(34.201.11.222) 您好!臺灣時間:2021/02/25 13:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊哲翔
研究生(外文):CHUANG,CHE-HSIANG
論文名稱:適用於廣義空間調變輔助毫米波多輸入多輸出系統的低複雜度混合預編碼演算法
論文名稱(外文):Low Complexity Hybrid Precoding Algorithm for GenSM Aided mmWave MIMO Systems
指導教授:陳喬恩
指導教授(外文):CHEN,CHIAO-EN
口試委員:黃元豪劉宗憲邱茂清胡家彰
口試委員(外文):HUANG,YUAN-HAOLIU,TSUNG-HSIENCHIU,MAO-CHINGHU,CHIA-CHANG
口試日期:2020-06-29
學位類別:碩士
校院名稱:國立中正大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:61
中文關鍵詞:廣義空間調變低複雜度相位追蹤混合預編碼毫米波通訊
外文關鍵詞:Generalized spatial modulationlow complexityphase pursuithybrid precodingmillimeter wave communication
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們探討一個適用於廣義空間調變(Generalized Spatial Modulation, GenSM)輔助毫米波多輸入多輸出(Multiple-Input Multiple-Output, MIMO)系統的低複雜度混合預編碼器設計。現有的廣義空間調變輔助混合預編碼的梯度上升迭代(Gradient Ascent Iteration, GAI)演算法當天線陣列大的時候,計算複雜度很高;而混合預編碼設計經由Turbo Optimization(TO)需要在數位預編碼器上加上一個額外的么正(Unitary)限制。為了解決這個問題,我們提出一個利用相位追蹤(Phase Pursuit, PP)方法的演算法來設計混合預編碼,如此不僅可以降低計算複雜度,並且在數位預編碼器上不需再加上額外的限制。接著我們提出一個降低原始相位追蹤方法的計算複雜度的改良演算法。最後我們以數值模擬方式比較了在不同模擬環境下,我們所提出之演算法與現有演算法於頻譜效率與複雜度之間的比較。
In this thesis, we investigate low-complexity hybrid precoder design problems for generalized spatial modulation (GenSM) aided millimeter wave multiple-input multiple-output (MIMO) systems. In contrast to the existing hybrid precoders which are either highly computationally intensive or lack of design flexibilities, a new hybrid precoder design based on the phase pursuit (PP) principle is proposed. The performance of the proposed PP hybrid precoder has been quantified via numerical simulations and then compared with the existing benchmark precoders.
1 序論
1.1 研究動機與目的
1.2 章節概要

2 毫米波通道與廣義空間調變輔助混合類比數位預編碼器之系統架構模型
2.1 毫米波通道模型
2.2 子連接混合類比數位預編碼器系統架構
2.3 文獻[1] 中所提出廣義空間調變輔助混合類比數位預編碼器之系統架構

3 在廣義空間調變輔助混合類比數位預編碼器架構下之混合類比數位預編碼器設計方法
3.1 文獻[1] 中提出梯度上升迭代演算法之混合類比數位預編碼器設計方法
3.2 文獻[2] 中提出Turbo Optimization 之混合類比數位預編碼器設計方法

4 本論文在廣義空間調變輔助混合類比數位預編碼器架構下之混合類比數位預編碼器設計方法
4.1 問題描述
4.2 使用相位追蹤方法之混合類比數位預編碼器設計
4.3 使用相位追蹤方法之低複雜度混合類比數位預編碼器設計

5 複雜度分析

6 電腦模擬與性能分析

7 結論

參考文獻. . . . . . . . . . . . . . .
[1] L. He, J. Wang, and J. Song, “Spatial modulation for more spatial multiplexing:Rf-chain-limited generalized spatial modulation aided mm-wave mimo with hybrid precoding,” IEEE Transactions on Communications, vol. 66, no. 3, pp. 986–998, 2018.

[2] Z. Lu, L. He, J. Wang, and J. Song, “Low complexity hybrid precoding algorithm for gensm aided mmwave mimo systems,” in 2018 14th International Wireless Communications Mobile Computing Conference (IWCMC), 2018, pp. 412–417.

[3] R. C. Daniels and R. W. Heath, “60 ghz wireless communications: Emerging requirements and design recommendations,” IEEE Vehicular Technology Magazine, vol. 2, no. 3, pp. 41–50, 2007.

[4] T. S. Rappaport, J. N. Murdock, and F. Gutierrez, “State of the art in 60-ghz integrated circuits and systems for wireless communications,” Proceedings of the IEEE, vol. 99, no. 8, pp. 1390–1436, 2011.

[5] S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter-wave cellular wireless networks: Potentials and challenges,” Proceedings of the IEEE, vol. 102, no. 3, pp. 366–385, 2014.

[6] E. Torkildson, U. Madhow, and M. Rodwell, “Indoor millimeter wave mimo: Feasibility and performance,” IEEE Transactions on Wireless Communications, vol. 10, no. 12, pp. 4150–4160, 2011.

[7] A. Alkhateeb, J. Mo, N. Gonzalez-Prelcic, and R. W. Heath, “Mimo precoding and combining solutions for millimeter-wave systems,” IEEE Communications Magazine, vol. 52, no. 12, pp. 122–131, 2014.

[8] L. Zhou and Y. Ohashi, “Fast codebook-based beamforming training for mmwave mimo systems with subarray structures,” in 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), 2015, pp. 1–5.

[9] Z. Hasan, H. Boostanimehr, and V. K. Bhargava, “Green cellular networks: A survey, some research issues and challenges,” IEEE Communications Surveys Tutorials, vol. 13, no. 4, pp. 524–540, 2011.

[10] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave mimo systems,” IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499–1513, 2014.

[11] C. -E. Chen, “An iterative hybrid transceiver design algorithm for millimeter wave mimo systems,” IEEE Wireless Communications Letters, vol. 4, no. 3, pp. 285–288, 2015.

[12] S. Han, C. I, Z. Xu, and C. Rowell, “Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5g,” IEEE Communications Magazine, vol. 53, no. 1, pp. 186–194, 2015.

[13] X. Gao, L. Dai, S. Han, C. I, and R. W. Heath, “Energy-efficient hybrid analog and digital precoding for mmwave mimo systems with large antenna arrays,”IEEE Journal on Selected Areas in Communications, vol. 34, no. 4, pp. 998–1009, 2016.

[14] R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, “Spatial modulation,” IEEE Transactions on Vehicular Technology, vol. 57, no. 4, pp. 2228–2241, 2008.

[15] M. Di Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, “Spatial modulation for generalized mimo: Challenges, opportunities, and implementation,” Proceedings of the IEEE, vol. 102, no. 1, pp. 56–103, 2014.

[16] J. Wang, S. Jia, and J. Song, “Generalised spatial modulation system with multiple active transmit antennas and low complexity detection scheme,” IEEE Transactions on Wireless Communications, vol. 11, no. 4, pp. 1605–1615, 2012.

[17] N. Ishikawa, R. Rajashekar, S. Sugiura, and L. Hanzo, “Generalized-spatial-modulation-based reduced-rf-chain millimeter-wave communications,” IEEE Transactions on Vehicular Technology, vol. 66, no. 1, pp. 879–883, 2017.

[18] C. Rusu, R. Méndez-Rial, N. González-Prelcicy, and R. W. Heath, “Low complexity hybrid sparse precoding and combining in millimeter wave mimo systems,” in 2015 IEEE International Conference on Communications (ICC), 2015, pp. 1340–1345.

[19] C. Rusu, R. Mèndez-Rial, N. González-Prelcic, and R. W. Heath, “Low complexity hybrid precoding strategies for millimeter wave communication systems,” IEEE Transactions on Wireless Communications, vol. 15, no. 12, pp. 8380–8393, 2016.

[20] Y. Chen, Y. Xia, Y. Xing, and L. Yang, “Low complexity hybrid precoding for mmwave massive mimo systems,” in 2017 26th Wireless and Optical Communication Conference (WOCC), 2017, pp. 1–5.

[21] J. -C. Chen, “Gradient projection-based alternating minimization algorithm for designing hybrid beamforming in millimeter-wave mimo systems,” IEEE Communications Letters, vol. 23, no. 1, pp. 112–115, 2019.

[22] Peter H. Schönemann, “A generalized solution of the orthogonal procrustes problem,” Psychometrika, vol. 31, no. 1, pp. 1–10, 1966.

[23] Y. Wang and W. Zou, “Low complexity hybrid precoder design for millimeter wave mimo systems,” IEEE Communications Letters, vol. 23, no. 7, pp. 1259–1262, 2019.

[24] A. A. M. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE Journal on Selected Areas in Communications, vol. 5, no. 2, pp. 128–137, 1987.

[25] W. Zeng, C. Xiao, M. Wang, and J. Lu, “Linear precoding for finite-alphabet inputs over mimo fading channels with statistical csi,” IEEE Transactions on Signal Processing, vol. 60, no. 6, pp. 3134–3148, 2012.

[26] S. P. Boyd and L. Vandenberghe, Convex optimization, Cambridge university press, 2004.

[27] F. Han, M. Jin, and H. Zou, “Binary symbol recovery via ℓ∞ minimization in faster-than-nyquist signaling systems,” IEEE Transactions on Signal Processing, vol. 62, no. 20, pp. 5282–5293, 2014.
電子全文 電子全文(網際網路公開日期:20250717)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔