, “Driver identification using driving behavior signals,” in Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005., 2005, pp. 396–401.
[16] Z. Mardi, S. N. M. Ashtiani, and M. Mikaili, “Eeg-based drowsiness detection for safe driving using chaotic features and statistical tests,” Journal of Medical Signals and Sensors, vol. 1, pp. 130 – 137, 2011.
[17] G. Yang, Y. Lin, and P. Bhattacharya, “A driver fatigue recognition model based on information fusion and dynamic bayesian network,” Information Sciences, vol. 180, pp. 1942–1954, 05 2010.
[18] R. Fu, H. Wang, and W. Zhao, “Dynamic driver fatigue detection using hidden markov model in real driving condition,” Expert Systems with Applications, vol. 63, 06 2016.
[19] N. Pal, C.-Y. Chuang, L.-W. Ko, C.-F. Chao, T.-P. Jung, S.-F. Liang, and C.-
T. Lin, “Eeg-based subject- and session-independent drowsiness detection: An unsupervised approach,” EURASIP Journal on Advances in Signal Processing, vol. 2008, p. 192, 01 2008.
[20] K. Grauman, M. Betke, J. Gips, and G. R. Bradski, “Communication via eye
blinks - detection and duration analysis in real time,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, 2001, pp. I–I.
[21] Y. Sun and X. Yu, “An innovative nonintrusive driver assistance system for vital signal monitoring,” IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 6, pp. 1932–1939, 2014.
[22] M. Babaeian and M. Mozumdar, “Driver drowsiness detection algorithms using electrocardiogram data analysis,” in 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), 2019, pp. 0001–0006.
[23] V. P. Nambiar, M. Khalil-Hani, C. W. Sia, and M. N. Marsono, “Evolvable blockbased neural networks for classification of driver drowsiness based on heart rate variability,” in 2012 IEEE International Conference on Circuits and Systems (ICCAS), 2012, pp. 156–161.
[24] Y. Chang, Y. Feng, and O. T. . Chen, “Real-time physiological and facial monitoring for safe driving,” in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, pp. 4849–4852.
[25] W. Ou, M. Shih, C. Chang, X. Yu, and C. Fan, “Intelligent video-based drowsy driver detection system under various illuminations and embedded software implementation,” in 2015 IEEE International Conference on Consumer Electronics- Taiwan, 2015, pp. 192–193.
[26] M.-H. Sigari, M. Fathy, and M. Soryani, “A driver face monitoring system for fatigue and distraction detection,” International Journal of Vehicular Technology,vol. 2013, 01 2013.
[27] N. Alioua, A. Amine, and M. Rziza, “Driver's fatigue detection based on yawning extraction,” International Journal of Vehicular Technology, 08 2014.
[28] In-Ho Choi and Yong-Guk Kim, “Head pose and gaze direction tracking for detecting a drowsy driver,” in 2014 International Conference on Big Data and Smart Computing (BIGCOMP), 2014, pp. 241–244.
[29] R. Oyini Mbouna, S. G. Kong, and M. Chun, “Visual analysis of eye state and head pose for driver alertness monitoring,” IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 3, pp. 1462–1469, 2013.
[30] X. Zhen, Z. Wang, M. Yu, and S. Li, “Supervised descriptor learning for multioutput regression,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1211–1218.
[31] S. Tulyakov and N. Sebe, “Regressing a 3d face shape from a single image,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 3748–3755.
[32] L. M. Bergasa, J. Nuevo, M. A. Sotelo, R. Barea, and M. E. Lopez, “Realtime system for monitoring driver vigilance,” IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 1, pp. 63–77, 2006.
[33] J. He, “Fatigue detection using smartphones,” Journal of Ergonomics, vol. 03, 01 2013.
[34] A. Dasgupta, D. Rahman, and A. Routray, “A smartphone-based drowsiness detection and warning system for automotive drivers,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 11, pp. 4045–4054, 2019.
[35] Y. Qiao, Kai Zeng, Lina Xu, and Xiaoyu Yin, “A smartphone-based driver fatigue detection using fusion of multiple real-time facial features,” in 2016 13th IEEE Annual Consumer Communications Networking Conference (CCNC), 2016, pp. 230–235.
[36] E. Galarza, F. Egas, F. Silva, P. Velasco, and E. Galarza, Real Time Driver Drowsiness Detection Based on Driver's Face Image Behavior Using a System of Human Computer Interaction Implemented in a Smartphone, 01 2018, pp. 563–572.
[37] X. Ma, L. Chau, and K. Yap, “Depth video-based two-stream convolutional neural networks for driver fatigue detection,” in 2017 International Conference on Orange Technologies (ICOT), 2017, pp. 155–158.
[38] T. Danisman, I. M. Bilasco, C. Djeraba, and N. Ihaddadene, “Drowsy driver detection system using eye blink patterns,” in 2010 International Conference on Machine and Web Intelligence, 2010, pp. 230–233.
[39] B. K. Savaş and Y. Becerikli, “Real time driver fatigue detection based on svm algorithm,” in 2018 6th International Conference on Control Engineering Information Technology (CEIT), 2018, pp. 1–4.
[40] S. Abtahi, B. Hariri, and S. Shirmohammadi, “Driver drowsiness monitoring based on yawning detection,” in 2011 IEEE International Instrumentation and Measurement Technology Conference, 2011, pp. 1–4.
[41] Y. Abouelnaga, H. Eraqi, and M. Moustafa, “Real-time distracted driver posture classification,” 12 2018.
[42] B. Baheti, S. Gajre, and S. Talbar, “Detection of distracted driver using convolutional neural network,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2018, pp. 1145–11 456.
[43] N. Kose, O. Kopuklu, A. Unnervik, and G. Rigoll, “Real-time driver state monitoring using a cnn based spatio-temporal approach*,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 2019, pp. 3236–3242.
[44] A. Jain, H. Koppula, B. Raghavan, S. Soh, and A. Saxena, “Car that knows before you do: Anticipating maneuvers via learning temporal driving models,” 12 2015, pp. 3182–3190.
[45] “Dlib cnn face detector,” [Online]. Available:http:// dlib.net/cnn_face_detector.py.html.
[46] Y. Xu, W. Yan, G. Yang, J. Luo, T. Li, and J. He, “Centerface: Joint face detection and alignment using face as point,” Scientific Programming, vol. 2020, pp. 1–8, 07 2020.
[47] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose estimation,” in ECCV, 2016.
[48] S. Mohanty, S. V. Hegde, S. Prasad, and J. Manikandan, “Design of real-time drowsiness detection system using dlib,” in 2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), 2019, pp. 1–4.
[49] W. Zhang and J. Su, “Driver yawning detection based on long short term memory networks,” in 2017 IEEE Symposium Series on Computational Intelligence (SSCI), 2017, pp. 1–5.
[50] B. Akrout and W. Mahdi, “Yawning detection by the analysis of variational descriptor for monitoring driver drowsiness,” in 2016 International Image Processing, Applications and Systems (IPAS), 2016, pp. 1–5.
[51] M. Omidyeganeh, S. Shirmohammadi, S. Abtahi, A. Khurshid, M. Farhan, J. Scharcanski, B. Hariri, D. Laroche, and L. Martel, “Yawning detection using embedded smart cameras,” IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 3, pp. 570–582, 2016.
[52] C. Bouvier, A. Benoit, A. Caplier, and P.-Y. Coulon, “Open or closed mouth state detection: Static supervised classification based on log-polar signature,” vol. 5259, 10 2008.
[53] C.-C. Chiang, W.-K. Tai, M.-T. Yang, Y.-T. Huang, and C.-J. Huang, “A novel method for detecting lips, eyes and faces in real time,” Real-Time Imaging, vol. 9, pp. 277–287, 08 2003.
[54] P. Chawan and P. Pawar, “Distracted driver detection and classification,” 04 2018.
[55] M. S. Majdi, S. Ram, J. T. Gill, and J. J. Rodríguez, “Drive-net: Convolutional network for driver distraction detection,” in 2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), 2018, pp. 1–4.
[56] N. Moslemi, R. Azmi, and M. Soryani, “Driver distraction recognition using 3d convolutional neural networks,” in 2019 4th International Conference on Pattern Recognition and Image Analysis (IPRIA), 2019, pp. 145–151.
[57] B. Zhang, “Apply and compare different classical image classification method : Detect distracted driver,” 2016.
電子全文 電子全文(網際網路公開日期:20250818)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top