跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/15 13:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳則翰
研究生(外文):Ze Han Chen
論文名稱:利用官能基化中孔洞二氧化矽SBA-15自模擬血清中清除尿毒素
論文名稱(外文):Use of Functionalized Mesoporous Silica SBA-15 for the Clearance of Uremic Toxins from Simulated Serum
指導教授:莊瑞鑫莊瑞鑫引用關係
指導教授(外文):R. S. Juang
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:125
中文關鍵詞:SBA-15尿毒素吸附尿素馬尿酸
外文關鍵詞:SBA-15Uremic adsorptionUreaHippuric acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
指導教授推薦書
口試委員審定書
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 x
表目錄 xiii
第一章 緒論 1
1.1 研究緣起 1
1.2 研究動機與目標 2
1.3 腎臟及尿毒症成因 4
1.4 尿毒素 5
1.5 人工腎臟 8
1.5.1 人工腎臟的起源 8
1.5.2 腹膜透析 10
1.5.3 人工腎臟現況 13
1.6 多孔二氧化矽 13
1.6.1 多孔材料簡介 13
1.6.2 多孔矽之發展 16
1.6.3 反應機制 21
1.6.4 中孔二氧化矽SBA-15 21
1.6.5 官能基化SBA-15 23
1.6.6 尿毒素吸附之現況 25
1.7 吸附現象 26
1.8 液相等溫吸附理論 28
1.8.1 Freundlich 等溫吸附模式 29
1.8.2 Langmuir等溫吸附模式 30
1.9 動態吸附理論 30
第二章 實驗部分 33
2.1 實驗儀器與藥品 33
2.1.1 實驗藥品 33
2.1.2 實驗儀器 34
2.2 實驗步驟 36
2.2.1 中孔二氧化矽(SBA-15)粉末製備 36
2.2.2 胺官能基化中孔二氧化矽(SBA-15)粉末製備 36
2.2.3 磷酸鹽緩衝溶液(PBS Buffer) 37
2.2.4 批次等溫吸附實驗 37
2.2.5 雙成分吸附實驗 37
2.2.6 動態吸附實驗 38
2.2.7 重複再利用性實驗 39
2.3 儀器分析 39
2.3.1 BET分析 39
2.3.2 FT-IR 分析 40
2.3.3 HPLC 分析 40
2.3.4 XRD 分析 43
2.3.5 TGA 分析 44
2.3.6 FE-SEM 分析 44
2.3.7 TEM 分析 45
2.3.8 雷射粒徑分析 46
第三章 結果與討論 47
3.1 FE-SEM分析 47
3.2 TEM分析 49
3.3 XRD分析 50
3.4 FT-IR分析 52
3.5 BET分析 55
3.6 TGA分析 60
3.7 Zeta potential分析 62
3.8 雷射粒徑分析 63
3.9 等溫吸附實驗 64
3.10 動態吸附實驗 74
3.11 雙成分吸附實驗 86
3.12 重複再利用性實驗 90
3.13 生物相容性之討論 92
第四章 結論 93
第五章 參考文獻 95

圖目錄
圖 1.4 1 各尿毒素結構式 8
圖 1.5 1 人工可穿戴式移動腎臟(AWAK)示意圖 (William, 2013) 11
圖 1.5 2 人工可穿戴式移動腎(AWAK)使用單腔腹膜透析進入導管,因此腹膜流出物被泵入AWAK(上圖)或返回患者(下圖)(William, 2013) 12
圖 1.6 1 IUPAC多孔材料分類 (Chaudhary, 2017) 15
圖 1.6 2 SBA-15合成示意圖 (Vasu, 2017) 22
圖 2.3 1 超濾膜過濾模組 43
圖 3.1 1 SBA-15 5k,10k(A,B)及SBA-15-APTES 5k,10k(C,D)之SEM圖像 48
圖 3.2 1 SBA-15 210k及540k倍率之TEM圖像 50
圖 3.2 2 SBA-15-APTES 750k及430k截面之TEM圖像 50
圖 3.3 1 SBA-15及SBA-15-APTES XRD分析圖 52
圖 3.4 1 SBA-15及SBA-15-APTES結構示意圖 54
圖 3.4 2 SBA-15及SBA-15-APTES IR光譜圖 54
圖 3.5 1 SBA-15氮氣吸脫附等溫曲線圖 56
圖 3.5 2 SBA-15-APTES-0.05氮氣吸脫附等溫曲線圖 57
圖 3.5 3 SBA-15-APTES-0.1氮氣吸脫附等溫曲線圖 57
圖 3.5 4 SBA-15-APTES-0.2氮氣吸脫附等溫曲線圖 58
圖 3.5 5 SBA-15及各反應濃度之孔徑分佈圖 59
圖 3.6 1 SBA-15及SBA-15-APTES不同反應濃度之熱重損失分析圖 61
圖 3.7 1 SBA-15-APTES-0.02之Zeta potential結果 63
圖 3.8 1 SBA-15之雷射粒徑分布圖 64
圖 3.9 1 SBA-15及各反應濃度在Urea中之等溫吸附曲線圖 70
圖 3.9 2 SBA-15及各反應濃度在Creatinine中之等溫吸附曲線圖 70
圖 3.9 3 SBA-15及各反應濃度在Hippuric acid中之等溫吸附曲線圖 71
圖 3.9 4 SBA-15-APTES吸附尿素前後之IR分析圖 73
圖 3.9 5 SBA-15吸附馬尿酸前後之IR分析圖 73
圖 3.10 1 SBA-15與不同APTES濃度之吸附尿素時間動態 75
圖 3.10 2 SBA-15與不同APTES濃度之吸附肌酸酐時間動態 76
圖 3.10 3 SBA-15與不同APTES濃度之吸附馬尿酸時間動態 76
圖 3.10 4 SBA-15與不同APTES濃度吸附尿素之偽一階線性圖 77
圖 3.10 5 SBA-15與不同APTES濃度吸附肌酸酐之偽一階線性圖 77
圖 3.10 6 SBA-15與不同APTES濃度吸附馬尿酸之偽一階線性圖 78
圖 3.10 7 SBA-15與不同APTES濃度吸附尿素之偽二階線性圖 78
圖 3.10 8 SBA-15與不同APTES濃度吸附肌酸酐之偽二階線性圖 79
圖 3.10 9 SBA-15與不同APTES濃度吸附馬尿酸之偽二階線性圖 79
圖 3.10 10 SBA-15與不同APTES濃度吸附尿素之Elovich線性圖 80
圖 3.10 11 SBA-15與不同APTES濃度吸附肌酸酐之Elovich線性圖 80
圖 3.10 12 SBA-15與不同APTES濃度吸附馬尿酸之Elovich線性圖 81
圖 3.11 1 SBA-15及SBA-15-APTES在雙成分系統之等溫吸附曲線圖 88
圖 3.12 1 重覆再利用性結果圖 91

表目錄
表 1.1 1 107年國人十大死因 2
表 1.6 1 不同中孔材料的合成方法(Vasu, 2017) 19
表 1.6 2 不同中孔材料的性質(Vasu, 2017) 20
表 1.7 1 物理吸附與化學吸附之比較 28
表 2.3 1 不同尿毒素之偵測波長 42
表 3.1 1 SBA-15及SBA-15-APTES EDS-Mapping元素分布 48
表 3.5 1 SBA-15及各反應濃度之氮氣吸脫附分析結果 59
表 3.6 1 SBA-15及SBA-15-APTES不同反應濃度之熱重損失百分比 62
表 3.9 1 尿素及肌酸酐之吸附量文獻比較 68
表 3.9 2 馬尿酸之吸附量文獻比較 69
表 3.9 3 SBA-15及各反應濃度在Urea中之等溫吸附耦合參數 71
表 3.9 4 SBA-15及各反應濃度在Creatinine中之等溫吸附耦合參數 72
表 3.9 5 SBA-15及各反應濃度在Hippuric中之等溫吸附耦合參數 72
表 3.10 1 不同APTES濃度之尿素吸附動力學參數 82
表 3.10 2 不同APTES濃度之肌酸酐吸附動力學參數 83
表 3.10 3 不同APTES濃度之馬尿酸吸附動力學參數 84
表 3.10 4 各成分2nd order與理論吸附量比較 85
表 3.11 1 SBA-15在雙成分系統中之等溫吸附耦合參數 89
表 3.11 2 Urea 2300ppm Hippuric acid 250ppm之吸附數據 90
Antonietti, M., & Göltner, C. J. A. C. I. E. i. E. Superstructures of functional colloids: chemistry on the nanometer scale. Angewandte Chemie International Edition in English, 36(9) (1997). 910-928.
Aucella, F., Gesuete, A., Vigilante, M., & Prencipe, M. Adsorption dialysis: from physical principles to clinical applications. Blood purification, 35 Suppl 2 (2013). 42-47.
Azizian, S. Kinetic models of sorption: a theoretical analysis. Journal of colloid and Interface Science, 276(1) (2004). 47-52.
Bérubé, F., Kleitz, F., & Kaliaguine, S. Surface properties and epoxidation catalytic activity of Ti-SBA15 prepared by direct synthesis. Journal of Materials Science, 44(24) (2009). 6727-6735.
Bammens, B., Evenepoel, P., Verbeke, K., & Vanrenterghem, Y. Removal of middle molecules and protein-bound solutes by peritoneal dialysis and relation with uremic symptoms. Kidney International, 64(6) (2003). 2238-2243.
Beck, J. S., Vartuli, J., Roth, W. J., Leonowicz, M., Kresge, C., Schmitt, K. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27) (1992). 10834-10843.
Benamor, T., Vidal, L., Lebeau, B., & Marichal, C. Influence of synthesis parameters on the physico-chemical characteristics of SBA-15 type ordered mesoporous silica. Microporous and Mesoporous Materials, 153 (2012). 100-114.
Berggren, A., Palmqvist, A. E. C., & Holmberg, K. Surfactant-templated mesostructured materials from inorganic silica. Soft Matter, 1(3) (2005).
Boland, J. J. Scanning tunnelling microscopy of the interaction of hydrogen with silicon surfaces. Advances in Physics, 42(2) (1993). 129-171.
Brzezinski, B., & Zundel, G. “Symmetrical” and asymmetrical (NH⋯ N)+ hydrogen bonds. Infrared investigations. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 72 (1976). 2127-2137.
Burkett, S. L., Sims, S. D., & Mann, S. Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chemical Communications, (11) (1996). 1367-1368.
Cheah, W.-K., Sim, Y.-L., & Yeoh, F.-Y. Amine-functionalized mesoporous silica for urea adsorption. Materials Chemistry and Physics, 175 (2016). 151-157.
Da’na, E., & Sayari, A. Optimization of copper removal efficiency by adsorption on amine-modified SBA-15: Experimental design methodology. Chemical Engineering Journal, 167(1) (2011). 91-98.
Dallet, P., Labat, L., Kummer, E., Dubost, J. J. J. o. C. B. B. S., & Applications. Determination of urea, allantoin and lysine pyroglutamate in cosmetic samples by hydrophilic interaction chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 742(2) (2000). 447-452.
Davenport, A., Gura, V., Ronco, C., Beizai, M., Ezon, C., & Rambod, E. A wearable haemodialysis device for patients with end-stage renal failure: a pilot study. The Lancet, 370(9604) (2007). 2005-2010.
Doadrio, A. L., Sánchez-Montero, J. M., Doadrio, J. C., Salinas, A. J., & Vallet-Regí, M.. A molecular model to explain the controlled release from SBA-15 functionalized with APTES. Microporous and mesoporous materials, 195 (2014), 43-49
Fathi Vavsari, V., Mohammadi Ziarani, G., & Badiei, A. The role of SBA-15 in drug delivery. RSC Advances, 5(111) (2015). 91686-91707.
Firouzi, A., Atef, F., Oertli, A., Stucky, G., & Chmelka, B. J. J. o. t. A. C. S. Alkaline lyotropic silicate− surfactant liquid crystals. Journal of the American Chemical Society. 119(15) (1997). 3596-3610.
Fissell, W. H., Roy, S., & Davenport, A. Achieving more frequent and longer dialysis for the majority: wearable dialysis and implantable artificial kidney devices. Kidney Internation, 84(2) (2013). 256-264.
Flegler, S. L., & Flegler, S. L. (1997). Scanning & Transmission Electron Microscopy: Oxford University Press.
Foo, K. Y., & Hameed, B. H. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1) (2010). 2-10.
Franchi, R. S., Harlick, P. J., & Sayari, A. Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO2. Industrial & Engineering Chemistry Research, 44(21) (2005). 8007-8013.
Galarneau, A., Nader, M., Guenneau, F., Di Renzo, F., & Gedeon, A. Understanding the Stability in Water of Mesoporous SBA-15 and MCM-41. The Journal of Physical Chemistry C, 111(23) (2007). 8268-8277.
Gura, V., Davenport, A., Beizai, M., Ezon, C., & Ronco, C. Beta2-microglobulin and phosphate clearances using a wearable artificial kidney: a pilot study. American Journal of Kidney Diseases, 54(1) (2009). 104-111.
Gura, V., Ronco, C., & Davenport, A. The wearable artificial kidney, why and how: from holy grail to reality. In Seminars in dialysis (Vol. 22, No. 1, pp. 13-17), 22(1) (2009). 13-17.
Hakiki, A., Boukoussa, B., Habib Zahmani, H., Hamacha, R., Hadj Abdelkader, N. e. H., Bekkar, F., . . . Azzouz, A. Synthesis and characterization of mesoporous silica SBA-15 functionalized by mono-, di-, and tri-amine and its catalytic behavior towards Michael addition. Materials Chemistry and Physics, 212 (2018). 415-425.
Hashemikia, S., Hemmatinejad, N., Ahmadi, E., & Montazer, M.. A novel cotton fabric with anti-bacterial and drug delivery properties using SBA-15-NH2/polysiloxane hybrid containing tetracycline. Materials Science and Engineering, 59 (2016). 429-437.
Huo, Q., Margolese, D. I., & Stucky, G. D. J. C. o. M. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chemistry of Materials, 8(5) (1996). 1147-1160.
Imran, G., & Maheswari, R. Mn-incorporated SBA-1 cubic mesoporous silicates: Synthesis and characterization. Materials Chemistry and Physics, 161 (2015). 237-242.
Ishikawa, T., Matsuda, M., Yasukawa, A., Kandori, K., Inagaki, S., Fukushima, T., & Kondo, S. Surface silanol groups of mesoporous silica FSM-16. Journal of the Chemical Society, Faraday Transactions, 92(11) (1996). 1985-1989.
Ji, G., Zhu, G., Wang, X., Wei, Y., Yuan, J., Gao, C. J. S., & Technology, P. Preparation of amidoxime functionalized SBA-15 with platelet shape and adsorption property of U (VI). 174 (2017). 455-465.
Kameda, T., Ito, S., & Yoshioka, T. Kinetic and equilibrium studies of urea adsorption onto activated carbon: Adsorption mechanism. Journal of Dispersion Science and Technology, 38(7) (2017). 1063-1066.
Kosslick, H., Lischke, G., Parlitz, B., Storek, W., & Fricke, R. Acidity and active sites of Al-MCM-41. Applied Catalysis A: General, 184(1) (1999). 49-60.
Lee, D. B., & Roberts, M. A peritoneal-based automated wearable artificial kidney. Clinical and experimental nephrology, 12(3) (2008). 171-180.
Lekawanvijit, S., Kompa, A. R., & Krum, H. Protein-bound uremic toxins: a long overlooked culprit in cardiorenal syndrome. American Journal of Physiology-Renal Physiology, 311(1) (2016). F52-62.
Lesaffer, G., De Smet, R., Lameire, N., Dhondt, A., Duym, P., & Vanholder, R. Intradialytic removal of protein-bound uraemic toxins: role of solute characteristics and of dialyser membrane. Nephrology Dialysis Transplantation, 15(1) (2000). 50-57.
Lin, S., Shi, L., Yu, T., Li, X., Yi, X., & Zheng, A. Plug precursor assisted synthesis: A highly efficient method of tuning the acidic and structural properties of Al-SBA-15. Microporous and Mesoporous Materials, 207 (2015). 111-119.
Liu, Y. New insights into pseudo-second-order kinetic equation for adsorption. Colloids and Surfaces A: physicochemical and engineering aspects, 320(1-3) (2008). 275-278.
Lu, L., Samarasekera, C., & Yeow, J. T. Creatinine adsorption capacity of electrospun polyacrylonitrile (PAN)‐zeolite nanofiber membranes for potential artificial kidney applications. Journal of Applied Polymer Science, 132(34) (2015).
Luan, Z., Fournier, J. A., Wooten, J. B., Miser, D. E. J. M., & materials, m. Preparation and characterization of (3-aminopropyl) triethoxysilane-modified mesoporous SBA-15 silica molecular sieves. Microporous and mesoporous materials, 83(1-3) (2005). 150-158.
Luan, Z., Hartmann, M., Zhao, D., Zhou, W., & Kevan, L. J. C. o. m. Alumination and ion exchange of mesoporous SBA-15 molecular sieves. Chemistry of materials, 11(6) (1999). 1621-1627.
Maity, N., Payne, G. F., & Chipchosky, J. L. Adsorptive separations based on the differences in solute-sorbent hydrogen-bonding strengths. Industrial & Engineering Chemistry Research, 30(11) (1991). 2456-2463.
Margolese, D., Melero, J., Christiansen, S., Chmelka, B., & Stucky, G. J. C. o. M. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chemistry of Materials, 12(8) (2000). 2448-2459.
Martens, J. A., Jammaer, J., Bajpe, S., Aerts, A., Lorgouilloux, Y., & Kirschhock, C. E. A. Simple synthesis recipes of porous materials. Microporous and Mesoporous Materials, 140(1-3) (2011). 2-8.
Meléndez-Ortiz, H. I., Puente-Urbina, B., Castruita-de Leon, G., Mata-Padilla, J. M., & García-Uriostegui, L. Synthesis of spherical SBA-15 mesoporous silica. Influence of reaction conditions on the structural order and stability. Ceramics International, 42(6) (2016). 7564-7570.
Meziani, A., Touraud, D., Zradba, A., Pulvin, S., Pezron, I., Clausse, M., & Kunz, W. J. T. J. o. P. C. B. Comparison of enzymatic activity and nanostructures in water/ethanol/Brij 35 and water/1-pentanol/Brij 35 systems. The Journal of Physical Chemistry B, 101(18) (1997). 3620-3625.
Moncrief, J. W., Popovich, R. P., & Nolph, K. D. The History and Current Status of Continuous Ambulatory Peritoneal Dialysis. American Journal of Kidney Diseases, 16(6) (1990). 579-584.
Neirynck, N., Vanholder, R., Schepers, E., Eloot, S., Pletinck, A., & Glorieux, G. An update on uremic toxins. International urology and nephrology, 45(1) (2013). 139-150.
Parambadath, S., Rana, V. K., Zhao, D., & Ha, C.-S. N,N′-diureylenepiperazine-bridged periodic mesoporous organosilica for controlled drug delivery. Microporous and Mesoporous Materials, 141(1-3) (2011). 94-101.
Pawar, R. R., Kevadiya, B. D., Brahmbhatt, H., & Bajaj, H. C. Template free synthesis of mesoporous hectorites: efficient host for pH responsive drug delivery. International journal of pharmaceutics, 446(1-2) (2013). 145-152.
Perego, C., & Millini, R. Porous materials in catalysis: challenges for mesoporous materials.Chemical Society Reviews, 42(9) (2013). 3956-3976.
Popova, M., Szegedi, Á., Cherkezova-Zheleva, Z., Dimitrova, A., & Mitov, I. Toluene oxidation on chromium- and copper-modified SiO2 and SBA-15. Applied Catalysis A: General, 381(1-2) (2010). 26-35.
Reimer, L. (2013). Scanning Electron Microscopy: physics of image formation and microanalysis (Vol. 45): Springer.
Ronco, C., & Fecondini, L. The Vicenza wearable artificial kidney for peritoneal dialysis (ViWAK PD). Blood Purif, 25(4) (2007). 383-388.
Rosenholm, J. M., & Lindén, M. J. C. o. M. Wet-chemical analysis of surface concentration of accessible groups on different amino-functionalized mesoporous SBA-15 silicas. Chemistry of Materials, 19(20) (2007). 5023-5034.
Roy, S., Chatterjee, T., Pramanik, M., Roy, A. S., Bhaumik, A., & Islam, S. M. Cu(II)-anchored functionalized mesoporous SBA-15: An efficient and recyclable catalyst for the one-pot Click reaction in water. Journal of Molecular Catalysis A: Chemical, 386 (2014). 78-85.
Sanz, R., Calleja, G., Arencibia, A., & Sanz-Pérez, E. S. Amino functionalized mesostructured SBA-15 silica for CO2 capture: Exploring the relation between the adsorption capacity and the distribution of amino groups by TEM. Microporous and Mesoporous Materials, 158 (2012). 309-317.
Shakeri, M., Klein Gebbink, R. J. M., de Jongh, P. E., & de Jong, K. P. Control and assessment of plugging of mesopores in SBA-15 materials. Microporous and Mesoporous Materials, 170 (2013). 340-345.
Shen, S.-C., & Kawi, S. Understanding of the effect of Al substitution on the hydrothermal stability of MCM-41. The Journal of Physical Chemistry B, 103(42) (1999). 8870-8876.
Sujandi, Park, S.-E., Han, D.-S., Han, S.-C., Jin, M.-J., & Ohsuna, T. Amino-functionalized SBA-15 type mesoporous silica having nanostructured hexagonal platelet morphology. Chemical Communications(39) (2006).
Sun, B., Li, L., Fei, Z., Gu, S., Lu, P., & Ji, W. Prehydrolysis approach to direct synthesis of Fe, Al, Cr-incorporated SBA-15 with good hydrothermal stability and enhanced acidity. Microporous and Mesoporous Materials, 186 (2014). 14-20.
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S, A. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). 87(9-10) (2015). 1051-1069.
Tijink, M. S., Wester, M., Glorieux, G., Gerritsen, K. G., Sun, J., Swart, P. Joles, J. A. Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma. Biomaterials, 34(32) (2013). 7819-7828.
Ulrich, K., Galvosas, P., Kärger, J. r., Grinberg, F., Vernimmen, J., Meynen, V., & Cool, P. J. T. J. o. P. C. B. Self-assembly and diffusion of block copolymer templates in SBA-15 nanochannels. The Journal of Physical Chemistry B, 114(12) (2010). 4223-4229.
Urata, C., Yamada, H., Wakabayashi, R., Aoyama, Y., Hirosawa, S., Arai, S., & Kuroda, K. Aqueous colloidal mesoporous nanoparticles with ethenylene-bridged silsesquioxane frameworks. Journal of the American Chemical Society, (2011)133(21), 8102-8105.
Vanholder, R., De Smet, R., Glorieux, G., Argiles, A., Baurmeister, U., Brunet, P., . . . European Uremic Toxin Work, G. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney International, 63(5) (2003). 1934-1943.
Wan, M. M., Yang, J. Y., Qiu, Y., Zhou, Y., Guan, C. X., Hou, Q., & Zhu, J. H.. Sustained release of heparin on enlarged-pore and functionalized MCM-41. ACS applied materials & interfaces, 4(8) (2012), 4113-4122.
Wang, X., Lin, K. S., Chan, J. C., & Cheng, S. J. T. J. o. P. C. B. Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. The Journal of Physical Chemistry B, 109(5) (2005). 1763-1769.
Webb, J. D., Seki, T., Goldston, J. F., Pruski, M., & Crudden, C. M. Selective functionalization of the mesopores of SBA-15. Microporous and Mesoporous Materials, 203 (2015). 123-131.
Wei, Q., Chen, H.-Q., Nie, Z.-R., Hao, Y.-L., Wang, Y.-L., Li, Q.-Y., & Zou, J.-X. Preparation and characterization of vinyl-functionalized mesoporous SBA-15 silica by a direct synthesis method. Materials Letters, 61(7) (2007). 1469-1473.
Wester, M., Simonis, F., Lachkar, N., Wodzig, W. K., Meuwissen, F. J., Kooman, J. P., . . . Gerritsen, K. G. Removal of urea in a wearable dialysis device: a reappraisal of electro-oxidation. Artificial organs, 38(12) (2014). 998-1006.
Xu, Y.-q., Zhou, G.-w., Wu, C.-c., Li, T.-d., & Song, H.-b. Improving adsorption and activation of the lipase immobilized in amino-functionalized ordered mesoporous SBA-15. Solid State Sciences, 13(5) (2011). 867-874.
Zhang, F., Yan, Y., Yang, H., Meng, Y., Yu, C., Tu, B., & Zhao, D. J. T. J. o. P. C. B. Understanding effect of wall structure on the hydrothermal stability of mesostructured silica SBA-15. Journal of Physical Chemistry B, 109(18) (2005). 8723-8732.
Zhao, D., Huo, Q., Feng, J., Chmelka, B. F., & Stucky, G. D. J. J. o. t. A. C. S. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 120(24) (1998). 6024-6036.
Zhao, D., Sun, J., Li, Q., & Stucky, G. D. J. C. o. m. Morphological control of highly ordered mesoporous silica SBA-15. Chemistry of materials, 12(2) (2000). 275-279.
Zheng, J., Zhang, X., Zhang, Y., Ma, J., & Li, R. Structural effects of hierarchical pores in zeolite composite. Microporous and Mesoporous Materials, 122(1-3) (2009). 264-269.

林承叡、吳志仁、陳逸洲、陳漢湘,「親蛋白質尿毒素-對甲酚(p-Cresol)的病理生理學角色」,生物醫學,第1期,第5頁至13頁(2008)。
林財富,「活性碳及活性碳纖維吸附劑對揮發性有機物控制效能之研究」,碩士論文,台灣大學,台灣(1987)
陳興翰,「製備聚胺化殼核幾丁聚醣磁性奈米粒子以吸附去除水中磷酸根離子」,碩士論文,長庚大學,台灣(2017)
柯佳妏,「利用非溶劑誘導相轉化法製備多孔性混合基材薄膜自模擬血清中清除小分子尿毒素」,碩士論文,長庚大學,台灣(2018)
游鴻霖,「利用非溶劑誘導相轉換法製備多孔性高分子包容薄膜自模擬血清中選擇性清除尿毒素」,碩士論文,長庚大學,台灣(2018)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top