|
Cook, J. A., Sutskever, I., Mnih, A., and Hinton, G. E. (2007). Visualizing similarity data with a mixture of maps. The Journal of Machine Learning Research, 2: 67–74. Grady, L. (2006). Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11): 1768–1783. Hinton, G. E. and Roweis, S. T. (2002). Stochastic neighbor embedding. Advances in Neural Information Processing Systems, 15: 833–840. Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. The Journal of Educational Psychology, 24(6): 417. Linderman, G. C. and Steinerberger, S. (2019). Clustering with t-SNE, provably. SIAM Journal on Mathematics of Data Science, 1(2): 313–332. Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500): 2323–2326. Roweis, S. T., Saul, L. K., and Hinton, G. E. (2002). Global coordination of local linear models. Advances in Neural Information Processing Systems, 14: 889–896. Sammon, J. W. (1969). A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, 100(5): 401–409. Shaham, U. and Steinerberger, S. (2017). Stochastic neighbor embedding separates wellseparated clusters. arXiv preprint arXiv:1702.02670. Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500): 2319–2323. Torgerson, W. S. (1952). Multidimensional scaling: I. theory and method. Psychometrika,17(4): 401–419. van der Maaten, L. J. P. (2014). Accelerating t-SNE using tree-based algorithms. The Journal of Machine Learning Research, 15(1): 3221–3245. van der Maaten, L. J. P. and Hinton, G. E. (2008). Visualizing data using t-SNE. The Journal of Machine Learning Research, 9: 2431–2456.
|