跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林郁翔
研究生(外文):LIN,YU-XIANG
論文名稱:應用新型多項式模糊模型之基於分段李亞普諾夫函數網路控制系統
論文名稱(外文):Piecewise Lyapunov Functions Based Networked Control Systems Using Novel Polynomial Fuzzy Model
指導教授:余國瑞余國瑞引用關係
指導教授(外文):Yu,GWO-RUEY
口試委員:余國瑞蔡清池李祖聖黃國聖林惠勇
口試委員(外文):Yu,GWO-RUEYTSAI,CHING-CHIHLI,TZUU-HSENG S.HWANG,KAO-SHINGLIN,HUEI-YUNG
口試日期:2020-07-23
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:210
中文關鍵詞:新型多項式模糊分段李亞普諾夫函數網路控制系統機器人
外文關鍵詞:novel piecewise polynomial fuzzypiecewise polynomial Lyapunov functionsnetworked control systemsrobots
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文研究新型分段多項式模糊網路控制系統(Networked Control Systems,NCSs)。以最小型分段多項式Lyapunov函數(Piecewise Polynomial Lyapunov Function ,PPLF)設計分段多項式Lyapunov-Krasovskii泛函數。基於新型分段多項式模糊網路控制系統之建模方法,能大幅減少模糊規則數,進一步減少晶片計算時間,因此可降低系統硬體成本。此外考慮系統不只同時受外部干擾及模式不確定性,還有網路引起之時間延遲及封包丟失影響,因此所提出之新型強健分段多項式模糊網路控制穩定定理使網路控制系統更加強健。因所提出方法之穩定條件數量比現有方法要來的少,所以能擴展基於平方和(Sum of Squares,SOS)方法之可行解空間。最後將所設計之新型強健分段多項式模糊網路控制器運用於四旋翼與移動機器人之路徑追蹤控制之電腦模擬與實驗,證明其性能優於一般李亞普諾夫函數控制器。
In this research, a novel piecewise polynomial fuzzy networked control system (NPPFNCS) was studied. A piecewise polynomial Lyapunov–Krasovskii functional was designed using a minimum-type piecewise polynomial Lyapunov function (PPLF). The modeling method based on the NPPFNCS could considerably reduce the number of fuzzy rules and further decrease the computational burden of the microprocessor, thus reducing the system hardware cost. In addition, considering that the system was subject to both external disturbance and model uncertainty, as well as networked-induced time delay and packet dropout, the proposed novel robust piecewise polynomial fuzzy network control stability theorem made the networked control system more robust. As the number of stability conditions of the proposed method was less than that of the existing methods, the feasible solution space based on the sum of squares (SOS) method could be expanded. Finally, the designed novel robust piecewise polynomial fuzzy networked controller was applied to the computer simulations and experiments of the path tracking control of a quadrotor and a mobile robot, which demonstrated that its performance was superior to that of a network controller based on the general polynomial fuzzy Lyapunov functions.
摘要 i
Abstract ii
Table of Contents iii
List of Figures v
List of Tables xiv
Chapter 1 1
1.1 Introduction 1
1.2 Thesis Organization 5
Chapter 2 6
2.1 Minimum-Type Piecewise Polynomial Lyapunov Function 6
2.2 Networked Control Systems 7
2.3 Novel Output Feedback Piecewise Polynomial Fuzzy Networked Control Systems 10
Chapter 3 13
3.1 Stability Conditions of Novel Piecewise Polynomial Fuzzy Networked Control Systems 13
3.2 Stability Conditions of Novel Piecewise Polynomial Fuzzy Networked Control Systems with External Disturbances 22
3.3 Stability Conditions of Novel Piecewise Polynomial Fuzzy Networked Control Systems with Model Uncertainties 32
3.4 Robust Stability Conditions of Novel Piecewise Polynomial Fuzzy Networked Control Systems with External Disturbances and Model Uncertainties 42
Chapter 4 54
4.1 Equations of Motion of the Quadrotor 54
4.2 Equations of Motion of the Mobile Robot 57
4.3 Novel Piecewise Polynomial Fuzzy Control Systems of the Quadrotor 58
4.4 Novel Piecewise Polynomial Fuzzy Control Systems of the Mobile Robot 74
Chapter 5 79
5.1 Simulation Results 79
5.1.1 Results of Section 3.1 80
5.1.2 Results of Section 3.2 101
5.1.3 Results of Section 3.3 122
5.1.4 Results of Section 3.4 143
5.2 Experimental Results 168
5.2.1 Results of Section 3.1 172
5.2.2 Results of Section 3.2 175
5.2.3 Results of Section 3.3 178
5.2.4 Results of Section 3.4 182
Chapter 6 186
6.1 Conclusions 186
6.2 Future Work 186
References 187

[1]H. Zhang, J. Yang and C. Su, “T-S fuzzy-model-based robust H∞ design for networked control systems with uncertainties,” IEEE Trans. Ind. Informat., vol. 3, no. 4, pp. 289-301, Nov. 2007.
[2]C. Wu, J. Liu, X. Jing, H. Li and L. Wu, “Adaptive fuzzy control for nonlinear networked control systems,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 47, no. 8, pp. 2420-2430, Aug. 2017.
[3]C. Yuan and F. Wu, “Delay scheduled impulsive control for networked control systems,” IEEE Control Netw. Syst., vol. 4, no. 3, pp. 587-597, Sept. 2017.
[4]M. Hamdy, S. Abd-Elhaleem and M. A. Fkirin, “Time-varying delay compensation for a class of nonlinear control systems over network via H∞ adaptive fuzzy controller,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 47, no. 8, pp. 2114-2124, Aug. 2017.
[5]S. Kartakis, A. Fu, M. Mazo and J. A. McCann, “Communication schemes for centralized and decentralized event-triggered control systems,” IEEE Trans. Control Syst. Technol., vol. 26, no. 6, pp. 2035-2048, Nov. 2018.
[6]Y. Jiang, J. Fan, T. Chai, F. L. Lewis and J. Li, “Tracking control for linear discrete-time networked control systems with unknown dynamics and dropout,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 10, pp. 4607-4620, Oct. 2018.
[7]M. Zamani, M. Mazo, M. Khaled and A. Abate, “Symbolic abstractions of networked control systems,” IEEE Control Netw. Syst., vol. 5, no. 4, pp. 1622-1634, Dec. 2018.
[8]H. Yan, C. Hu, H. Zhang, H. R. Karimi, X. Jiang and M. Liu, “H∞ output tracking control for networked systems with adaptively adjusted event-triggered scheme,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 49, no. 10, pp. 2050-2058, Oct. 2019.
[9]W. Wang, R. Postoyan, D. Nešić and W. P. M. H. Heemels, “Periodic event-triggered control for nonlinear networked control systems,” IEEE Trans. Autom. Control, vol. 65, no. 2, pp. 620-635, Feb. 2020.
[10]W. Zheng, H. Wang, H. Wang, S. Wen and Z. Zhang, “Fuzzy dynamic output feedback control for T-S fuzzy discrete-time systems with multiple time-varying delays and unmatched disturbances,” IEEE Access, vol. 6, pp. 31037-31049, 2018.
[11]C. Peng, S. Ma and X. Xie, “Observer-based non-PDC control for networked T–S fuzzy systems with an event-triggered communication,” IEEE Trans. Cybern., vol. 47, no. 8, pp. 2279-2287, Aug. 2017.
[12]Y. Liu, F. Wu and X. Ban, “Dynamic output feedback control for continuous-Time T–S fuzzy systems using fuzzy Lyapunov functions,” IEEE Trans. Fuzzy Syst., vol. 25, no. 5, pp. 1155-1167, Oct. 2017.
[13]Y. Wang, H. Shen, H. R. Karimi and D. Duan, “Dissipativity-based fuzzy integral sliding mode control of continuous-time T-S fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 26, no. 3, pp. 1164-1176, June 2018.
[14]Y. Xue, B. Zheng and X. Yu, “Robust sliding mode control for T-S fuzzy systems via quantized state feedback,” IEEE Trans. Fuzzy Syst., vol. 26, no. 4, pp. 2261-2272, Aug. 2018.
[15]S. Yan, M. Shen, S. K. Nguang, G. Zhang and L. Zhang, “A distributed delay method for event-triggered control of T–S fuzzy networked systems with transmission delay,” IEEE Trans. Fuzzy Syst., vol. 27, no. 10, pp. 1963-1973, Oct. 2019.
[16]X. Wang, J. H. Park, K. She, S. Zhong and L. Shi, “Stabilization of chaotic systems with T–S fuzzy model and nonuniform sampling: a switched fuzzy control approach,” IEEE Trans. Fuzzy Syst., vol. 27, no. 6, pp. 1263-1271, June 2019.
[17]K. Tanaka, H. Yoshida, H. Ohtake and H. O. Wang, “A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems,” IEEE Trans Fuzzy Syst., vol. 17, no. 4, pp. 911-922, Aug. 2009.
[18]H. K. Lam, C. Liu, L. Wu and X. Zhao, “Polynomial fuzzy-model-based control systems: stability analysis via approximated membership functions considering sector nonlinearity of control input,” IEEE Trans. Fuzzy Syst., vol. 23, no. 6, pp. 2202-2214, Dec. 2015.
[19]H. K. Lam, L. Wu and J. Lam, “Two-step stability analysis for general polynomial-fuzzy-model-based control systems,” IEEE Trans. Fuzzy Syst., vol. 23, no. 3, pp. 511-524, June 2015.
[20]K. Tanaka, M. Tanaka, Y. Chen and H. O. Wang, “A new sum-of-squares design framework for robust control of polynomial fuzzy systems with uncertainties,” IEEE Trans. Fuzzy Syst., vol. 24, no. 1, pp. 94-110, Feb. 2016.
[21]R. Furqon, Y. Chen, M. Tanaka, K. Tanaka and H. O. Wang, “An SOS-based control Lyapunov function design for polynomial fuzzy control of nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 25, no. 4, pp. 775-787, Aug. 2017.
[22]H. S. Kim, J. B. Park and Y. H. Joo, “A fuzzy Lyapunov–Krasovskii functional approach to sampled-data output-feedback stabilization of polynomial fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 26, no. 1, pp. 366-373, Feb. 2018.
[23]A. Meng, H. Lam, Y. Yu, X. Li and F. Liu, “Static output feedback stabilization of positive polynomial fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 26, no. 3, pp. 1600-1612, June 2018.
[24]S. Tsai and C. Jen, “H∞ stabilization for polynomial fuzzy time-delay system: a sum-of-squares approach,” IEEE Trans. Fuzzy Syst., vol. 26, no. 6, pp. 3630-3644, Dec. 2018.
[25]X. Li, H. K. Lam, F. Liu and X. Zhao, “Stability and stabilization analysis of positive polynomial fuzzy systems with time delay considering piecewise membership functions,” IEEE Trans. Fuzzy Syst., vol. 25, no. 4, pp. 958-971, Aug. 2017.
[26]X. Li, H. K. Lam, G. Song and F. Liu, “Stability analysis of positive polynomial fuzzy-model-based control systems with time delay under imperfect premise matching,” IEEE Trans. Fuzzy Syst., vol. 26, no. 4, pp. 2289-2300, Aug. 2018.
[27]X. Li and K. Mehran, “Model-based control and stability analysis of discrete-time polynomial fuzzy systems with time delay and positivity constraints,” IEEE Trans. Fuzzy Syst., vol. 27, no. 11, pp. 2090-2100, Nov. 2019.
[28]Y. Zhao, Y. He, Z. Feng, P. Shi and X. Du, “Relaxed sum-of-squares based stabilization conditions for polynomial fuzzy-model-based control systems,” IEEE Trans. Fuzzy Syst., vol. 27, no. 9, pp. 1767-1778, Sept. 2019.
[29]H. Zhang, Y. Wang, J. Zhang and Y. Wang, “An SOS-based sliding mode controller design for a class of polynomial fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 27, no. 4, pp. 749-759, April 2019.
[30]J. Yang, Q. Sun, D. Yang and J. Liu, “Design of polynomial-fuzzy-model-based networked control systems: Sum of squares approach,” in Proc. 30th Chin. Control Conf., Yantai, 2011, pp. 4693-4697.
[31]J. Chen, C. Lin, R. Guo, Z. Zhang and Y. Yang, “Networked control method for polynomial systems via state feedback control,” Chin. Automat. Congr., Jinan, 2017, pp. 908-911.
[32]G. Li and C. Peng, “Event-triggered polynomial fuzzy controller for networked polynomial fuzzy systems,” in Proc. 5th IEEE Int. Conf. Cloud Comput. Intell. Syst., Nanjing, China, 2018, pp. 222-226.
[33]Y. Chen, H. Ohtake, K. Tanaka, W. Wang and H. O. Wang, “Relaxed stabilization criterion for T–S fuzzy systems by minimum-type piecewise-Lyapunov-function-based switching fuzzy controller,” IEEE Trans. Fuzzy Syst., vol. 20, no. 6, pp. 1166-1173, Dec. 2012.
[34]Y. Chen, M. Tanaka, K. Tanaka and H. O. Wang, “Piecewise polynomial Lyapunov functions based stability analysis for polynomial fuzzy systems,” IEEE Int. Conf. Control Syst., Comput. Eng., Mindeb, 2013, pp. 34-39.
[35]Y. Chen, M. Tanaka, K. Tanaka and H. O. Wang, “Stability analysis and region-of-attraction estimation using piecewise polynomial Lyapunov functions: polynomial fuzzy model approach,” IEEE Trans. Fuzzy Syst., vol. 23, no. 4, pp. 1314-1322, Aug. 2015.
[36]Y. Wei, J. Qiu, P. Shi and L. Wu, “A piecewise-Markovian Lyapunov approach to reliable output feedback control for fuzzy-affine systems with time-delays and actuator faults,” IEEE Trans. Cybern., vol. 48, no. 9, pp. 2723-2735, Sept. 2018.
[37]Y. Zhu and W. X. Zheng, “Multiple Lyapunov functions analysis approach for discrete-time-switched piecewise-affine systems under dwell-time constraints,” IEEE Trans. Autom. Control, vol. 65, no. 5, pp. 2177-2184, May 2020.
[38]S. Li and Z. Ge, “Fuzzy modeling and synchronization of two totally different chaotic systems via novel fuzzy model,” IEEE Trans. Syst., Man, Cybern., Part B(Cybern.), vol. 41, no. 4, pp. 1015-1026, Aug. 2011.
[39]S. Li, L. Tam, S. Tsai and Z. Ge, “Novel fuzzy modeling and synchronization of chaotic systems with multinonlinear terms by advanced Ge-Li fuzzy model,” IEEE Trans. Cybern., vol. 46, no. 10, pp. 2228-2237, Oct. 2016.
[40]J. Moreno-Valenzuela, R. Pérez-Alcocer, M. Guerrero-Medina and A. Dzul, “Nonlinear PID-type controller for quadrotor trajectory tracking,” IEEE/ASME Trans. Mechatronics, vol. 23, no. 5, pp. 2436-2447, Oct. 2018.
[41]M. P. Sun and J. J. Liu, “Tracking control of a quad-rotor UAV based on T−S fuzzy model,” in Proc. 36th Chin. Control Conf., Jul. 2017 pp. 4216–4221.
[42]H. Lee and H. J. Kim, “Robust control of a quadrotor using Takagi-Sugeno fuzzy model and an LMI approach,” in Proc. 14th Int. Conf. Control, Automat. Syst., Seoul, 2014, pp. 370-374.

電子全文 電子全文(網際網路公開日期:20250827)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文