跳到主要內容

臺灣博碩士論文加值系統

(100.24.118.144) 您好!臺灣時間:2022/12/06 04:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭氏德芳
研究生(外文):Tran Thi Tuong Van
論文名稱:具奈米微孔的聚偏二氟乙烯及其複合薄膜用於離子性染料的去除及其分離機制的探討
論文名稱(外文):Nanoporous PVDF-based Membranes for Ionic Dye Removal from Aqueous Solutions and Filtration Mechanisms Therein
指導教授:呂幸江
指導教授(外文):S. J. Lue
學位類別:博士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:131
中文關鍵詞:離子染料聚偏二氟乙烯氧化石墨烯聚乙烯吡咯烷酮Donnan排除分子間相互作用加乘作用膜通透性
外文關鍵詞:Ionic dyesPoly(vinylidene fluoride)Graphene oxidePoly(vinyl pyrrolidone)Donnan exclusionIntermolecular interactionAdditive effectMembrane permeance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Recommendation Letter from the Thesis Advisor
Dissertation Oral Defense Committee Certification
Acknowledgements iii
摘要 iv
Abstract v
Table of Contents vi
List of Figures ix
List of Tables xiii
Chapter 1. Literature Review 1
1.1. Dye removal from wastewater 1
1.1.1. Dye structure and classification 1
1.1.2. Wastewater containing dyes 2
1.1.3. Treatment of dye wastewater 4
1.2. Membrane processes 11
1.2.1. Introduction to membrane processes 11
1.2.2. Membrane modifications 13
1.2.3. Pressure-driven membrane processes for dye removal 16
1.2.4. PVDF membranes for dye removal and their modifications 18
1.3. Rationale of this research 20
1.4. Objectives and scopes of this research 22
Chapter 2. Materials and Methods 25
2.1. Materials 25
2.1.1. Commercial materials 25
2.1.2. GO preparation 28
2.2. Membrane preparation 28
2.3. Characterization 29
2.3.1. GO and PVP characterization 29
2.3.2. Membrane characterization 30
2.3.3. Dye characterization and dye concentration evaluation 31
2.4. Membrane performance experiment 32
2.4.1. Membrane filtration system 32
2.4.2. Filtration performance evaluation 34
2.4.3. Static adsorption 34
2.4.4. Multi-cycle filtration 35
Chapter 3. Filtration Mechanisms of Binary Dye Mixtures Using a PVDF Membrane 36
3.1. Membrane characterization 36
3.2. Membrane filtration performance for single dyes 39
3.3. Membrane filtration performance for binary dye mixtures 43
3.3.1. RhB-MB mixture 43
3.3.2. EBT-NBB mixture 46
3.3.3. RhB-NBB mixture 46
3.3.4. MB-NBB mixture 47
3.4. Membrane adsorption performance 50
3.5. Stability of membrane performance 50
Chapter 4. GO and/or PVP Blended PVDF Membranes for Enhanced Dye Filtration 55
4.1. GO and PVP characteristics 55
4.2. Membrane morphology and pore size distribution 58
4.3. Membrane chemical composition 65
4.4. Membrane hydrophilicity and surface charge 72
4.5. Membrane filtration performance 73
4.5.1. Pure water 73
4.5.2. NBB dye 76
4.5.3. MB-NBB dye mixture 83
4.6. Membrane adsorption performance 84
Chapter 5. Conclusions and Future Recommendations 89
5.1. Conclusions 89
5.2. Future recommendations 90
References 92
Appendix A. Dye concentration evaluation 112
Appendix B. Curriculum Vitae 116

List of Figures

Fig. 1-1. Schematic representation of (a) a membrane process and (b) a two-phase system separated by a membrane [59] 11
Fig. 1-2. Fabrication of composite membranes through phase inversion process and main effects of nanomaterials on final products [62] 16
Fig. 1-3. Pressure-driven membrane processes classified by pore size, target species and operating pressure [61] 17
Fig. 1- 4. Investigated membrane and dye subjects in this thesis 24
Fig. 2-1. (a) Photograph and (b) schematic diagram of the membrane filtration unit 33
Fig. 3-1. FESEM micrographs of the PVDF membrane showing (a, c) differently magnified top surfaces, (b, d, e) overall, enlarged upper and lower cross-sections 37
Fig. 3-2. (a) Pore size distribution, (b) FTIR spectrum, (c) surface zeta potential over a pH range and (d) water contact angles at different drop ages of the PVDF membrane 39
Fig. 3-3. (a) Dye rejection, TOC rejection and (b) permeance performance of the PVDF membrane with single dyes. 39
Fig. 3-4. Dye rejection, TOC rejection and permeance performance of the PVDF membrane with binary dye mixtures of (a) RhB-MB, (b) EBT-NBB, (c) RhB-NBB and (d) MB-NBB. 44
Fig. 3-5. Absorbance spectra of feed and permeate after 120 min of filtration with binary dye mixtures of (a) RhB-MB, (b) EBT-NBB, (c) RhB-NBB and (d) MB-NBB. 45
Fig. 3-6. Proposed separation mechanism for MB-NBB mixture on the PVDF membrane 49
Fig. 3-7. Photographs of the pristine and adsorbed PVDF membranes with dyes 51
Fig. 3-8. (a) Dye rejection and (b) permeance performance in multi-cycle filtration process for single dyes on the PVDF membrane. 52
Fig. 3-9. Dye rejection and permeance performance in multi-cycle filtration process for binary dye mixtures on the PVDF membrane: (a) RhB-MB, (b) EBT-NBB, (c) RhB-NBB and (d) MB-NBB. 52
Fig. 3-10. FESEM micrographs of the (a) used and (b) cleaned PVDF membranes after multi-cycle filtration with RhB-MB mixture showing (i) top surfaces and (ii) cross-sections. 54
Fig. 4-1. (a) FESEM and (b) TEM images, (c) Raman and (d) XRD spectra of GO 56
Fig. 4-2. (a) Full XPS spectra of GO and PVP, (b-c) C1s XPS spectra of GO and PVP, (d) FTIR spectra of GO and PVP, and (e) zeta potential versus pH profiles of GO and PVP 20 mg L-1 solutions (in DI water) 58
Fig. 4-3. (a) Top surface photographs of the prepared membranes. Top and cross-section FESEM images of the (b, c) P, (d, e) PG, (f, g) PP and (h, i) PPG membranes. Insets show details at higher magnifications. 61
Fig. 4-4. Pore size distribution histograms from top surface FESEM image analysis using ImageJ software of the (a) P, (b) PG, (c) PP and (d) PPG membranes 62
Fig. 4-5. Pore size distribution histograms from CFP analysis of the (a) P, (b) PG, (c) PP and (d) PPG membranes 64
Fig. 4-6. (a) Full XPS spectra, (b) chemical composition and (c, d, e, f) deconvoluted C1s XPS spectra of the prepared membranes (P membrane(c), PG(d), PP(e) and PPG(f)) 67
Fig. 4-7. (a) FTIR and (b-d) ATR-FTIR spectra of the prepared membranes 68
Fig. 4-8. FESEM-EDX elemental mapping in (a) top surface and (b) cross-section of the prepared membranes 71
Fig. 4-9. (a) Water contact angle and (b) zeta potential versus pH profiles of the prepared membranes 73
Fig. 4-10. Water permeance at pH 4-10 of the prepared membranes 74
Fig. 4-11. (a) Filtrate permeance and (b) dye rejection performance at pH 4-10 of the prepared membranes with NBB 78
Fig. 4-12. Zeta potential versus pH profile of NBB 20 mg L-1 solution 78
Fig. 4-13. Robeson plot showing NBB filtration performance of the prepared membranes in comparison with other membranes reported in literature [95-97]. *Value averaged from data at different pH conditions (see Table 4-4 for details) 79
Fig. 4-14. Filtrate permeance and dye rejection performance of the prepared membranes with MB-NBB mixture 84
Fig. 4-15. Photographs of the adsorbed membranes with NBB 88
Fig. 4-16. FTIR-ATR spectra of the membranes (a) before and (b) after NBB adsorption 88
Fig. A-1. Absorbance spectra of 10 mg L-1 single dye solutions and corresponding λmax of (a) RhB, (b) MB, (c) EBT and (d) NBB. 112
Fig. A-2. Calibration curves of (a) RhB at λmax = 553 nm, (b) MB at λmax = 654 nm, (c) EBT at λmax = 534 nm and (d) NBB at λmax = 618 nm. 113
Fig. A-3. (a) Absorbance spectra and (b) 1st derivative spectra of the RhB solution (5 mg L-1), MB solution (5 mg L-1) and RhB-MB mixture (total concentration of 10 mg L-1). 113
Fig. A-4. (a) Absorbance spectra and (b) 1st derivative spectra of the EBT solution (5 mg L-1), NBB solution (5 mg L-1) and EBT-NBB mixture (total concentration of 10 mg L-1). 113
Fig. A-5. (a) Absorbance spectra and (b) 1st derivative spectra of the RhB solution (5 mg L-1), NBB solution (5 mg L-1) and RhB-NBB mixture (total concentration of 10 mg L-1). 114
Fig. A-6. (a) Absorbance spectra and (b) 1st derivative spectra of the MB solution (5 mg L-1), NBB solution (5 mg L-1) and MB-NBB mixture (total concentration of 10 mg L-1). 114
Fig. A-7. Calibration curves of (a) RhB (based on 1st derivative values at wavelength 505 nm) and (b) MB (based on 1st derivative values at wavelength 682 nm) in its binary mixture. 114
Fig. A-8. Calibration curves of (a) EBT (based on 1st derivative values at wavelength 474 nm) and (b) NBB (based on 1st derivative values at wavelength 537 nm) in its binary mixture. 115
Fig. A-9. Calibration curves of (a) RhB (based on 1st derivative values at wavelength 474 nm) and (b) NBB (based on 1st derivative values at wavelength 645 nm) in its binary mixture. 115
Fig. A-10. Calibration curves of (a) MB (based on absorbance values at wavelength 695 nm) and (b) NBB (based on absorbance values at wavelength 419 nm) in its binary mixture. 115

List of Tables

Table 1-1. Characteristics of typical untreated textile wastewater [14] 3
Table 1-2. Dye removal performance using different treatment processes 7
Table 2-1. Characteristics of experimental polymers and solvent 26
Table 2-2. Characteristics of experimental dyes 27
Table 2-3. Casting solution components of the prepared membranes, g (mass ratio in wt.%) 29
Table 3-1. pH and zeta potential of feeds with a total dye concentration of 20 mg L-1, and PVDF membrane surface zeta potential working with the corresponding feeds 41
Table 3-2. Dye adsorption capacity of the PVDF membrane (after 24 h) 51
Table 4-1. Structural parameters of the prepared membranes 63
Table 4-2. Elemental composition based on EDX analysis of the prepared membranes 69
Table 4-3. Water permeance values of the prepared membranes obtained from physical equations and experimental data, L m-2 h-1 MPa-1 75
Table 4-4. Comparison on membrane characteristics and NBB filtration performance between the prepared membranes and other membranes reported in literature 80
Table 4-5. Dye concentration (mg L-1) remaining in the NBB solution (1) over adsorption time 85
Table 4-6. Comparison on dye adsorption capacity between the prepared membranes and other membranes reported in literature 86
References

[1] J.P. Jadhav, S.S. Phugare, Textile dyes: general information and environmental aspects, in: A.E. Nemr (Ed.) Non-conventional textile wastewater treatment, Nova Science Publishers, New York, USA, 2012, pp. 1-29.
[2] A.C. Sezgin, S. Ayyıldız, Food additives: colorants, in: A. Méndez-Vilas (Ed.) Science within food: up-to-date advances on research and educational ideas, Formatex Research Center, Badajoz, Spain, 2017, pp. 87-94.
[3] S.N. Batchelor, New insights into dye chemistry and physics, Coloration Technology, 131 (2015) 81-93.
[4] J. Kiernan, Classification and naming of dyes, stains and fluorochromes, Biotechnic & Histochemistry, 76 (2001) 261-278.
[5] Q. Lin, M. Gao, J. Chang, H. Ma, Adsorption properties of crosslinking carboxymethyl cellulose grafting dimethyldiallylammonium chloride for cationic and anionic dyes, Carbohydrate Polymers, 151 (2016) 283-294.
[6] X. Chen, Y. Zhao, J. Moutinho, J. Shao, A.L. Zydney, Y. He, Recovery of small dye molecules from aqueous solutions using charged ultrafiltration membranes, Journal of Hazardous Materials, 284 (2015) 58-64.
[7] M. Shaban, M.R. Abukhadra, S.S. Ibrahim, M.G. Shahien, Photocatalytic degradation and photo-fenton oxidation of congo red dye pollutants in water using natural chromite  response surface optimization, Applied Water Science, 7 (2017) 4743-4756.
[8] K. Sharma, A.K. Dalai, R.K. Vyas, Removal of synthetic dyes from multicomponent industrial wastewaters, Reviews in Chemical Engineering, 34 (2017) 107-134.
[9] M.S. Bootharaju, T. Pradeep, Facile and rapid synthesis of a dithiol-protected Ag7 quantum cluster for selective adsorption of cationic dyes, Langmuir, 29 (2013) 8125-8132.
[10] Y. Zhan, X. Wan, S. He, Q. Yang, Y. He, Design of durable and efficient poly(arylene ether nitrile)/bioinspired polydopamine coated graphene oxide nanofibrous composite membrane for anionic dyes separation, Chemical Engineering Journal, 333 (2018) 132-145.
[11] M. Amini, M. Arami, N.M. Mahmoodi, A. Akbari, Dye removal from colored textile wastewater using acrylic grafted nanomembrane, Desalination, 267 (2011) 107-113.
[12] J. Dasgupta, J. Sikder, S. Chakraborty, S. Curcio, E. Drioli, Remediation of textile effluents by membrane based treatment techniques: a state of the art review, Journal of Environmental Management, 147 (2015) 55-72.
[13] W.-J. Lau, A.F. Ismail, Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control  a review, Desalination, 245 (2009) 321-348.
[14] A. Ghaly, R. Ananthashankar, M. Alhattab, V. Ramakrishnan, Production, characterization and treatment of textile effluents: a critical review, Journal of Chemical Engineering & Process Technology, 5 (2014) 1-19.
[15] C. Thamaraiselvan, M. Noel, Membrane processes for dye wastewater treatment: recent progress in fouling control, Critical Reviews in Environmental Science and Technology, 45 (2015) 1007-1040.
[16] T.A. Nguyen, R.-S. Juang, Treatment of waters and wastewaters containing sulfur dyes: a review, Chemical Engineering Journal, 219 (2013) 109-117.
[17] K. Chipasa, Limits of physicochemical treatment of wastewater in the vegetable oil refining industry, Polish Journal of Environmental Studies, 10 (2001) 141-148.
[18] O. Marmagne, C. Coste, Color removal from textile plant effluents, American Dyestuff Reporter, 85 (1996) 15-21.
[19] H. Yasui, K. Nakamura, S. Sakuma, M. Iwasaki, Y. Sakai, A full-scale operation of a novel activated sludge process without excess sludge production, Water Science and Technology, 34 (1996) 395-404.
[20] W. Delee, C. O'Neill, F.R. Hawkes, H.M. Pinheiro, Anaerobic treatment of textile effluents: a review, Journal of Chemical Technology Biotechnology, 73 (1998) 323-335.
[21] A. Stasinakis, Use of selected advanced oxidation processes (AOPs) for wastewater treatment – a mini review, Global NEST Journal, 10 (2008) 376-385.
[22] A. Al-Kdasi, A. Idris, K. Saed, C.T. Guan, Treatment of textile wastewater by advanced oxidation processes  a review, Global NEST Journal, 6 (2004) 222-230.
[23] H. Amin, A. Amer, A. Fecky, I. Ibrahim, Treatment of textile waste water using H2O2/UV system, Physicochemical Problems of Mineral Processing, 42 (2008) 17-28.
[24] C.H. Nguyen, M.L. Tran, T.T.V. Tran, R.-S. Juang, Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites, Separation and Purification Technology, 232 (2020) 1-14.
[25] C.H. Nguyen, C.-C. Fu, R.-S. Juang, Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways, Journal of Cleaner Production, 202 (2018) 413-427.
[26] R.S. Blackburn, Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment, Environmental Science & Technology, 38 (2004) 4905-4909.
[27] S. Neumann, P. Fatula, Principles of ion exchange in wastewater treatment, Asian water, 19 (2009) 14-19.
[28] B. Shi, G. Li, D. Wang, C. Feng, H. Tang, Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species, Journal of Hazardous Materials, 143 (2007) 567-574.
[29] M. Riera-Torres, C. Gutiérrez-Bouzán, M. Crespi, Combination of coagulation – flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents, Desalination, 252 (2010) 53-59.
[30] J.-W. Lee, S.-P. Choi, R. Thiruvenkatachari, W.-G. Shim, H. Moon, Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes, Dyes and Pigments, 69 (2006) 196-203.
[31] A. Szyguła, E. Guibal, M. Ruiz, A.M. Sastre, The removal of sulphonated azo dyes by coagulation with chitosan, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 330 (2008) 219-226.
[32] A. Szyguła, E. Guibal, M.A. Palacín, M. Ruiz, A.M. Sastre, Removal of an anionic dye (acid blue 92) by coagulation – flocculation using chitosan, Journal of Environmental Management, 90 (2009) 2979-2986.
[33] J. Nath, S. Bag, D. Bera, L. Ray, Biotreatment of malachite green from aqueous solution and simulated textile effluent by growing cells (batch mode) and activated sludge system, Groundwater for Sustainable Development, 8 (2019) 172-178.
[34] M. Sarvajith, G.K.K. Reddy, Y.V. Nancharaiah, Textile dye biodecolourization and ammonium removal over nitrite in aerobic granular sludge sequencing batch reactors, Journal of Hazardous Materials, 342 (2018) 536-543.
[35] H. Mirbolooki, R. Amirnezhad, A.R. Pendashteh, Treatment of high saline textile wastewater by activated sludge microorganisms, Journal of Applied Research Technology, 15 (2017) 167-172.
[36] F. Masi, A. Rizzo, R. Bresciani, N. Martinuzzi, S.D. Wallace, D. Van Oirschot, F. Macor, T. Rossini, R. Fornaroli, V. Mezzanotte, Lessons learnt from a pilot study on residual dye removal by an aerated treatment wetland, Science of The Total Environment, 648 (2019) 144-152.
[37] Y.-N. Bai, X.-N. Wang, F. Zhang, J. Wu, W. Zhang, Y.-Z. Lu, L. Fu, T.-C. Lau, R.J. Zeng, High-rate anaerobic decolorization of methyl orange from synthetic azo dye wastewater in a methane-based hollow fiber membrane bioreactor, Journal of Hazardous Materials, (2019) 1-10.
[38] R. Shoukat, S.J. Khan, Y. Jamal, Hybrid anaerobic-aerobic biological treatment for real textile wastewater, Journal of Water Process Engineering, 29 (2019) 1-8.
[39] S.A. Mansour, M.A. Tony, A.M. Tayeb, Photocatalytic performance and photodegradation kinetics of fenton-like process based on haematite nanocrystals for basic dye removal, SN Applied Sciences, 1 (2019) 1-265.
[40] V.A.A. de Freitas, S.M. Breder, F.P.C. Silvas, P. Radino Rouse, L.C.A. de Oliveira, Use of iron ore tailing from tailing dam as catalyst in a fenton-like process for methylene blue oxidation in continuous flow mode, Chemosphere, 219 (2019) 328-334.
[41] Z. Eskandari, A. Talaiekhozani, M.R. Talaie, F. Banisharif, Enhancing ferrate(VI) oxidation process to remove blue 203 from wastewater utilizing MgO nanoparticles, Journal of Environmental Management, 231 (2019) 297-302.
[42] M.A. Jamal, M. Muneer, M. Iqbal, Photo-degradation of monoazo dye blue 13 using advanced oxidation process, Chemistry International, 1 (2015) 12-16.
[43] M. Kheirabadi, M. Samadi, E. Asadian, Y. Zhou, C. Dong, J. Zhang, A.Z. Moshfegh, Well-designed Ag/ZnO/3D graphene structure for dye removal: Adsorption, photocatalysis and physical separation capabilities, Journal of Colloid and Interface Science, 537 (2019) 66-78.
[44] M. Mahanthappa, N. Kottam, S. Yellappa, Enhanced photocatalytic degradation of methylene blue dye using CuS-CdS nanocomposite under visible light irradiation, Applied Surface Science, 475 (2019) 828-838.
[45] J. Singh, V. Kumar, K.-H. Kim, M. Rawat, Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes, Environmental Research, 177 (2019) 1-12.
[46] T.A. Gadhi, S. Hernández, M. Castellino, P. Jagdale, T. Husak, A. Hernández-Gordillo, A. Tagliaferro, N. Russo, Insights on the role of β-Bi2O3/Bi5O7NO3 heterostructures synthesized by a scalable solid-state method for the sunlight-driven photocatalytic degradation of dyes, Catalysis Today, 321-322 (2019) 135-145.
[47] C. Namasivayam, D. Kavitha, Removal of congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste, Dyes and Pigments, 54 (2002) 47-58.
[48] I. Tosun Satır, F. Sayin, T. Gedikbey, S. Tunali Akar, A novel sorbent for removal of reactive textile dye: TDPA-KCl, Environmental Science and Pollution Research International, 26 (2019) 23279-23291.
[49] M.K. Uddin, U. Baig, Synthesis of Co3O4 nanoparticles and their performance towards methyl orange dye removal: characterisation, adsorption and response surface methodology, Journal of Cleaner Production, 211 (2019) 1141-1153.
[50] V.K. Garg, R. Gupta, A. Bala Yadav, R. Kumar, Dye removal from aqueous solution by adsorption on treated sawdust, Bioresource Technology, 89 (2003) 121-124.
[51] M. Wawrzkiewicz, E. Polska-Adach, Z. Hubicki, Polacrylic and polystyrene functionalized resins for direct dye removal from textile effluents, Separation Science and Technology, (2019) 1-15.
[52] Z. Yang, T.-A. Asoh, H. Uyama, Removal of cationic or anionic dyes from water using ion exchange cellulose monoliths as adsorbents, Bulletin of the Chemical Society of Japan, 92 (2019) 1453-1461.
[53] A.I. Waly, M.A. Khedr, H.M. Ali, B.Y. Riad, I.M. Ahmed, Synthesis and characterization of ion exchanger based on waste cotton for dye removal from wastewater, Egyptian Journal of Chemistry, 62 (2019) 451-468.
[54] J.-S. Wu, C.-H. Liu, K.H. Chu, S.-Y. Suen, Removal of cationic dye methyl violet 2B from water by cation exchange membranes, Journal of Membrane Science, 309 (2008) 239-245.
[55] F. Rafieian, M. Jonoobi, Q. Yu, A novel nanocomposite membrane containing modified cellulose nanocrystals for copper ion removal and dye adsorption from water, Cellulose, 26 (2019) 3359-3373.
[56] H. Koulivand, A. Shahbazi, V. Vatanpour, Fabrication and characterization of a high-flux and antifouling polyethersulfone membrane for dye removal by embedding Fe3O4-MDA nanoparticles, Chemical Engineering Research and Design, 145 (2019) 64-75.
[57] W. Chen, J. Mo, X. Du, Z. Zhang, W. Zhang, Biomimetic dynamic membrane for aquatic dye removal, Water Research, 151 (2019) 243-251.
[58] P.S. Kumar, K. Venkatesh, E.L. Gui, S. Jayaraman, G. Singh, G. Arthanareeswaran, Electrospun carbon nanofibers/TiO2-PAN hybrid membranes for effective removal of metal ions and cationic dye, Environmental Nanotechnology, Monitoring & Management, 10 (2018) 366-376.
[59] J. Mulder, Basic principles of membrane technology, 2 ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
[60] Y. Ying, W. Ying, Q. Li, D. Meng, G. Ren, R. Yan, X. Peng, Recent advances of nanomaterial-based membrane for water purification, Applied Materials Today, 7 (2017) 144-158.
[61] L.Y. Ng, A.W. Mohammad, C.P. Leo, N. Hilal, Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review, Desalination, 308 (2013) 15-33.
[62] J. Yin, B. Deng, Polymer-matrix nanocomposite membranes for water treatment, Journal of Membrane Science, 479 (2015) 256-275.
[63] H.P. Srivastava, G. Arthanareeswaran, N. Anantharaman, V.M. Starov, Performance of modified poly (vinylidene fluoride) membrane for textile wastewater ultrafiltration, Desalination, 282 (2011) 87-94.
[64] N.L. Le, S.P. Nunes, Materials and membrane technologies for water and energy sustainability, Sustainable Materials and Technologies, 7 (2016) 1-28.
[65] K.C. Khulbe, C.Y. Feng, T. Matsuura, Synthetic membranes for membrane processes, in: Synthetic polymeric membranes: characterization by atomic force microscopy, Springer-Verlag Berlin Heidelberg, Germany, 2008, pp. 5-18.
[66] Y.-L. Ji, W.-J. Qian, Y.-W. Yu, Q.-F. An, L.-F. Liu, Y. Zhou, C.-J. Gao, Recent developments in nanofiltration membranes based on nanomaterials, Chinese Journal of Chemical Engineering, 25 (2017) 1639-1652.
[67] R. Kumar, A. Ismail, Fouling control on microfiltration/ultrafiltration membranes: effects of morphology, hydrophilicity, and charge, Journal of Applied Polymer Science, 132 (2015) 1-20.
[68] M. Paul, S.D. Jons, Chemistry and fabrication of polymeric nanofiltration membranes: a review, Polymer, 103 (2016) 417-456.
[69] M.M. Pendergast, E.M. Hoek, A review of water treatment membrane nanotechnologies, Energy Environmental Science, 4 (2011) 1946-1971.
[70] M. Erkanlı, L. Yilmaz, P.Z. Çulfaz-Emecen, U. Yetis, Brackish water recovery from reactive dyeing wastewater via ultrafiltration, Journal of Cleaner Production, 165 (2017) 1204-1214.
[71] G.-D. Kang, Y.-M. Cao, Application and modification of poly (vinylidene fluoride)(PVDF) membranes – a review, Journal of Membrane Science, 463 (2014) 145-165.
[72] N. Nikooe, E. Saljoughi, Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution, Applied Surface Science, 413 (2017) 41-49.
[73] K. Ji, H. Xu, X. Ma, J. Yin, X. Jiang, Hyperbranched poly(ether amine)@poly(vinylidene fluoride) (hPEA@PVDF) porous membranes for selective adsorption and molecular filtration of hydrophilic dyes, Journal of Materials Chemistry A, 5 (2017) 10470-10479.
[74] G. Zeng, Z. Ye, Y. He, X. Yang, J. Ma, H. Shi, Z. Feng, Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater, Chemical Engineering Journal, 323 (2017) 572-583.
[75] Y.H. Tan, P.S. Goh, A.F. Ismail, B.C. Ng, G.S. Lai, Decolourization of aerobically treated palm oil mill effluent (AT-POME) using polyvinylidene fluoride (PVDF) ultrafiltration membrane incorporated with coupled zinc-iron oxide nanoparticles, Chemical Engineering Journal, 308 (2017) 359-369.
[76] S. Mohsenpour, A. Safekordi, M. Tavakolmoghadam, F. Rekabdar, M. Hemmati, Comparison of the membrane morphology based on the phase diagram using PVP as an organic additive and TiO2 as an inorganic additive, Polymer, 97 (2016) 559-568.
[77] L. Yan, Y.S. Li, C.B. Xiang, S. Xianda, Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance, Journal of Membrane Science, 276 (2006) 162-167.
[78] J. Ma, Y. Zhao, Z. Xu, C. Min, B. Zhou, Y. Li, B. Li, J. Niu, Role of oxygen-containing groups on MWCNTs in enhanced separation and permeability performance for PVDF hybrid ultrafiltration membranes, Desalination, 320 (2013) 1-9.
[79] Z. Wang, H. Yu, J. Xia, F. Zhang, F. Li, Y. Xia, Y. Li, Novel GO-blended PVDF ultrafiltration membranes, Desalination, 299 (2012) 50-54.
[80] Z. Zhu, J. Jiang, X. Wang, X. Huo, Y. Xu, Q. Li, L. Wang, Improving the hydrophilic and antifouling properties of polyvinylidene fluoride membrane by incorporation of novel nanohybrid GO@SiO2 particles, Chemical Engineering Journal, 314 (2017) 266-276.
[81] T. Uragami, Y. Naito, M. Sugihara, Studies on synthesis and permeability of special polymer membranes, Polymer Bulletin, 4 (1981) 617-622.
[82] N. Li, C. Xiao, S. An, X. Hu, Preparation and properties of PVDF/PVA hollow fiber membranes, Desalination, 250 (2010) 530-537.
[83] C.N.B. Elizalde, S. Al-Gharabli, J. Kujawa, M. Mavukkandy, S.W. Hasan, H.A. Arafat, Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance, Separation and Purification Technology, 190 (2018) 68-76.
[84] X.-M. Wang, X.-Y. Li, K. Shih, In situ embedment and growth of anhydrous and hydrated aluminum oxide particles on polyvinylidene fluoride (PVDF) membranes, Journal of membrane science, 368 (2011) 134-143.
[85] A. Anvari, A. Safekordi, M. Hemmati, F. Rekabdar, M. Tavakolmoghadam, A. Azimi Yancheshme, A. Gheshlaghi, Enhanced separation performance of PVDF/PAN blend membrane based on PVP tuning, Desalination and Water Treatment, 57 (2016) 12090-12098.
[86] L. Marbelia, M.R. Bilad, A. Piassecka, P.S. Jishna, P.V. Naik, I.F. Vankelecom, Study of PVDF asymmetric membranes in a high-throughput membrane bioreactor (HT-MBR): influence of phase inversion parameters and filtration performance, Separation and Purification Technology, 162 (2016) 6-13.
[87] E. Saljoughi, T. Mohammadi, Cellulose acetate (CA)/polyvinylpyrrolidone (PVP) blend asymmetric membranes: preparation, morphology and performance, Desalination, 249 (2009) 850-854.
[88] S. Deshmukh, K. Li, Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes, Journal of Membrane Science, 150 (1998) 75-85.
[89] F. Pendolino, N. Armata, Synthesis, characterization and models of graphene oxide, in: Graphene oxide in environmental remediation process, Springer International Publishing, Cham, Switzerland, 2017, pp. 5-21.
[90] X. Wang, M. Feng, Y. Liu, H. Deng, J. Lu, Fabrication of graphene oxide blended polyethersulfone membranes via phase inversion assisted by electric field for improved separation and antifouling performance, Journal of Membrane Science, 577 (2019) 41-50.
[91] S. Xia, M. Ni, Preparation of poly(vinylidene fluoride) membranes with graphene oxide addition for natural organic matter removal, Journal of Membrane Science, 473 (2015) 54-62.
[92] W.C. Chong, E. Mahmoudi, Y.T. Chung, C.H. Koo, A.W. Mohammad, K.F. Kamarudin, Improving performance in algal organic matter filtration using polyvinylidene fluoride – graphene oxide nanohybrid membranes, Algal Research, 27 (2017) 32-42.
[93] R. Mukherjee, P. Bhunia, S. De, Impact of graphene oxide on removal of heavy metals using mixed matrix membrane, Chemical Engineering Journal, 292 (2016) 284-297.
[94] D. Ji, C. Xiao, S. An, J. Zhao, J. Hao, K. Chen, Preparation of high-flux PSF/GO loose nanofiltration hollow fiber membranes with dense-loose structure for treating textile wastewater, Chemical Engineering Journal, 363 (2019) 33-42.
[95] N. Koutahzadeh, M.R. Esfahani, P.E. Arce, Sequential use of UV/H2O2  (PSF/TiO2/MWCNT) mixed matrix membranes for dye removal in water purification: membrane permeation, fouling, rejection, and decolorization, Environmental Engineering Science, 33 (2016) 430-440.
[96] T. Chidambaram, Y. Oren, M. Noel, Fouling of nanofiltration membranes by dyes during brine recovery from textile dye bath wastewater, Chemical Engineering Journal, 262 (2015) 156-168.
[97] T. Chidambaram, M. Noel, Y. Oren, Selective separation of dyes and brine recovery from textile wastewater by nanofiltration membranes, Chemical Engineering Technology, 41 (2018) 185-293.
[98] J. Lin, W. Ye, M.-C. Baltaru, Y.P. Tang, N.J. Bernstein, P. Gao, S. Balta, M. Vlad, A. Volodin, A. Sotto, P. Luis, A.L. Zydney, B. Van der Bruggen, Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment, Journal of Membrane Science, 514 (2016) 217-228.
[99] C. Liu, H. Mao, J. Zheng, S. Zhang, Tight ultrafiltration membrane: preparation and characterization of thermally resistant carboxylated cardo poly (arylene ether ketone)s (PAEK-COOH) tight ultrafiltration membrane for dye removal, Journal of Membrane Science, 530 (2017) 1-10.
[100] N. Askari, M. Farhadian, A. Razmjou, H. Hashtroodi, Nanofiltration performance in the removal of dye from binary mixtures containing anthraquinone dyes, Desalination and Water Treatment, 57 (2016) 18194-18201.
[101] H.-C. Yang, J.-L. Gong, G.-M. Zeng, P. Zhang, J. Zhang, H.-Y. Liu, S.-Y. Huan, Polyurethane foam membranes filled with humic acid-chitosan crosslinked gels for selective and simultaneous removal of dyes, Journal of Colloid and Interface Science, 505 (2017) 67-78.
[102] C. Liu, L. Cheng, Y. Zhao, L. Zhu, Interfacially crosslinked composite porous membranes for ultrafast removal of anionic dyes from water through permeating adsorption, Journal of Hazardous Materials, 337 (2017) 217-225.
[103] Z. Xu, J. Zhang, M. Shan, Y. Li, B. Li, J. Niu, B. Zhou, X. Qian, Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes, Journal of Membrane Science, 458 (2014) 1-13.
[104] J. Zhang, Z. Xu, M. Shan, B. Zhou, Y. Li, B. Li, J. Niu, X. Qian, Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes, Journal of Membrane Science, 448 (2013) 81-92.
[105] X.-H. Liu, J. Duan, J.-H. Yang, T. Huang, N. Zhang, Y. Wang, Z.-W. Zhou, Hydrophilicity, morphology and excellent adsorption ability of poly(vinylidene fluoride) membranes induced by graphene oxide and polyvinylpyrrolidone, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 486 (2015) 172-184.
[106] X. Chang, Z. Wang, S. Quan, Y. Xu, Z. Jiang, L. Shao, Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance, Applied Surface Science, 316 (2014) 537-548.
[107] C.S. Ramya, S. Selvasekarapandian, T. Savitha, G. Hirankumar, R. Baskaran, M.S. Bhuvaneswari, P.C. Angelo, Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone), European Polymer Journal, 42 (2006) 2672-2677.
[108] Ashland Inc., PVP  polyvinylpyrrolidone polymers, Kentucky, USA, 2013, p.7.
[109] Y. Guo, J. Zhao, H. Zhang, S. Yang, J. Qi, Z. Wang, H. Xu, Use of rice husk-based porous carbon for adsorption of rhodamine B from aqueous solutions, Dyes and Pigments, 66 (2005) 123-128.
[110] Y. Gao, Y. Wang, H. Zhang, Removal of rhodamine B with Fe-supported bentonite as heterogeneous photo-fenton catalyst under visible irradiation, Applied Catalysis B: Environmental, 178 (2015) 29-36.
[111] G.L. Dotto, J.M.N. Santos, I.L. Rodrigues, R. Rosa, F.A. Pavan, E.C. Lima, Adsorption of methylene blue by ultrasonic surface modified chitin, Journal of Colloid and Interface Science, 446 (2015) 133-140.
[112] J.R. Kim, B. Santiano, H. Kim, E. Kan, Heterogeneous oxidation of methylene blue with surface-modified iron-amended activated carbon, American Journal of Analytical Chemistry, 4 (2013) 115-122.
[113] S. Loera-Serna, E. Ortiz, H.I. Beltrán, First trial and physicochemical studies on the loading of basic fuchsin, crystal violet and black eriochrome T on HKUST-1, New Journal of Chemistry, 41 (2017) 3097-3105.
[114] P. Kaur, N. Rajani, P. Kumawat, N. Singh, J.P. Kushwaha, Performance and mechanism of dye extraction from aqueous solution using synthesized deep eutectic solvents, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 539 (2018) 85-91.
[115] J. Galán, A. Rodríguez, J.M. Gómez, S.J. Allen, G.M. Walker, Reactive dye adsorption onto a novel mesoporous carbon, Chemical Engineering Journal, 219 (2013) 62-68.
[116] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806-4814.
[117] N.M. Huang, H.N. Lim, C.H. Chia, M.A. Yarmo, M.R. Muhamad, Simple room-temperature preparation of high-yield large-area graphene oxide, International Journal of Nanomedicine, 6 (2011) 3443-3448.
[118] D.Y. Zuo, H.J. Li, Membrane formation mechanism for water-solvent-PVDF systems and membrane structure for ultrafiltration application, Advanced Materials Research, 578 (2012) 129-132.
[119] A. Ahmad, N. Ideris, B. Ooi, S. Low, A. Ismail, Influence of polymer concentration on PVDF membrane fabrication for immunoassay analysis, Journal of Applied Sciences, 14 (2014) 1299-1303.
[120] M. Mertens, T. Van Dyck, C. Van Goethem, A.Y. Gebreyohannes, I.F.J. Vankelecom, Development of a polyvinylidene difluoride membrane for nanofiltration, Journal of Membrane Science, 557 (2018) 24-29.
[121] M. Enayatzadeh, T. Mohammadi, Morphology and performance of poly (vinylidene fluoride) flat sheet membranes: thermodynamic and kinetic aspects, Journal of Applied Polymer Science, 135 (2018) 46419.
[122] F. Baskoro, C.-B. Wong, S.R. Kumar, C.-W. Chang, C.-H. Chen, D.W. Chen, S.J. Lue, Graphene oxide-cation interaction: inter-layer spacing and zeta potential changes in response to various salt solutions, Journal of Membrane Science, 554 (2018) 253-263.
[123] D. Hou, H. Fan, Q. Jiang, J. Wang, X. Zhang, Preparation and characterization of PVDF flat-sheet membranes for direct contact membrane distillation, Separation and Purification Technology, 135 (2014) 211-222.
[124] S. Kus, Z. Marczenko, N. Obarski, Derivative UV–VIS spectrophotometry in analytical chemistry, Chemia Analityczna, 41 (1996) 899-927.
[125] A. Bottino, G. Camera-Roda, G. Capannelli, S. Munari, The formation of microporous polyvinylidene difluoride membranes by phase separation, Journal of Membrane Science, 57 (1991) 1-20.
[126] S. Devi, P. Ray, K. Singh, P.S. Singh, Preparation and characterization of highly micro-porous PVDF membranes for desalination of saline water through vacuum membrane distillation, Desalination, 346 (2014) 9-18.
[127] H. Bai, X. Wang, Y. Zhou, L. Zhang, Preparation and characterization of poly (vinylidene fluoride) composite membranes blended with nano-crystalline cellulose, Progress in Natural Science: Materials International, 22 (2012) 250-257.
[128] H. Yuan, J. Ren, Preparation of poly(vinylidene fluoride) (PVDF)/acetalyzed poly(vinyl alcohol) ultrafiltration membrane with the enhanced hydrophilicity and the anti-fouling property, Chemical Engineering Research and Design, 121 (2017) 348-359.
[129] I.A. Ike, L.F. Dumée, A. Groth, J.D. Orbell, M. Duke, Effects of dope sonication and hydrophilic polymer addition on the properties of low pressure PVDF mixed matrix membranes, Journal of Membrane Science, 540 (2017) 200-211.
[130] X. Cai, T. Lei, D. Sun, L. Lin, A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR, RSC Advances, 7 (2017) 15382-15389.
[131] S. Park, Y. Kim, S.-Y. Kwak, Versatile surface charge-mediated anti-fouling UF/MF membrane comprising charged hyperbranched polyglycerols (HPGs) and PVDF membranes, RSC Advances, 6 (2016) 88959-88966.
[132] A. Schulze, M. Went, A. Prager, Membrane functionalization with hyperbranched polymers, Materials, 9 (2016) 1-11.
[133] Q. Ding, H. Yamamura, N. Murata, N. Aoki, H. Yonekawa, A. Hafuka, Y. Watanabe, Characteristics of meso-particles formed in coagulation process causing irreversible membrane fouling in the coagulation-microfiltration water treatment, Water Research, 101 (2016) 127-136.
[134] S.G. Salinas-Rodriguez, G.L. Amy, J.C. Schippers, M.D. Kennedy, The modified fouling index ultrafiltration constant flux for assessing particulate/colloidal fouling of RO systems, Desalination, 365 (2015) 79-91.
[135] A. Abdelrasoul, H. Doan, A. Lohi, Membrane fouling remediation in ultrafiltration of latex contaminated wastewater, Water Quality Research Journal, 51 (2016) 256-269.
[136] Z.-L. Qiu, X. Kong, J.-J. Yuan, Y.-J. Shen, B.-k. Zhu, L.-P. Zhu, Z.-K. Yao, C.Y. Tang, Cross-linked PVC/hyperbranched polyester composite hollow fiber membranes for dye removal, Reactive and Functional Polymers, 122 (2018) 51-59.
[137] A.K. Shukla, J. Alam, M. Alhoshan, L.A. Dass, M.R. Muthumareeswaran, Development of a nanocomposite ultrafiltration membrane based on polyphenylsulfone blended with graphene oxide, Scientific Reports, 7 (2017) 1-12.
[138] E.S. Mansor, T.S. Jamil, H. Abdallah, A.M. Shaban, Highly thin film nanocomposite membrane based metal organic complexes for brackish water desalination, Journal of Environmental Chemical Engineering, 6 (2018) 5459-5469.
[139] M.J. Citra, Estimating the pKa of phenols, carboxylic acids and alcohols from semi-empirical quantum chemical methods, Chemosphere, 38 (1999) 191-206.
[140] A. Bouazizi, M. Breida, B. Achiou, M. Ouammou, J.I. Calvo, A. Aaddane, S.A. Younssi, Removal of dyes by a new nano–TiO2 ultrafiltration membrane deposited on low-cost support prepared from natural Moroccan bentonite, Applied Clay Science, 149 (2017) 127-135.
[141] P. Djomgoue, M. Siewe, E. Djoufac, P. Kenfack, D. Njopwouo, Surface modification of Cameroonian magnetite rich clay with eriochrome black T  application for adsorption of nickel in aqueous solution, Applied Surface Science, 258 (2012) 7470-7479.
[142] J. Jebaramya, M. Ilanchelian, S. Prabahar, Spectral studies of toluidine blue O in the presence of sdodium dodecyl sulfate, Digest Journal of Nanomaterials and Biostructures, 4 (2009) 789-797.
[143] S. Maya, M. Giridhar, B. Suryasarathi, PVDF membranes containing hybrid nanoparticles for adsorbing cationic dyes: physical insights and mechanism, Materials Research Express, 3 (2016) 1-14.
[144] H. Ma, C. Burger, B.S. Hsiao, B. Chu, Nanofibrous microfiltration membrane based on cellulose nanowhiskers, Biomacromolecules, 13 (2011) 180-186.
[145] D.A. Gopakumar, D. Pasquini, M.A. Henrique, L.C. de Morais, Y. Grohens, S. Thomas, Meldrum’s acid modified cellulose nanofiber-based polyvinylidene fluoride microfiltration membrane for dye water treatment and nanoparticle removal, ACS Sustainable Chemistry & Engineering, 5 (2017) 2026-2033.
[146] A. Ghaffar, L. Zhang, X. Zhu, B. Chen, Porous PVDF/GO nanofibrous membranes for selective separation and recycling of charged organic dyes from water, Environmental Science & Technology, 52 (2018) 4265-4274.
[147] X.-N. Chen, L.-S. Wan, Q.-Y. Wu, S.-H. Zhi, Z.-K. Xu, Mineralized polyacrylonitrile-based ultrafiltration membranes with improved water flux and rejection towards dye, Journal of Membrane Science, 441 (2013) 112-119.
[148] J. Wang, S. Yang, W. Guo, H.-H. Ngo, H. Jia, J. Yang, H. Zhang, X. Zhang, Characterization of fouling layers for in-line coagulation membrane fouling by apparent zeta potential, RSC Advances, 5 (2015) 106087-106093.
[149] A. Świerczyńska, J. Bohdziewicz, G. Kamińska, K. Wojciechowski, Influence of the type of membrane-forming polymer on the membrane fouling, Environment Protection Engineering, 42 (2016) 197-210.
[150] W.-T. Chang, Y.-H. Chao, C.-W. Li, K.-L. Lin, J.-J. Wang, S.R. Kumar, S.J. Lue, Graphene oxide synthesis using microwave-assisted vs. modified Hummer's methods: efficient fillers for improved ionic conductivity and suppressed methanol permeability in alkaline methanol fuel cell electrolytes, Journal of Power Sources, 414 (2019) 86-95.
[151] C.H. Nguyen, R.-S. Juang, Efficient removal of methylene blue dye by a hybrid adsorption–photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse, Journal of Industrial and Engineering Chemistry, 76 (2019) 296-309.
[152] T.T.T. Vi, S. Rajesh Kumar, B. Rout, C.-H. Liu, C.-B. Wong, C.-W. Chang, C.-H. Chen, D.W. Chen, S.J. Lue, The preparation of graphene oxide-silver nanocomposites: the effect of silver loads on gram-positive and gram-negative antibacterial activities, Nanomaterials, 8 (2018) 1-15.
[153] O. Sterner, A. Serrano, S. Mieszkin, S. Zürcher, S. Tosatti, M.E. Callow, J.A. Callow, N.D. Spencer, Photochemically prepared, two-component polymer-concentration gradients, Langmuir, 29 (2013) 13031-13041.
[154] M. Iliut, C. Leordean, V. Canpean, C.-M. Teodorescu, S. Astilean, A new green, ascorbic acid-assisted method for versatile synthesis of Au-graphene hybrids as efficient surface-enhanced Raman scattering platforms, Journal of Materials Chemistry C, 1 (2013) 4094-4104.
[155] L. İsrael, Ç. Güler, H. Yilmaz, S. Güler, The adsorption of polyvinylpyrrolidone on kaolinite saturated with sodium chloride, Journal of Colloid and Interface Science, 238 (2001) 80-84.
[156] K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis, Dalton Transactions, 44 (2015) 17883-17905.
[157] L. Zeng, T. Zhao, L. Wei, Y. Zeng, Z. Zhang, Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries, Journal of Power Sources, 327 (2016) 374-383.
[158] L. Espinal, Porosity and its measurement, in: E.N. Kaufmann (Ed.) Characterization of materials, John Wiley & Sons, Inc., New Jersey, USA, 2012, pp. 1-9.
[159] N.N. Li, A.G. Fane, W.W. Ho, T. Matsuura, Advanced membrane technology and applications, John Wiley & Sons, Inc., New Jersey, USA, 2011.
[160] T. Cai, R. Wang, K. Neoh, E. Kang, Functional poly (vinylidene fluoride) copolymer membranes via surface-initiated thiol-ene click reactions, Polymer Chemistry, 2 (2011) 1849-1858.
[161] T.T.V. Tran, S.R. Kumar, S.J. Lue, Separation mechanisms of binary dye mixtures using a PVDF ultrafiltration membrane: Donnan effect and intermolecular interaction, Journal of Membrane Science, 575 (2019) 38-49.
[162] Y. Zhang, S. Jiang, Y. Yu, G. Xiong, Q. Zhang, G. Guang, Phase transformation mechanisms and piezoelectric properties of poly (vinylidene fluoride)/montmorillonite composite, Journal of Applied Polymer Science, 123 (2012) 2595-2600.
[163] A.A. Yousefi, Hybrid polyvinylidene fluoride/nanoclay/MWCNT nanocomposites: PVDF crystalline transformation, Iranian Polymer Journal, 20 (2011) 725-733.
[164] S. Bodkhe, P.S.M. Rajesh, S. Kamle, V. Verma, Beta-phase enhancement in polyvinylidene fluoride through filler addition: comparing cellulose with carbon nanotubes and clay, Journal of Polymer Research, 21 (2014) 1-11.
[165] L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, X. Zhang, Properties and applications of the β phase poly (vinylidene fluoride), Polymers, 10 (2018) 1-17.
[166] S. Abdalla, A. Obaid, F.M. Al-Marzouki, Preparation and characterization of poly(vinylidene fluoride): a high dielectric performance nano-composite for electrical storage, Results in Physics, 6 (2016) 617-626.
[167] J. Ai, L. Yang, G. Liao, H. Xia, F. Xiao, Applications of graphene oxide blended poly(vinylidene fluoride) membranes for the treatment of organic matters and its membrane fouling investigation, Applied Surface Science, 455 (2018) 502-512.
[168] M.A. Islam, M. Ulbricht, Microfiltration membrane characterization by gas-liquid displacement porometry: matching experimental pore number distribution with liquid permeability and bulk porosity, Journal of Membrane Science, 569 (2019) 104-116.
[169] R.G. Holdich, Fluid flow through porous media, in: Fundamentals of particle technology, Midland Information Technology and Publishing, Loughborough, UK, 2002, pp. 21-28.
[170] M. Mänttäri, A. Pihlajamäki, M. Nyström, Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH, Journal of Membrane Science, 280 (2006) 311-320.
[171] J. Luo, Y. Wan, Effects of pH and salt on nanofiltration  a critical review, Journal of Membrane Science, 438 (2013) 18-28.
[172] Y. Zhang, J. Wang, L. Wang, R. Feng, F. Zhang, Study on QPVA/TEOS hybrid anion membrane functionalized with quaternary ammonium groups for adsorption of rhodamine B from aqueous solutions, Journal of the Iranian Chemical Society, 14 (2017) 9-18.
電子全文 電子全文(網際網路公開日期:20241222)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊