跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 16:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許泰銓
研究生(外文):Hsu,Tai-Chuan
論文名稱:熱聲波動引擎之回授對流:設計與量測
論文名稱(外文):Thermoacoustic wave engine with feedback convection:design and measurements
指導教授:洪博雄洪博雄引用關係
指導教授(外文):Hong,Boe-Shong
口試委員:黃勤鎰徐旭華
口試委員(外文):Huang,Chin-IShyu,Shiuh-Hwa
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:30
中文關鍵詞:熱聲波動引擎回授對流管訊號感測多孔材料
外文關鍵詞:thermoacoustic wave enginefeedback convection tubesignal sensingporous materials
相關次數:
  • 被引用被引用:4
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
近幾十年來,由於工業革命後誕生之各式各樣的熱機開始對地球環境造成破壞,人們希望能找出替代的能源或者方案。其中,熱聲引擎的運作方式對此一狀況有極大的優勢。由於可使用環境周遭的廢熱作為其驅動能量,熱聲引擎的發展變得必要且具有發展性。
本論文嘗試改良本實驗室學長黃聿銘之熱聲引擎設計,藉由引入工作流體回授的觀念,提高管中溫度分布之梯度,間接增大管中平均流的運用,以提升引擎的轉速和穩定度,並置換管中的多孔性材料,導入可量化的平織網以利於引擎設計的分析及最佳化。
因為熱聲波動引擎特有的特徵,流經多孔材料的流體不能以簡單一維流體的觀念假設。對流管因其管徑較小的關係,對流體有整流的作用,經過散熱堆內部的流場後將平均流集束,增加了施加在活塞的推力並提升主要共振頻率。總體來說,對流管配合平織網的組合將原有的熱聲波動引擎效率提高了近兩倍,在速度與力量的部分都有被增強或放大。經由本次研究,熱聲波動引擎的效率被提高,觸發熱聲不穩定現象的門檻也被降低,這代表著引擎被應用的機會越來越大,不管再發電、致冷或其他領域都更進一步。

In recent decades, various heat engines, born after the industrial revolution, have begun to cause damage to the environment. People want to find alternative energy sources or solution.Thermoacoustic engines operate in such a way that they offer great advantages.The development of thermoacoustic engines becomes necessary and expansible because the exhaust heat from the surrounding environment can be used as the driving energy.
This research attempts to improve the design of our laboratory student Yu-Ming Huang's thermoacoustic engine. By introducing the concept of fluid feedback, the gradient of temperature distribution in the pipe is increased, and the application of average flow in the pipe is indirectly increased, so as to improve the speed and stability of the engine, displace the porous material in the pipe, and introduce quantifiable flat woven mesh to facilitate the analysis and optimization of engine design.
Because of the unique characteristics of thermoacoustic wave engines, fluids flowing through porous materials cannot be assumed as simple one-dimensional fluids.Because of its small diameter, the convection pipe rectifies the fluid. After passing through the flow field inside the radiator reactor, the mean flow is gathered, increasing the thrust applied to the piston and increasing the main resonance frequency.In general, the combination of convection pipes with flat woven webs has nearly doubled the efficiency of the original thermoacoustic wave engine and has been enhanced or amplified in both speed and power.

誌謝 I
摘要 II
abstract III
目錄 IV
圖目錄 V
表目錄 VI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.3 本文貢獻 4
1.4 論文架構 5
第二章 熱聲波動引擎之設計原理 6
2.1 熱機與冷機 6
2.2 聲音的性質 6
2.3 熱聲效應 7
2.4 設計原則 8
第三章 實驗平台介紹 10
3.1 引擎外觀介紹 10
3.2 訊號擷取平台介紹 14
3.3 訊號量測架構 15
3.4 置換多孔材料 15
3.5 3D印表機 16
第四章 實驗測試數據 18
4.1 原熱聲波動引擎基礎數據 18
4.2 空氣對流管 20
4.3 熱源溫度 26
第五章 結論 27
參考文獻 28


[1].謝昭揚,熱聲交流引擎之設計,碩士論文,國立中正大學機械工程學系,2020
[2].史特林引擎,https://zh.m.wikipedia.org/wiki/File:Stirling_Engine.jpg,2020
[3].黃聿銘,自激式熱聲引擎之設計,碩士論文,國立中正大學機械工程學系,2017
[4]. B. Higgins, Nicholson’s Journal I, 130, 1802.
[5].C. Sondhauss, “Ueber die Schallschwingungen der Luft in erhitzten Glasröhren und in gedeckten Pfeifen von ungleicher Weite”, Annalen der Physik, vol. 155, no.1, pp. 1-34, 1850.
[6].P. L. Rijke, “Notiz iiber eine neue Art, die in einer an beiden enden o.enen Rohreenthaltene Luft in Schwingungen zu versetzen”, Ann. Phys., 107,339, 1859.
[7].L. Rayleigh, The explanation of certain acoustical phenomena, Nature, Vol. 18, 319-321, 1878.
[8].J.W.S. Rayleigh, The theory of sound, Dover publications, New York, 1945.
[9].F.E.C. Culick, A note on Rayleigh’s criterion. Combustion Science and Technology, Vol. 56, 159-166, 1987.
[10].M.A. Ferreira, J.A. Carvalho Jr., A simple derivation of the Rayleigh criterion in integral form, Journal of Sound and Vibration, Vol. 203, No.5, 889-893, 1997.
[11].J. Wheatley, T. Hofler, G. Swift, and A. Migliori, “An intrinsically irreversible thermoacoustic heat engine”, The Journal of the Acoustical Society of America, vol. 74, no. 1, pp. 153-170, 1983.
[12].J. Wheatley, T. Hofler, G. Swift, and A. Migliori, “Understanding some simple phenomena in thermoacoustics with applications to acoustical heat engines”, American Journal of Physics, vol. 53, no. 2, pp. 147-162, 1985.
[13].F. Zink, H. Waterer, R. Archer, L. Schaefer, Geometric optimization of a thermoacoustic regenerator, International Journal of Thermal Sciences, Vol. 48, No. 12, 2309-2322, 2009.
[14].N.M. Hariharan, P. Sivashanmugam, S. Kasthurirengan, Influence of stack geometry and resonator length on the performance of thermoacoustic engine, Applied Acoustics, Vol. 73, 1052-1058, 2012.
[15].D. A. Nield and A. Bejan, “Mechanics of fluid flow through a porous medium”, in Convection in Porous Media: Springer, 2013, pp. 1-29.
[16].T. Yazaki, A. Iwata, T. Maekawa, A.Tominaga, Traveling wave thermoacoustic engine in a looped tube, Physical Review Letters, Vol. 81, 3128-3131, 1998.
[17].S. Jung, K. I. Matveev, Study of a small-scale standing-wave thermoacoustic engine, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 224, 133-141, 2010.
[18].S. Backhaus, E. Tward, M. Petach, Traveling-wave thermoacoustic electric generator, Applied Physics Letters, Vol. 85, No. 6, 1085-1087, 2004.
[19].J. Smoker, M. Nouh, O. Aldraihem, A. Baz, Energy harvesting from a standing wave thermoacoustic-piezoelectric resonator, Journal of Applied Physics, Vol.111, paper no. 104901, 2012.
[20].T. Schuller, D. Durox, S. Candel, Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners, Combustion and Flame, Vol. 135, No.4, 525-537, 2003.
[21].D. Durox, T. Schuller, N. Noiray, A. L. Birbaud, S. Candel, Rayleigh criterion and acoustic energy balance in unconfined self-sustained oscillating flames,Combustion and Flame, Vol. 156, No.1, 106-119, 2009.
[22].林祖佑,解析熱聲動力與控制,博士論文,國立中正大學機械工程學系, 2014
[23]. 波的傳播,https://pic2.zhimg.com/51d7c49b4711fa0b20732eabad1f9131_r.jpg,2020
[24].A. Avent and C. Bowen, “Principles of thermoacoustic energy harvesting”, TheEuropean Physical Journal Special Topics, vol. 224, no. 14-15, pp. 2967-2992, 2015
[25]J. Kopitz and W. Polifke, “CFD-based application of the Nyquist criterion to thermo-acoustic instabilities”, Journal of Computational Physics, vol. 227, no. 14, pp. 6754-6778, 2008.
[26].周家宇,熱聲引擎設計建模與控制,博士論文,國立中正大學機械工程學系,2014

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top