跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/30 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏薇真
研究生(外文):Wei Chen Yen
論文名稱:葡萄糖六磷酸去氫酶缺乏引起氧化還原狀態失衡對發炎反應及病原體感染之影響
論文名稱(外文):The effects of redox homeostasis imbalance induced by G6PD deficiency on inflammatory response and pathogen infection
指導教授:趙崇義趙崇義引用關係吳治慶吳治慶引用關係
指導教授(外文):T. Y. ChiuC. C. Wu
學位類別:博士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:133
中文關鍵詞:氧化還原之平衡葡萄糖六磷酸去氫酶NOXp38AP-1IL-1βCOX-2細菌清除病毒感染
外文關鍵詞:Redox homeostasisG6PDNOXp38AP-1IL-1βCOX-2bacterial clearancevirus infection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Table of Contents
指導教授推薦書..........................................................................................
論文口試委員會審定書..............................................................................
致謝...........................................................................................................iii
中文摘要...................................................................................................iv
Abstract......................................................................................................vi
Table of Contents.....................................................................................viii
List of Figures.............................................................................................x
List of Table..............................................................................................xii
List of Abbreviations...............................................................................xiii
Chapter 1. General Introduction.................................................................1
1.1 G6PD deficiency: Mutations and hemolytic anemia.………………...1
1.2 G6PD-deficiency associated diseases not related to red cells…...…...2
1.3 G6PD and redox homeostasis……………...…………………………3
1.4 ROS and inflammatory response……………………………………..4
1.5 Dissertation overview………………………………………………...5
Chapter 2. Objective and Specific Aims…………………...……………..7
Chapter 3. Part A. Impaired inflammasome activation and bacterial clearance in G6PD deficiency is due to defective NOX/p38 MAPK/AP-1 redox signaling……………….…………………9
3.1 Introduction…………………………………………………………...9
3.2 Materials and methods………………………………………………11
3.3 Results……………………………………………………………….19
3.4 Discussion…………………………………………………………...24
Chapter 4. Part B. Impaired COX-2/PGE2-mediated anti-viral response in G6PD knockdown A549 cells through NOX/MAPK signaling………………...…….……………………………...28
4.1 Introduction………………………………………………………….28
4.2 Materials and methods………………………………………………30
4.3 Results……………………………………………………………….35
4.4 Discussion…………………………………………………………...38
Chapter 5. Overall discussion and conclusion…………………………..41
References……………………………………………………………….46
Figures..……………………………….………………………………...62
Table……………...……………………………………………………...89


List of Figures
Figure 1. IL-1β secretion in G6PD-deficient PBMCs…………………..62
Figure 2. Inflammasome activation in G6PD-kd THP-1 cells..................64
Figure 3. NLRP3 inflammasome activation in G6PD-kd THP-1 cells….66
Figure 4. P38/MAPK pathway in G6PD-kd THP-1 cells……………….67
Figure 5. AP-1 signaling in G6PD-kd THP-1 cells……………………...69
Figure 6. Signaling of p38 MAPK/AP-1 modulated by the ROS level in G6PD-kd THP-1 cells……………...………………………….71
Figure 7. Bacterial clearance activity in G6PD-kd THP-1 cells and PBMCs from patients with G6PD deficiency…………….…..74
Figure 8. Proposed schematic representation of the signaling pathways involved in the redox regulation of inflammasome activation in G6PD-deficient cells………………………………………….75
Figure 9. Down-regulation of TNF-α-induced COX-2/PGE2 expression in G6PD deficiency A549 cells……………………………..…...76
Figure 10. Increased replication level of coronavirus via down-regulation of TNF-α-induced COX-2/PGE2 expression in G6PD deficiency A549 cells………………………………………………….....77
Figure 11. G6PD knockdown impairs the phosphorylation of MAPKs signaling………………………………………………………79
Figure 12. G6PD knockdown dysregulates the activation of c-JUN and NF-κB signaling………………………………………………81
Figure 13. G6PD knockdown-regulated p38 MAPK activation and COX-2 expression are attributed by NOX signaling………….…….84
Figure 14. G6PD is required for the TNF-α-induced activation of NOX signaling and antiviral response………………………………86
Figure 15. Proposed schematic representation of the NOX/MAPK/c-JUN/NF-κB/COX-2 signaling impaired by G6PD knockdown in A549 cells upon TNF-α stimulation………………………......88


List of Table
Table 1……………………………….…………………………………..89
[1] Ho HY, Cheng ML, Chiu DT. Glucose-6-phosphate dehydrogenase--beyond the realm of red cell biology. Free Radic Res 2014;48(9):1028-48.
[2] Manganelli G, Masullo U, Passarelli S, Filosa S. Glucose-6-phosphate dehydrogenase deficiency: disadvantages and possible benefits. Cardiovasc Hematol Disord Drug Targets 2013;13(1):73-82.
[3] Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A, Chiu DT. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Cells 2019;8(9).
[4] Chiu DT, Zuo L, Chao L, Chen E, Louie E, Lubin B, Liu TZ, Du CS. Molecular characterization of glucose-6-phosphate dehydrogenase (G6PD) deficiency in patients of Chinese descent and identification of new base substitutions in the human G6PD gene. Blood 1993;81(8):2150-4.
[5] Chiu DT, Zuo L, Chen E, Chao L, Louie E, Lubin B, Liu TZ, Du CS. Two commonly occurring nucleotide base substitutions in Chinese G6PD variants. Biochem Biophys Res Commun 1991;180(2):988-93.
[6] Brandt O, Rieger A, Geusau A, Stingl G. Peas, beans, and the Pythagorean theorem - the relevance of glucose-6-phosphate dehydrogenase deficiency in dermatology. J Dtsch Dermatol Ges 2008;6(7):534-9.
[7] Lang E, Qadri SM, Lang F. Killing me softly - suicidal erythrocyte death. Int J Biochem Cell Biol 2012;44(8):1236-43.
[8] Jeng W, Loniewska MM, Wells PG. Brain glucose-6-phosphate dehydrogenase protects against endogenous oxidative DNA damage and neurodegeneration in aged mice. ACS Chem Neurosci 2013;4(7):1123-32.
[9] Heistad DD, Wakisaka Y, Miller J, Chu Y, Pena-Silva R. Novel aspects of oxidative stress in cardiovascular diseases. Circ J 2009;73(2):201-7.
[10] Santana MS, Monteiro WM, Costa MR, Sampaio VS, Brito MA, Lacerda MV, Alecrim MG. High frequency of diabetes and impaired fasting glucose in patients with glucose-6-phosphate dehydrogenase deficiency in the Western brazilian Amazon. Am J Trop Med Hyg 2014;91(1):74-6.
[11] Heymann AD, Cohen Y, Chodick G. Glucose-6-phosphate dehydrogenase deficiency and type 2 diabetes. Diabetes Care 2012;35(8):e58.
[12] Frank JE. Diagnosis and management of G6PD deficiency. Am Fam Physician 2005;72(7):1277-82.
[13] Nikolaidis MG, Jamurtas AZ, Paschalis V, Kostaropoulos IA, Kladi-Skandali A, Balamitsi V, Koutedakis Y, Kouretas D. Exercise-induced oxidative stress in G6PD-deficient individuals. Med Sci Sports Exerc 2006;38(8):1443-50.
[14] Zhang Z, Liew CW, Handy DE, Zhang Y, Leopold JA, Hu J, Guo L, Kulkarni RN, Loscalzo J, Stanton RC. High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosis. FASEB J 2010;24(5):1497-505.
[15] Stanton RC. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life 2012;64(5):362-9.
[16] Yang HC, Cheng ML, Ho HY, Chiu DT. The microbicidal and cytoregulatory roles of NADPH oxidases. Microbes Infect 2011;13(2):109-20.
[17] Lin HR, Wu CC, Wu YH, Hsu CW, Cheng ML, Chiu DT. Proteome-wide dysregulation by glucose-6-phosphate dehydrogenase (G6PD) reveals a novel protective role for G6PD in aflatoxin B(1)-mediated cytotoxicity. J Proteome Res 2013;12(7):3434-48.
[18] Wu YH, Chiu DT, Lin HR, Tang HY, Cheng ML, Ho HY. Glucose-6-Phosphate Dehydrogenase Enhances Antiviral Response through Downregulation of NADPH Sensor HSCARG and Upregulation of NF-kappaB Signaling. Viruses 2015;7(12):6689-706.
[19] Wu YH, Lee YH, Shih HY, Chen SH, Cheng YC, Tsun-Yee Chiu D. Glucose-6-phosphate dehydrogenase is indispensable in embryonic development by modulation of epithelial-mesenchymal transition via the NOX/Smad3/miR-200b axis. Cell Death Dis 2018;9(1):10.
[20] Chen TL, Yang HC, Hung CY, Ou MH, Pan YY, Cheng ML, Stern A, Lo SJ, Chiu DT. Impaired embryonic development in glucose-6-phosphate dehydrogenase-deficient Caenorhabditis elegans due to abnormal redox homeostasis induced activation of calcium-independent phospholipase and alteration of glycerophospholipid metabolism. Cell Death Dis 2017;8(1):e2545.
[21] Gorlach A, Dimova EY, Petry A, Martinez-Ruiz A, Hernansanz-Agustin P, Rolo AP, Palmeira CM, Kietzmann T. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol 2015;6:372-85.
[22] Kienhofer D, Boeltz S, Hoffmann MH. Reactive oxygen homeostasis - the balance for preventing autoimmunity. Lupus 2016;25(8):943-54.
[23] Tan HY, Wang N, Li S, Hong M, Wang X, Feng Y. The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases. Oxid Med Cell Longev 2016;2016:2795090.
[24] Brechard S, Plancon S, Tschirhart EJ. New insights into the regulation of neutrophil NADPH oxidase activity in the phagosome: a focus on the role of lipid and Ca(2+) signaling. Antioxid Redox Signal 2013;18(6):661-76.
[25] Tsai KJ, Hung IJ, Chow CK, Stern A, Chao SS, Chiu DT. Impaired production of nitric oxide, superoxide, and hydrogen peroxide in glucose 6-phosphate-dehydrogenase-deficient granulocytes. FEBS Lett 1998;436(3):411-4.
[26] Sokolovska A, Becker CE, Ip WK, Rathinam VA, Brudner M, Paquette N, Tanne A, Vanaja SK, Moore KJ, Fitzgerald KA and others. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nat Immunol 2013;14(6):543-53.
[27] Gross O, Thomas CJ, Guarda G, Tschopp J. The inflammasome: an integrated view. Immunol Rev 2011;243(1):136-51.
[28] Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. The role of oxidative stress during inflammatory processes. Biol Chem 2014;395(2):203-30.
[29] Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A, Chiu DT. The redox role of G6PD in cell growth, cell death, and cancer. Cells 2019;8(9):1055.
[30] Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet 2008;371(9606):64-74.
[31] Luzzatto L, Seneca E. G6PD deficiency: a classic example of pharmacogenetics with on-going clinical implications. Br J Haematol 2014;164(4):469-80.
[32] Wan GH, Tsai SC, Chiu DT. Decreased blood activity of glucose-6-phosphate dehydrogenase associates with increased risk for diabetes mellitus. Endocrine 2002;19(2):191-5.
[33] Gaskin RS, Estwick D, Peddi R. G6PD deficiency: its role in the high prevalence of hypertension and diabetes mellitus. Ethn Dis 2001;11(4):749-54.
[34] Tang HY, Ho HY, Wu PR, Chen SH, Kuypers FA, Cheng ML, Chiu DT. Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance. Antioxid Redox Signal 2015;22(9):744-59.
[35] Longo L, Vanegas OC, Patel M, Rosti V, Li H, Waka J, Merghoub T, Pandolfi PP, Notaro R, Manova K and others. Maternally transmitted severe glucose 6-phosphate dehydrogenase deficiency is an embryonic lethal. EMBO J 2002;21(16):4229-39.
[36] Yang HC, Chen TL, Wu YH, Cheng KP, Lin YH, Cheng ML, Ho HY, Lo SJ, Chiu DT. Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans. Cell Death Dis 2013;4:e616.
[37] Lin HR, Wu YH, Yen WC, Yang CM, Chiu DT. Diminished COX-2/PGE2-mediated antiviral response due to impaired NOX/MAPK signaling in G6PD-knockdown lung epithelial cells. PLoS One 2016;11(4):e0153462.
[38] Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 2014;15(6):411-21.
[39] Ho HY, Cheng ML, Chiu DT. Glucose-6-phosphate dehydrogenase--from oxidative stress to cellular functions and degenerative diseases. Redox Rep 2007;12(3):109-18.
[40] Leto TL, Morand S, Hurt D, Ueyama T. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal 2009;11(10):2607-19.
[41] Babior BM. NADPH oxidase: an update. Blood 1999;93(5):1464-76.
[42] Singel KL, Segal BH. NOX2-dependent regulation of inflammation. Clin Sci (Lond) 2016;130(7):479-90.
[43] McCubrey JA, Lahair MM, Franklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 2006;8(9-10):1775-89.
[44] Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J Signal Transduct 2011;2011:792639.
[45] Liang Y, Zhou Y, Shen P. NF-kappaB and its regulation on the immune system. Cell Mol Immunol 2004;1(5):343-50.
[46] Ho HY, Cheng ML, Weng SF, Chang L, Yeh TT, Shih SR, Chiu DT. Glucose-6-phosphate dehydrogenase deficiency enhances enterovirus 71 infection. J Gen Virol 2008;89(Pt 9):2080-9.
[47] Wu YH, Tseng CP, Cheng ML, Ho HY, Shih SR, Chiu DT. Glucose-6-phosphate dehydrogenase deficiency enhances human coronavirus 229E infection. J Infect Dis 2008;197(6):812-6.
[48] Rathinam VA, Vanaja SK, Fitzgerald KA. Regulation of inflammasome signaling. Nat Immunol 2012;13(4):333-42.
[49] Abderrazak A, Syrovets T, Couchie D, El Hadri K, Friguet B, Simmet T, Rouis M. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol 2015;4:296-307.
[50] Yamazaki T, Ichinohe T. Inflammasomes in antiviral immunity: clues for influenza vaccine development. Clin Exp Vaccine Res 2014;3(1):5-11.
[51] Elinav E, Henao-Mejia J, Flavell RA. Integrative inflammasome activity in the regulation of intestinal mucosal immune responses. Mucosal Immunol 2013;6(1):4-13.
[52] Lamkanfi M, Vande Walle L, Kanneganti TD. Deregulated inflammasome signaling in disease. Immunol Rev 2011;243(1):163-73.
[53] He X, Wei Z, Wang J, Kou J, Liu W, Fu Y, Yang Z. Alpinetin attenuates inflammatory responses by suppressing TLR4 and NLRP3 signaling pathways in DSS-induced acute colitis. Sci Rep 2016;6:28370.
[54] Gicquel T, Robert S, Victoni T, Lagente V. [The NLRP3 inflammasome: Physiopathology and therapeutic application]. Presse Med 2016;45(4 Pt 1):438-46.
[55] Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 2013;62(1):194-204.
[56] Koontz L. TCA precipitation. Methods Enzymol 2014;541:3-10.
[57] Ko SC, Huang CR, Shieh JM, Yang JH, Chang WC, Chen BK. Epidermal growth factor protects squamous cell carcinoma against cisplatin-induced cytotoxicity through increased interleukin-1beta expression. PLoS One 2013;8(2):e55795.
[58] Khan Z, Shen XZ, Bernstein EA, Giani JF, Eriguchi M, Zhao TV, Gonzalez-Villalobos RA, Fuchs S, Liu GY, Bernstein KE. Angiotensin-converting enzyme enhances the oxidative response and bactericidal activity of neutrophils. Blood 2017;130(3):328-339.
[59] Chen CY, Yang CH, Tsai YF, Liaw CC, Chang WY, Hwang TL. Ugonin U stimulates NLRP3 inflammasome activation and enhances inflammasome-mediated pathogen clearance. Redox Biol 2017;11:263-274.
[60] Hsieh YT, Lin MH, Ho HY, Chen LC, Chen CC, Shu JC. Glucose-6-phosphate dehydrogenase (G6PD)-deficient epithelial cells are less tolerant to infection by Staphylococcus aureus. PLoS One 2013;8(11):e79566.
[61] Rada BK, Geiszt M, Kaldi K, Timar C, Ligeti E. Dual role of phagocytic NADPH oxidase in bacterial killing. Blood 2004;104(9):2947-53.
[62] Siler U, Romao S, Tejera E, Pastukhov O, Kuzmenko E, Valencia RG, Meda Spaccamela V, Belohradsky BH, Speer O, Schmugge M and others. Severe glucose-6-phosphate dehydrogenase deficiency leads to susceptibility to infection and absent NETosis. J Allergy Clin Immunol 2017;139(1):212-219 e3.
[63] Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol 2014;24(10):R453-62.
[64] Spooner R, Yilmaz O. The role of reactive-oxygen-species in microbial persistence and inflammation. Int J Mol Sci 2011;12(1):334-52.
[65] Yang HC, Wu YH, Liu HY, Stern A, Chiu DT. What has passed is prolog: new cellular and physiological roles of G6PD. Free Radic Res 2016;50(10):1047-1064.
[66] Silva I, Peccerella T, Mueller S, Rausch V. IL-1 beta-mediated macrophage-hepatocyte crosstalk upregulates hepcidin under physiological low oxygen levels. Redox Biol 2019;24:101209.
[67] Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med 2011;32(4-6):234-46.
[68] Ham M, Lee JW, Choi AH, Jang H, Choi G, Park J, Kozuka C, Sears DD, Masuzaki H, Kim JB. Macrophage glucose-6-phosphate dehydrogenase stimulates proinflammatory responses with oxidative stress. Mol Cell Biol 2013;33(12):2425-35.
[69] Philippe M, Larondelle Y, Lemaigre F, Mariame B, Delhez H, Mason P, Luzzatto L, Rousseau GG. Promoter function of the human glucose-6-phosphate dehydrogenase gene depends on two GC boxes that are cell specifically controlled. Eur J Biochem 1994;226(2):377-84.
[70] Franze A, Ferrante MI, Fusco F, Santoro A, Sanzari E, Martini G, Ursini MV. Molecular anatomy of the human glucose 6-phosphate dehydrogenase core promoter. FEBS Lett 1998;437(3):313-8.
[71] Laliotis GP, Bizelis I, Argyrokastritis A, Rogdakis E. Cloning, characterization and computational analysis of the 5' regulatory region of ovine glucose 6-phosphate dehydrogenase gene. Comp Biochem Physiol B Biochem Mol Biol 2007;147(4):627-34.
[72] Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 1997;9(2):240-6.
[73] Kouzarides T, Ziff E. The role of the leucine zipper in the fos-jun interaction. Nature 1988;336(6200):646-51.
[74] Lee J, Mehta K, Blick MB, Gutterman JU, Lopez-Berestein G. Expression of c-fos, c-myb, and c-myc in human monocytes: correlation with monocytic differentiation. Blood 1987;69(5):1542-5.
[75] Park JM, Kim DH, Na HK, Surh YJ. Methylseleninic acid induces NAD(P)H:quinone oxidoreductase-1 expression through activation of NF-E2-related factor 2 in Chang liver cells. Oncotarget 2018;9(3):3014-3028.
[76] Song CH, Kim N, Lee SM, Nam RH, Choi SI, Kang SR, Shin E, Lee DH, Lee HN, Surh YJ. Effects of 17beta-estradiol on colorectal cancer development after azoxymethane/dextran sulfate sodium treatment of ovariectomized mice. Biochem Pharmacol 2019;164:139-151.
[77] Ross D, Siegel D. Functions of NQO1 in Cellular Protection and CoQ10 Metabolism and its Potential Role as a Redox Sensitive Molecular Switch. Front Physiol 2017;8:595.
[78] Kimura A, Kitajima M, Nishida K, Serada S, Fujimoto M, Naka T, Fujii-Kuriyama Y, Sakamato S, Ito T, Handa H and others. NQO1 inhibits the TLR-dependent production of selective cytokines by promoting IkappaB-zeta degradation. J Exp Med 2018;215(8):2197-2209.
[79] Tartey S, Kanneganti TD. Differential role of the NLRP3 inflammasome in infection and tumorigenesis. Immunology 2019;156(4):329-338.
[80] Lv R, Du L, Liu X, Zhou F, Zhang Z, Zhang L. Polydatin alleviates traumatic spinal cord injury by reducing microglial inflammation via regulation of iNOS and NLRP3 inflammasome pathway. Int Immunopharmacol 2019;70:28-36.
[81] Tang J, Li Y, Wang J, Wu Q, Yan H. Polydatin suppresses the development of lung inflammation and fibrosis by inhibiting activation of the NACHT domain-, leucine-rich repeat-, and pyd-containing protein 3 inflammasome and the nuclear factor-kappaB pathway after Mycoplasma pneumoniae infection. J Cell Biochem 2019;120(6):10137-10144.
[82] Jiang Y, Wang M, Huang K, Zhang Z, Shao N, Zhang Y, Wang W, Wang S. Oxidized low-density lipoprotein induces secretion of interleukin-1beta by macrophages via reactive oxygen species-dependent NLRP3 inflammasome activation. Biochem Biophys Res Commun 2012;425(2):121-6.
[83] Lee IT, Lin CC, Lee CY, Hsieh PW, Yang CM. Protective effects of (-)-epigallocatechin-3-gallate against TNF-alpha-induced lung inflammation via ROS-dependent ICAM-1 inhibition. J Nutr Biochem 2013;24(1):124-36.
[84] Fang J, Hao Q, Liu L, Li Y, Wu J, Huo X, Zhu Y. Epigenetic changes mediated by microRNA miR29 activate cyclooxygenase 2 and lambda-1 interferon production during viral infection. J Virol 2012;86(2):1010-20.
[85] Liu L, Cao Z, Chen J, Li R, Cao Y, Zhu C, Wu K, Wu J, Liu F, Zhu Y. Influenza A virus induces interleukin-27 through cyclooxygenase-2 and protein kinase A signaling. J Biol Chem 2012;287(15):11899-910.
[86] Chen CC, Sun YT, Chen JJ, Chang YJ. Tumor necrosis factor-alpha-induced cyclooxygenase-2 expression via sequential activation of ceramide-dependent mitogen-activated protein kinases, and IkappaB kinase 1/2 in human alveolar epithelial cells. Mol Pharmacol 2001;59(3):493-500.
[87] Parsanathan R, Jain SK. L-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes. Amino Acids 2018;50(7):909-921.
[88] Spencer NY, Yan Z, Boudreau RL, Zhang Y, Luo M, Li Q, Tian X, Shah AM, Davisson RL, Davidson B and others. Control of hepatic nuclear superoxide production by glucose 6-phosphate dehydrogenase and NADPH oxidase-4. J Biol Chem 2011;286(11):8977-87.
[89] Zhang Z, Yang Z, Zhu B, Hu J, Liew CW, Zhang Y, Leopold JA, Handy DE, Loscalzo J, Stanton RC. Increasing glucose 6-phosphate dehydrogenase activity restores redox balance in vascular endothelial cells exposed to high glucose. PLoS One 2012;7(11):e49128.
[90] Strengert M, Jennings R, Davanture S, Hayes P, Gabriel G, Knaus UG. Mucosal reactive oxygen species are required for antiviral response: role of Duox in influenza a virus infection. Antioxid Redox Signal 2014;20(17):2695-709.
[91] Soucy-Faulkner A, Mukawera E, Fink K, Martel A, Jouan L, Nzengue Y, Lamarre D, Vande Velde C, Grandvaux N. Requirement of NOX2 and reactive oxygen species for efficient RIG-I-mediated antiviral response through regulation of MAVS expression. PLoS Pathog 2010;6(6):e1000930.
[92] Kuo FC, Tseng YT, Wu SR, Wu MT, Lo YC. Melamine activates NFkappaB/COX-2/PGE2 pathway and increases NADPH oxidase-dependent ROS production in macrophages and human embryonic kidney cells. Toxicol In Vitro 2013;27(6):1603-11.
[93] Zhou Y, Zhu Y. Important Role of the IL-32 Inflammatory Network in the Host Response against Viral Infection. Viruses 2015;7(6):3116-29.
[94] Clark M, Root RK. Glucose-6-phosphate dehydrogenase deficiency and infection: a study of hospitalized patients in Iran. Yale J Biol Med 1979;52(2):169-79.
[95] Cooper MR, DeChatelet LR, McCall CE, LaVia MF, Spurr CL, Baehner RL. Complete deficiency of leukocyte glucose-6-phosphate dehydrogenase with defective bactericidal activity. J Clin Invest 1972;51(4):769-78.
[96] Babior BM. Oxygen-dependent microbial killing by phagocytes (second of two parts). N Engl J Med 1978;298(13):721-5.
[97] Medzhitov R. Origin and physiological roles of inflammation. Nature 2008;454(7203):428-35.
[98] Zelova H, Hosek J. TNF-alpha signalling and inflammation: interactions between old acquaintances. Inflamm Res 2013;62(7):641-51.
[99] Chen X, Liu G, Yuan Y, Wu G, Wang S, Yuan L. NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-kappaB signaling. Cell Death Dis 2019;10(12):906.
[100] McGeough MD, Wree A, Inzaugarat ME, Haimovich A, Johnson CD, Pena CA, Goldbach-Mansky R, Broderick L, Feldstein AE, Hoffman HM. TNF regulates transcription of NLRP3 inflammasome components and inflammatory molecules in cryopyrinopathies. J Clin Invest 2017;127(12):4488-4497.
[101] Alvarez S, Munoz-Fernandez MA. TNF-Alpha may mediate inflammasome activation in the absence of bacterial infection in more than one way. PLoS One 2013;8(8):e71477.
[102] Bogdan C. Nitric oxide and the immune response. Nat Immunol 2001;2(10):907-16.
[103] Rao CV, Indranie C, Simi B, Manning PT, Connor JR, Reddy BS. Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor. Cancer Res 2002;62(1):165-70.
[104] Mao K, Chen S, Chen M, Ma Y, Wang Y, Huang B, He Z, Zeng Y, Hu Y, Sun S and others. Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Res 2013;23(2):201-12.
[105] Kopitar-Jerala N. The Role of Interferons in Inflammation and Inflammasome Activation. Front Immunol 2017;8:873.
[106] Petri B, Sanz MJ. Neutrophil chemotaxis. Cell Tissue Res 2018;371(3):425-436.
[107] Oliveira SH, Canetti C, Ribeiro RA, Cunha FQ. Neutrophil migration induced by IL-1beta depends upon LTB4 released by macrophages and upon TNF-alpha and IL-1beta released by mast cells. Inflammation 2008;31(1):36-46.
[108] Cheng ML, Ho HY, Lin HY, Lai YC, Chiu DT. Effective NET formation in neutrophils from individuals with G6PD Taiwan-Hakka is associated with enhanced NADP(+) biosynthesis. Free Radic Res 2013;47(9):699-709.
[109] De la Fuente M. Effects of antioxidants on immune system ageing. Eur J Clin Nutr 2002;56 Suppl 3:S5-8.
[110] Ma Q, Kinneer K, Ye J, Chen BJ. Inhibition of nuclear factor kappaB by phenolic antioxidants: interplay between antioxidant signaling and inflammatory cytokine expression. Mol Pharmacol 2003;64(2):211-9.
電子全文 電子全文(網際網路公開日期:20230113)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊